APPENDIX A Web Services Overview

Web services define a common way for applications to interact with each other across heterogeneous programming languages and operating systems. This is made possible because Web services use XML as the base for their data formats, be it for the description of a particular service (that is, the Web Services Definition Language, or WSDL), or for the actual invocation of a service (that is, the Simple Object Access Protocol, or SOAP).

Web services solutions and service-oriented architectures (SOAs) include service requestor (client) and service provider (server) implementations, which communicate via SOAP (XML messaging). Web Services Description Language (WSDL) service descriptions provide the glue between requestors and providers. Optionally, a service broker, for example a Universal Description, Discovery and Integration (UDDI) registry, might be involved.

[image: image1.png]

A service provider hosts a Web service and makes it accessible using protocols such as SOAP/HTTP. The Web service is described by a WSDL document that is stored on the provider's server or in a special repository. The WSDL document may be referenced by the UDDI business registry and WSIL documents. These contain pointers to the Web service's WSDL files.

[image: image2.png]
Web services provide a standard way to implement a business function that can be invoked remotely. They support interoperability by separating the mechanisms of access from the implementation. For this reason, Web services are the de facto standard for implementing an SOA that requires a loose coupling between a requester and a provider. The development tools industry quickly jumped onto the Web services bandwagon and provided mechanisms for developing Web services.

One of the major doctrines of a web service is publish, find, and bind. This doctrine recognizes that the key to any Web services development is the WSDL document that defines the interface and binding of the corresponding Web service implementations. The WSDL document defines the contract between the Web service requester and provider such that the implementation details (and even implementation platform) of each can be different and can change without any impact on the others.

A WSDL document has several aspects; the most relevant are the types and the portType elements. The types element defines the XML schema for the data types used in the interface; these types may be explicitly defined in the WSDL and/or imported from other XML schema files. The portType element identifies the set of operations offered by the Web service, via a set of operation elements. Each operation element in turn references (indirectly through message elements) the data types defined in the types element for use as input and output parameters.

Once a WSDL document is created, Web service development tools can generate the necessary deploy-time and run-time artifacts defined by JAX-RPC. WSDL is the top level of development because it is a meta-language that describes an interface in abstract, implementation-independent terms. Code is considered the bottom level of development because it can be mostly generated, deployed and executed. There are three development patterns:

a) Bottom-up pattern: Start with Java to produce WSDL.

b) Top-down pattern: Start with WSDL to produce Java.

c) Round-trip pattern: Start with WSDL to produce Java, which is then used to produce WSDL, which is then used to produce Java.

I will explore the Bottom-up and Top-down patterns.

Bottom-up Web Services development pattern

The first generation of Web services tools for Java was targeted at exposing existing code as Web services. This approach is called bottom-up because the starting point is code that is being abstracted into an interface definition and subsequently exposed as a Web service implementing that interface. The bottom-up development pattern encompasses the following development steps:

1. Identify or create JavaBeans that represent the data types of the input and output parameters of a service interface. These can be existing or new JavaBeans. Because these JavaBeans are used to transfer data to and from the service, they are sometimes termed Data Transfer Objects (DTOs). Note that only the attributes that follow the JavaBean pattern (such attributes have a getter method and a setter method) are exposed in the Web service interface. You can use standard Java development tools to create or modify the required JavaBeans.

package com.hello.dto;

public class HelloWorldData {

private String value;

public String getValue() {

return value;

}

public void setValue(String string) {

value = string;

}

}

2. Identify or create a Java class, either a Plain Old Java Object (POJO) or a Stateless Session EJB that becomes the Web service implementation. The Java class must include the methods to be exposed in the Web service interface. These methods must use the DTOs from Step 1 as the input and output arguments. Note that the methods implementing the business logic exposed in the Web service must be marked as public. Again, you can use standard Java development tools to create or modify the Java class, as necessary. This class does not have to adhere to the rules for a JavaBean. The class may throw any exceptions in the exposed methods, as necessary.

package com.hello;

import com.hello.dto.*;

import com.hello.dto.*;

public class HelloWorld {

public String doIt(HelloWorldData input)

{

String retVal = null;

if (input != null)

{

retVal = input.getValue();

System.out.println("Input value: " + retVal);

}

return retVal;

}

}
3. Use a Web services tool to generate the Web service implementation from the Java class. There are several candidate tools of varying levels of sophistication, in that they may produce all or only some of the artifacts required by JAX-RPC to deploy and use the Web service. These tools all generate a WSDL document based on the signature of the Java class from Step 2. The tools create a complex type definition embedded in the WSDL types element for each data type (JavaBean) used in the public methods in the Java class. They also create an operation element in the portType for each public method in the Java class. The tools may also generate any other provider-side artifacts required to deploy the implementation as a Web service in an application server.
<schema elementFormDefault="qualified" targetNamespace="http://dto.hello.com"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:impl="http://hello.com" xmlns:intf="http://hello.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<complexType name="HelloWorldData">

 <sequence>

 <element name="value" nillable="true" type="xsd:string" />

 </sequence>

</complexType>

</schema>
4. Use a Web services tool to generate the artifacts for the Web service requester using the WSDL generated in Step 3. The tools generate a Java class (DTO) for every complex type defined in the WSDL types element, a service endpoint interface (SEI) that has a method for each operation included in the portType, and a stub that implements the SEI that a client can use to send requests to and receive responses from a Web service implementation.

Steps 1 through 3 must be performed by the service provider. Step 4 must be performed by the service requester. The service requester can perform Step 4 only after the service provider provides the WSDL from Step 3.

[image: image3.png]
Figure 1 - Bottom-up development pattern

Evaluation of the bottom-up approach

The advantages of the bottom-up approach are:

· It is a quick way to expose legacy implementations as Web services.

· It requires little or no knowledge of WSDL or XML because the WSDL document is generated by the tools.

· It has excellent tools support. In fact the sophisticated tools do all the work to create a deployable, executable Web service implementation on the provider side and all the work to allow a request to access the implementation on the requester side.

The disadvantages of the bottom-up approach are:

· The generated schemas defining the data types in the WSDL document derives only from the Java classes from the provider’s environment and not from any standards-based schema.

· The provider-side data types may not be simple DTOs, in that they include additional business logic. Such logic can't be reconstructed on the requester side.

· The generated schema is embedded in the WSDL, which makes reuse of the schema, perhaps in the definition of other Web services, more difficult. It is possible, of course, to extract the schema from the original WSDL document.

· The development of the server-side Web service implementation and the client-side Web service requester can't proceed in parallel. The server-side skeleton and DTOs have to be developed before a WSDL can be generated that can be used to generate the client-side stubs and DTOs.

· Incremental changes to the interface are more difficult to manage. For example, if the interface of the class that implements the service is changed and the WSDL is regenerated, more significant changes could occur in the WSDL, thus causing interoperability with existing clients to fail. The basic problem is that, on the server-side, the class implementing the service is deemed the master interface and, on the client-side, the WSDL provided by the server-side is the master interface. These two different masters can cause the interfaces to become out of sync and difficult to debug and fix.

· The namespaces of the embedded schema types are typically generated from the Java package names of the server-side JavaBeans. Therefore, if the package names are changed, the namespace will be changed, which means the types are no longer compatible. Most of the tools allow a package to namespace mapping, but this must be explicitly set during the execution of the tool.

Top-down development

In top-down development, both client-side and server-side developers use WSDL (the top) to produce the artifacts (the bottom) necessary for their respective environments. Top-down development is an increasingly common practice for at least two important reasons. First, in many cases, the WSDL describing a service is available publicly in some registry (like a UDDI). With the tools available today, the server-side developer can start with the WSDL to define new implementations of the portType defined by the WSDL, and the client-side developer can start with the same WSDL to develop a client of the service. Second and even more important is the industry trend towards defining interoperable data standards using XML Schema Definitions (XSD). These industry standard data types defined using XSDs can be ideal for defining new Web services interfaces. Therefore, the top-down development pattern starts by identifying or developing XML schema relevant to the domain of the Web service, and then creating a WSDL for the Web service. Development of both the client and server side can then begin in parallel.

The top-down development pattern encompasses the following development steps:

1. Identify or create an XML schema relevant to the problem domain that describes the input and output data types for Web services operations. The data types should be defined in one or more schema (.xsd) files. You can use standard schema development tools to create or modify the necessary schema. This would be the listing from step 3 in the Bottom-up development cycle.

2. Create a new WSDL file that contains a types element that imports (not includes) the schema files from Step 1 and contains a portType that in turn contains operation elements referencing the data types defined in the imported schema as input and output parameters. The recommended style for creating this WSDL is wrapped-document literal to be WS-I compliant and for maximum interoperability with .NET environments.
<schema elementFormDefault="qualified" targetNamespace="http://hello.com"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:impl="http://hello.com"

xmlns:intf="http://hello.com" xmlns:tns2="http://dto.hello.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 <import namespace="http://dto.hello.com" schemaLocation="WorklistData.xsd"/>

3. Generate the provider-side and requester-side JAX-RPC artifacts. Note that these steps, described below, can be done in parallel by two different and independent teams. The implementation platform on each side can also be different.
a) Use a Web services tool to generate the provider-side artifacts. A spectrum of tools exists, ranging from the command line driven WSDL2Java from Apache Axis or WebSphere Application Server to the Web service wizard in Eclipse Web tools plug-in. The tools generate a Java class (a DTO) for every complex type defined in the WSDL types element. They also generate either a POJO or a stateless session EJB skeleton service implementation that has a method for each operation included in the portType. The tools may also generate any other provider-side artifacts required by JAX-RPC to deploy the implementation as a Web service in an application server. Examples of these artifacts include the webservices.xml file. There may also be other application server dependent metadata files generated by the tools. After running the tool, the serer-side developer must implement the appropriate business logic to fulfill the semantics of the operations in the service definition.
b) Use a Web services tool to generate the DTOs, SEI, and client stub implementation for the service requester from the WSDL. This procedure is exactly the same as Step 4 in the bottom-up pattern described above. As before, the client-side developer must use the stub to invoke the service from the client-side business logic.
[image: image4.png]
Figure 2 Top-down development pattern
Evaluation of the top-down approach

The advantages of the top-down approach are:

· It supports the use of existing standards-based XSD types..

· When new schema types are developed for the current service, they can be easily reused for other services by simply importing the newly developed XSD into the other services.

· It allows for parallel and independent development of client-side and server-side.

· Incremental changes to the service are best managed by changing the WSDL itself. Since the WSDL is the common interface (or contract) for both the client-side and server-side, these changes can be easily managed so they don't affect interoperability with existing requesters or providers.

· The tools will use the namespaces defined in the WSDL to determine the package names of the generated JavaBeans (or DTOs). Most of the tools support namespace to package name mappings. The advantage with starting from WSDL is that both the client-side and server-side can use different package name mappings without affecting the access of the service.

The disadvantages of the top-down approach are:

· It requires knowledge of WSDL and XSD because both must be manually generated or manipulated. Even the sophisticated tools that exist today to generate WSDL and XSD require detailed knowledge of the structure of WSDL and XSD to ensure proper compliance with standards and optimal performance.

· Tools support for the top-down approach has generally been more limited than the support for bottom-up, but that support is improving. For example, many tools do not properly handle WSDL files that import schemas instead of embedding them; and fully automated support for producing wrapped-document literal WSDL is lacking. The most common problem with importing schemas is that the XSDs must exist in the same directory as the WSDL file and relative path names don't always work.

It's important to note that you can use the bottom-up process to produce the WSDL that drives the top-down process. For example, you can create the WSDL published in a UDDI registry using the bottom-up process. The key point in any top-down approach is that once the WSDL is produced (either manually or generated from code), it becomes the master interface that is used by both the requester and provider from that point on.
APPENDIX B Enterprise Java Beans

An enterprise bean is a server-side component that encapsulates the business logic of an application. Enterprise beans provide several benefits for application developers:

· They allow you to build distributed applications by combining components developed using tools from different vendors.

· They make it easy to write applications. You do not have to deal with low-level details of transaction and state management, multithreading, resource pooling, and other complex low-level APIs. However, if necessary, expert programmers can still gain direct access to the low-level APIs.

· They can be developed once and then deployed on multiple platforms without recompilation or source code modification.

The EJB specification that governs the use of enterprise beans is compatible with other APIs and CORBA. It also provides for interoperability between enterprise beans and non-Java applications.

An enterprise bean is a non-visual component of a distributed, transaction-oriented enterprise application. Enterprise beans are typically deployed in EJB containers and run on EJB servers. You can customize them by changing their deployment descriptors and you can assemble them with other beans to create new applications. There are three types of enterprise beans: session beans, entity beans, and message-driven beans.

· Session beans: Session beans are non-persistent enterprise beans. They can be stateful or stateless. A stateful session bean acts on behalf of a single client and maintains client-specific session information (called conversational state) across multiple method calls and transactions. It exists for the duration of a single client/server session. A stateless session bean, by comparison, does not maintain any conversational state. Stateless session beans are pooled by their container to handle multiple requests from multiple clients.

· Entity beans: Entity beans are enterprise beans that contain persistent data and that can be saved in various persistent data stores. Each entity bean carries its own identity. Entity beans that manage their own persistence are called bean-managed persistence (BMP) entity beans. Entity beans that delegate their persistence to their EJB container are called container-managed persistence (CMP) entity beans.

· Message-driven beans: Message-driven beans are enterprise beans that receive and process JMS messages. Unlike session or entity beans, message-driven beans have no interfaces. They can be accessed only through messaging and they do not maintain any conversational state. Message-driven beans allow asynchronous communication between the queue and the listener, and provide separation between message processing and business logic.
Enterprise Java Bean Restrictions

Enterprise Java Beans have several restrictions which they must adhere to:
1. They cannot create or manage threads.

2. They cannot access threads using the java.io package.

3. They cannot operate directly with sockets.

4. They cannot load native libraries.

5. They cannot use the AWT to interact with the user.

6. They can only pass objects and values which are compatible with RMI/IIOP.

7. They must supply a public no argument constructor.

8. Methods cannot be static or final.

Session Bean

A session bean represents a single client inside the Application Server. To access an application that is deployed on the server, the client invokes the session bean's methods. The session bean performs work for its client, shielding the client from complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A session bean is not shared; it can have only one client, in the same way that an interactive session can have only one user. Like an interactive session, a session bean is not persistent. (That is, its data is not saved to a database.) When the client terminates, its session bean appears to terminate and is no longer associated with the client.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session bean, the instance variables represent the state of a unique client-bean session. Because the client interacts ("talks") with its bean, this state is often called the conversational state.

The state is retained for the duration of the client-bean session. If the client removes the bean or terminates, the session ends and the state disappears. This transient nature of the state is not a problem, however, because when the conversation between the client and the bean ends there is no need to retain the state.

When to Use Session Beans

In general, you should use a session bean if the following circumstances hold:

· At any given time, only one client has access to the bean instance.

· The state of the bean is not persistent, existing only for a short period (perhaps a few hours).

· The bean implements a web service.

Stateful session beans are appropriate if any of the following conditions are true:

· The bean's state represents the interaction between the bean and a specific client.

· The bean needs to hold information about the client across method invocations.

· The bean mediates between the client and the other components of the application, presenting a simplified view to the client.

Contents of an Enterprise Bean

An enterprise bean provides the following files:

· Deployment descriptor: An XML file that specifies information about the bean such as its persistence type and transaction attributes.

· Enterprise bean class: Implements the methods defined in the following interfaces.

· Interfaces: The remote and home interfaces are required for remote access. For local access, the local and local home interfaces are required. For access by web service clients, the web service endpoint interface is required.

· Helper classes: Other classes needed by the enterprise bean class, such as exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that stores the enterprise bean. An EJB JAR file is portable and can be used for different applications. To assemble a J2EE application, you package one or more modules--such as EJB JAR files--into an EAR file, the archive file that holds the application. When you deploy the EAR file that contains the bean's EJB JAR file, you also deploy the enterprise bean onto the Application Server. You can also deploy an EJB JAR that is not contained in an EAR file.

[image: image5.png]
The Life Cycle of Stateful Session Bean

The EJB container instantiates the bean and then invokes the setSessionContext and ejbCreate methods in the session bean. The bean is now ready to have its business methods invoked.

[image: image6.png]
 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by moving it from memory to secondary storage. (Typically, the EJB container uses a least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the bean's ejbPassivate method immediately before passivating it. If a client invokes a business method on the bean while it is in the passive stage, the EJB container activates the bean, calls the bean's ejbActivate method, and then moves it to the ready stage.

At the end of the life cycle, the client invokes the remove method, and the EJB container calls the bean's ejbRemove method. The bean's instance is ready for garbage collection.

Your code controls the invocation of only two life-cycle methods: the create and remove methods in the client. All other methods in Figure 23-4 are invoked by the EJB container. The ejbCreate method, for example, is inside the bean class, allowing you to perform certain operations right after the bean is instantiated. For example, you might wish to connect to a database in the ejbCreate method. See Chapter 31

 HYPERLINK "http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Resources.html" \l "wp79663" for more information

APPENDIX C Finding Tomcat instances & killing them

Sometimes a J2EE container can die and still hold on to the container ports. To fix this problem,

a) locate process ID which holds ports 8080, 8009
[image: image7.png]
b) In the Windows Task manager, make sure “PID” is selected as a column. End the Process corresponding to the PID. You can now restart Tomcat.

[image: image8.png]
APPENDIX D Useful links on Web Services

http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jst.doc.isv/reference/api/org/eclipse/jst/j2ee/ejb/package-frame.html

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
https://www6.software.ibm.com/developerworks/education/os-wtpservice/section4.html
http://www.dynamic-apps.com/tutorials/EJB_1.jsp
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBConcepts8.html

http://sourceforge.net/project/showfiles.php?group_id=31602
http://labs.jboss.com/portal/jbossas/download
http://docs.jboss.com/jbosside/tutorial/build/en/html/tutorial.preparation.html

http://jdj.sys-con.com/read/180402_1.htm
http://www-128.ibm.com/developerworks/web/library/w-ovr/
http://java.sun.com/developer/technicalArticles/Servlets/corba/ (CORBA SERVLET COMMUNICATION)

� � HYPERLINK "http://www-128.ibm.com/developerworks/websphere/library/techarticles/0511_flurry/0511_flurry.html" ��http://www-128.ibm.com/developerworks/websphere/library/techarticles/0511_flurry/0511_flurry.html�

� � HYPERLINK "http://www.cintel.cn/pic/new4.jpg" ��http://www.cintel.cn/pic/new4.jpg�

� � HYPERLINK "http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jst.doc.isv/reference/api/org/eclipse/jst/j2ee/ejb/package-frame.html" ��http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jst.doc.isv/reference/api/org/eclipse/jst/j2ee/ejb/package-frame.html�

� � HYPERLINK "http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html" ��http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html�

� � HYPERLINK "http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html" ��http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html�

� � HYPERLINK "http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html" ��http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html�

