
Boost.Regex
John Maddock

Copyright © 1998 -2007 John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Configuration .. 2

Compiler Setup .. 2
Locale and traits class selection .. 2
Linkage Options .. 3
Algorithm Selection ... 3
Algorithm Tuning .. 3

Building and Installing the Library .. 4
Introduction and Overview ... 8
Unicode and Boost.Regex .. 10
Understanding Marked Sub-Expressions and Captures ... 10
Partial Matches .. 13
Regular Expression Syntax ... 17

Perl Regular Expression Syntax .. 17
POSIX Extended Regular Expression Syntax ... 25
POSIX Basic Regular Expression Syntax .. 32
Character Class Names .. 36

Character Classes that are Always Supported ... 36
Character classes that are supported by Unicode Regular Expressions ... 37

Collating Names .. 39
Digraphs ... 39
POSIX Symbolic Names .. 39
Named Unicode Characters .. 42

The Leftmost Longest Rule .. 42
Search and Replace Format String Syntax ... 43

Sed Format String Syntax .. 43
Perl Format String Syntax .. 44
Boost-Extended Format String Syntax .. 45

Reference ... 47
basic_regex ... 47
match_results .. 58
sub_match .. 64
regex_match .. 77
regex_search ... 80
regex_replace .. 84
regex_iterator .. 88
regex_token_iterator ... 94
bad_expression ... 102
syntax_option_type ... 103

syntax_option_type Synopsis .. 103
Overview of syntax_option_type .. 104
Options for Perl Regular Expressions ... 104
Options for POSIX Extended Regular Expressions .. 105
Options for POSIX Basic Regular Expressions ... 107
Options for Literal Strings .. 108

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

match_flag_type ... 109
error_type ... 111
regex_traits .. 113
Interfacing With Non-Standard String Types .. 113

Working With Unicode and ICU String Types .. 113
Introduction to using Regex with ICU ... 113
Unicode regular expression types ... 114
Unicode Regular Expression Algorithms ... 115
Unicode Aware Regex Iterators .. 117

Using Boost Regex With MFC Strings .. 123
Introduction to Boost.Regex and MFC Strings .. 123
Regex Types Used With MFC Strings ... 123
Regular Expression Creation From an MFC String .. 123
Overloaded Algorithms For MFC String Types ... 124
Iterating Over the Matches Within An MFC String .. 126

POSIX Compatible C API's .. 128
Concepts ... 131

charT Requirements .. 131
Traits Class Requirements .. 132
Iterator Requirements .. 134

Deprecated Interfaces .. 134
regex_format (Deprecated) ... 134
regex_grep (Deprecated) .. 136
regex_split (deprecated) ... 141
High Level Class RegEx (Deprecated) .. 142

Background Information .. 148
Headers .. 148
Localization ... 148
Thread Safety .. 155
Test and Example Programs .. 156
References and Further Information ... 158
FAQ ... 158
Performance .. 159
Standards Conformance ... 159
Redistributables .. 162
Acknowledgements ... 162
History ... 163

A printer-friendly PDF version of this manual is also available.

Configuration

Compiler Setup
You shouldn't need to do anything special to configure Boost.Regex for use with your compiler - the Boost.Config subsystem should
already take care of it, if you do have problems (or you are using a particularly obscure compiler or platform) then Boost.Config has
a configure script that you can run.

Locale and traits class selection
The following macros (see user.hpp) control how Boost.Regex interacts with the user's locale:

2

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/svn/boost/sandbox/pdf/regex/release/regex.pdf
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../config/index.html
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../config/index.html
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/regex/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

descriptionmacro

Forces Boost.Regex to use the global C locale in its traits class support: this is now
deprecated in favour of the C++ locale.

BOOST_REGEX_USE_C_LOCALE

Forces Boost.Regex to use std::locale in it's default traits class, regular expressions
can then be imbued with an instance specific locale. This is the default behaviour on
non-Windows platforms.

BOOST_REGEX_USE_CPP_LOCALE

Tells Boost.Regex not to use any Win32 API's even when available (implies
BOOST_REGEX_USE_CPP_LOCALE unless BOOST_REGEX_USE_C_LOCALE
is set).

BOOST_REGEX_NO_W32

Linkage Options

descriptionmacro

For Microsoft and Borland C++ builds, this tells Boost.Regex that it should link to the dll
build of the Boost.Regex. By default boost.regex will link to its static library build, even if
the dynamic C runtime library is in use.

BOOST_REGEX_DYN_LINK

For Microsoft and Borland C++ builds, this tells Boost.Regex that it should not automatically
select the library to link to.

BOOST_REGEX_NO_LIB

Algorithm Selection

descriptionmacro

Tells Boost.Regex to use a stack-recursive matching algorithm. This is generally the fastest
option (although there is very little in it), but can cause stack overflow in extreme cases,
on Win32 this can be handled safely, but this is not the case on other platforms.

BOOST_REGEX_RECURSIVE

Tells Boost.Regex to use a non-stack recursive matching algorithm, this can be slightly
slower than the alternative, but is always safe no matter how pathological the regular ex-
pression. This is the default on non-Win32 platforms.

BOOST_REGEX_NON_RECURS-
IVE

Algorithm Tuning
The following option applies only if BOOST_REGEX_RECURSIVE is set.

descriptionmacro

Tells Boost.Regex that Microsoft style __try - __except blocks are supported,
and can be used to safely trap stack overflow.

BOOST_REGEX_HAS_MS_STACK_GUARD

The following options apply only if BOOST_REGEX_NON_RECURSIVE is set.

3

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

descriptionmacro

In non-recursive mode, Boost.Regex uses largish blocks of memory to act as a
stack for the state machine, the larger the block size then the fewer allocations
that will take place. This defaults to 4096 bytes, which is large enough to match
the vast majority of regular expressions without further allocations, however,
you can choose smaller or larger values depending upon your platforms charac-
teristics.

BOOST_REGEX_BLOCKSIZE

Tells Boost.Regex how many blocks of size BOOST_REGEX_BLOCKSIZE it
is permitted to use. If this value is exceeded then Boost.Regex will stop trying
to find a match and throw a std::runtime_error. Defaults to 1024, don't forget to
tweek this value if you alter BOOST_REGEX_BLOCKSIZE by much.

BOOST_REGEX_MAX_BLOCKS

Tells Boost.Regex how many memory blocks to store in it's internal cache -
memory blocks are taken from this cache rather than by calling ::operator new.
Generally speeking this can be an order of magnitude faster than calling ::oper-
tator new each time a memory block is required, but has the downside that
Boost.Regex can end up caching a large chunk of memory (by default up to 16
blocks each of BOOST_REGEX_BLOCKSIZE size). If memory is tight then
try defining this to 0 (disables all caching), or if that is too slow, then a value of
1 or 2, may be sufficient. On the other hand, on large multi-processor, multi-
threaded systems, you may find that a higher value is in order.

BOOST_REGEX_MAX_CACHE_BLOCKS

Building and Installing the Library
When you extract the library from its zip file, you must preserve its internal directory structure (for example by using the -d option
when extracting). If you didn't do that when extracting, then you'd better stop reading this, delete the files you just extracted, and try
again!

This library should not need configuring before use; most popular compilers/standard libraries/platforms are already supported "as
is". If you do experience configuration problems, or just want to test the configuration with your compiler, then the process is the
same as for all of boost; see the configuration library documentation.

The library will encase all code inside namespace boost.

Unlike some other template libraries, this library consists of a mixture of template code (in the headers) and static code and data (in
cpp files). Consequently it is necessary to build the library's support code into a library or archive file before you can use it, instructions
for specific platforms are as follows:

Building with bjam

This is now the preferred method for building and installing this library, please refer to the getting started guide for more information.

Building With Unicode and ICU Support

A default build of this library does not enable Unciode support via ICU. There is no need to enable this support if you don't need it,
but if you use ICU for your Unicode support already, and want to work with Unicode-aware regular expressions then read on.

Most of the information you will need is in the getting started guide, the only additional step you need to take is to tell bjam that you
want Boost.Regex to use ICU and optionally to tell bjam where ICU is located.

If you're building on a Unix-like platform, and ICU is already installed in your compilers search path (with an install prefix of /usr
or /usr/local for example), then set the environment variable HAVE_ICU to enable ICU support. For example you might build
with the command line:

4

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../config/index.html
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../more/getting_started.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bjam -sHAVE_ICU=1 --toolset=toolset-name install

If ICU is not already in your compiler's path then you need to set the environment variable ICU_PATH to point to the root directory
of your ICU installation, for example if ICU was installed to /usr/local/icu/3.3 you might use:

bjam -sICU_PATH=/usr/local/icu/3.3 --toolset=toolset-name install

Note that ICU is a C++ library just like Boost is, as such your copy of ICU must have been built with the same C++ compiler (and
compiler version) that you are using to build Boost. Boost.Regex will not work correctly unless you ensure that this is the case: it is
up to you to ensure that the version of ICU you are using is binary compatible with the toolset you use to build Boost.

Building via makefiles

Borland C++ Builder:

• Open up a console window and change to the <boost>\libs\regex\build directory.

• Select the appropriate makefile (bcb4.mak for C++ Builder 4, bcb5.mak for C++ Builder 5, and bcb6.mak for C++ Builder 6).

• Invoke the makefile (pass the full path to your version of make if you have more than one version installed, the makefile relies
on the path to make to obtain your C++ Builder installation directory and tools) for example:

make -fbcb5.mak

The build process will build a variety of .lib and .dll files (the exact number depends upon the version of Borland's tools you are
using) the .lib and dll files will be in a sub-directory called bcb4 or bcb5 depending upon the makefile used. To install the libraries
into your development system use:

make -fbcb5.mak install

library files will be copied to <BCROOT>/lib and the dll's to <BCROOT>/bin, where <BCROOT> corresponds to the install path of
your Borland C++ tools.

You may also remove temporary files created during the build process (excluding lib and dll files) by using:

make -fbcb5.mak clean

Finally when you use Boost.Regex it is only necessary for you to add the <boost> root director to your list of include directories
for that project. It is not necessary for you to manually add a .lib file to the project; the headers will automatically select the correct
.lib file for your build mode and tell the linker to include it. There is one caveat however: the library can not tell the difference
between VCL and non-VCL enabled builds when building a GUI application from the command line, if you build from the command
line with the 5.5 command line tools then you must define the pre-processor symbol _NO_VCL in order to ensure that the correct
link libraries are selected: the C++ Builder IDE normally sets this automatically. Hint, users of the 5.5 command line tools may want
to add a -D_NO_VCL to bcc32.cfg in order to set this option permanently.

If you would prefer to do a dynamic link to the regex libraries when using the dll runtime then define BOOST_REGEX_DYN_LINK
(you must do this if you want to use Boost.Regex in multiple dll's), otherwise Boost.Regex will be statically linked by default.

If you want to suppress automatic linking altogether (and supply your own custom build of the lib) then define
BOOST_REGEX_NO_LIB.

If you are building with C++ Builder 6, you will find that <boost/regex.hpp> can not be used in a pre-compiled header (the ac-
tual problem is in <locale> which gets included by <boost/regex.hpp>), if this causes problems for you, then try defining
BOOST_NO_STD_LOCALE when building, this will disable some features throughout boost, but may save you a lot in compile
times!

5

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Microsoft Visual C++ 6, 7, 7.1 and 8

You need version 6 or later of MSVC to build this library. If you are using VC5 then you may want to look at one of the previous
releases of this library.

Open up a command prompt, which has the necessary MSVC environment variables defined (for example by using the batch file
Vcvars32.bat installed by the Visual Studio installation), and change to the <boost>\libs\regex\build directory.

Select the correct makefile - vc6.mak for "vanilla" Visual C++ 6 or vc6-stlport.mak if you are using STLPort.

Invoke the makefile like this:

nmake -fvc6.mak

You will now have a collection of lib and dll files in a "vc6" subdirectory, to install these into your development system use:

nmake -fvc6.mak install

The lib files will be copied to your <VC6>\lib directory and the dll files to <VC6>\bin, where <VC6> is the root of your Visual
C++ 6 installation.

You can delete all the temporary files created during the build (excluding lib and dll files) using:

nmake -fvc6.mak clean ↵

If you want to build with ICU support, then you need to pass the path to your ICU directory to the makefile, for example with:

nmake ICU_PATH=c:\open-source\icu -fvc71.mak install

Finally when you use Boost.Regex it is only necessary for you to add the <boost> root directory to your list of include directories
for that project. It is not necessary for you to manually add a .lib file to the project; the headers will automatically select the correct
.lib file for your build mode and tell the linker to include it.

Note that if you want to dynamically link to the regex library when using the dynamic C++ runtime, define
BOOST_REGEX_DYN_LINK when building your project.

If you want to add the source directly to your project then define BOOST_REGEX_NO_LIB to disable automatic library selection.

There are several important caveats to remember when using Boost.Regex with Microsoft's Compiler:

• There have been some reports of compiler-optimization bugs affecting this library, (particularly with VC6 versions prior to service
patch 5) the workaround is to build the library using /Oityb1 rather than /O2. That is to use all optimization settings except /Oa.
This problem is reported to affect some standard library code as well (in fact I'm not sure if the problem is with the regex code
or the underlying standard library), so it's probably worthwhile applying this workaround in normal practice in any case.

• If you have replaced the C++ standard library that comes with VC6, then when you build the library you must ensure that the en-
vironment variables "INCLUDE" and "LIB" have been updated to reflect the include and library paths for the new library - see
vcvars32.bat (part of your Visual Studio installation) for more details.

• If you are building with the full STLPort v4.x, then use the vc6-stlport.mak file provided and set the environment variable STL-
PORT_PATH to point to the location of your STLPort installation (Note that the full STLPort libraries appear not to support
single-thread static builds).

• If you are building your application with /Zc:wchar_t then you will need to modify the makefile to add /Zc:wchar_t before building
the library.

6

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

GCC(2.95 and later)

You can build with gcc using the normal boost Jamfile in <boost>/libs/regex/build, alternatively there is a conservative
makefile for the g++ compiler. From the command prompt change to the <boost>/libs/regex/build directory and type:

make -fgcc.mak ↵

At the end of the build process you should have a gcc sub-directory containing release and debug versions of the library (lib-
boost_regex.a and libboost_regex_debug.a). When you build projects that use regex++, you will need to add the boost install directory
to your list of include paths and add <boost>/libs/regex/build/gcc/libboost_regex.a to your list of library files.

There is also a makefile to build the library as a shared library:

make -fgcc-shared.mak

which will build libboost_regex.so and libboost_regex_debug.so.

Both of the these makefiles support the following environment variables:

ICU_PATH: tells the makefile to build with Unicode support, set to the path where your ICU installation is located, for example
with: make ICU_PATH=/usr/local install -fgcc.mak

CXXFLAGS: extra compiler options - note that this applies to both the debug and release builds.

INCLUDES: additional include directories.

LDFLAGS: additional linker options.

LIBS: additional library files.

For the more adventurous there is a configure script in <boost>/libs/config; see the config library documentation.

Sun Workshop 6.1

There is a makefile for the sun (6.1) compiler (C++ version 3.12). From the command prompt change to the
<boost>/libs/regex/build directory and type:

dmake -f sunpro.mak ↵

At the end of the build process you should have a sunpro sub-directory containing single and multithread versions of the library
(libboost_regex.a, libboost_regex.so, libboost_regex_mt.a and libboost_regex_mt.so). When you build projects that use Boost.Regex,
you will need to add the boost install directory to your list of include paths and add <boost>/libs/regex/build/sunpro/ to
your library search path.

Both of the these makefiles support the following environment variables:

CXXFLAGS: extra compiler options - note that this applies to both the single and multithreaded builds.

INCLUDES: additional include directories.

LDFLAGS: additional linker options.

LIBS: additional library files.

LIBSUFFIX: a suffix to mangle the library name with (defaults to nothing).

This makefile does not set any architecture specific options like -xarch=v9, you can set these by defining the appropriate macros,
for example:

7

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../config/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

dmake CXXFLAGS="-xarchv9" LDFLAGS"-xarchv9" LIBSUFFIX"_v9" -f sunpro.mak

will build v9 variants of the regex library named libboost_regex_v9.a etc.

Makefiles for Other compilers

There is a generic makefile (generic.mak) provided in <boost-root>/libs/regex/build - see that makefile for details of en-
vironment variables that need to be set before use.

Introduction and Overview
Regular expressions are a form of pattern-matching that are often used in text processing; many users will be familiar with the Unix
utilities grep, sed and awk, and the programming language Perl, each of which make extensive use of regular expressions. Traditionally
C++ users have been limited to the POSIX C API's for manipulating regular expressions, and while Boost.Regex does provide these
API's, they do not represent the best way to use the library. For example Boost.Regex can cope with wide character strings, or search
and replace operations (in a manner analogous to either sed or Perl), something that traditional C libraries can not do.

The class basic_regex is the key class in this library; it represents a "machine readable" regular expression, and is very closely
modeled on std::basic_string, think of it as a string plus the actual state-machine required by the regular expression algorithms.
Like std::basic_string there are two typedefs that are almost always the means by which this class is referenced:

namespace boost{

template <class charT,
class traits = regex_traits<charT> >

class basic_regex;

typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

}

To see how this library can be used, imagine that we are writing a credit card processing application. Credit card numbers generally
come as a string of 16-digits, separated into groups of 4-digits, and separated by either a space or a hyphen. Before storing a credit
card number in a database (not necessarily something your customers will appreciate!), we may want to verify that the number is in
the correct format. To match any digit we could use the regular expression [0-9], however ranges of characters like this are actually
locale dependent. Instead we should use the POSIX standard form [[:digit:]], or the Boost.Regex and Perl shorthand for this \d (note
that many older libraries tended to be hard-coded to the C-locale, consequently this was not an issue for them). That leaves us with
the following regular expression to validate credit card number formats:

(\d{4}){3}\d{4}

Here the parenthesis act to group (and mark for future reference) sub-expressions, and the {4} means "repeat exactly 4 times". This
is an example of the extended regular expression syntax used by Perl, awk and egrep. Boost.Regex also supports the older "basic"
syntax used by sed and grep, but this is generally less useful, unless you already have some basic regular expressions that you need
to reuse.

Now let's take that expression and place it in some C++ code to validate the format of a credit card number:

bool validate_card_format(const std::string& s)
{

static const boost::regex e("(\\d{4}[-]){3}\\d{4}");
return regex_match(s, e);

}

Note how we had to add some extra escapes to the expression: remember that the escape is seen once by the C++ compiler, before
it gets to be seen by the regular expression engine, consequently escapes in regular expressions have to be doubled up when embedding

8

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

them in C/C++ code. Also note that all the examples assume that your compiler supports argument-dependent-lookup lookup, if
yours doesn't (for example VC6), then you will have to add some boost:: prefixes to some of the function calls in the examples.

Those of you who are familiar with credit card processing, will have realized that while the format used above is suitable for human
readable card numbers, it does not represent the format required by online credit card systems; these require the number as a string
of 16 (or possibly 15) digits, without any intervening spaces. What we need is a means to convert easily between the two formats,
and this is where search and replace comes in. Those who are familiar with the utilities sed and Perl will already be ahead here; we
need two strings - one a regular expression - the other a "format string" that provides a description of the text to replace the match
with. In Boost.Regex this search and replace operation is performed with the algorithm regex_replace, for our credit card example
we can write two algorithms like this to provide the format conversions:

// match any format with the regular expression:
const boost::regex e("\\A(\\d{3,4})[-]?(\\d{4})[-]?(\\d{4})[-]?(\\d{4})\\z");
const std::string machine_format("\\1\\2\\3\\4");
const std::string human_format("\\1-\\2-\\3-\\4");

std::string machine_readable_card_number(const std::string s)
{

return regex_replace(s, e, machine_format, boost::match_default | boost::format_sed);
}

std::string human_readable_card_number(const std::string s)
{

return regex_replace(s, e, human_format, boost::match_default | boost::format_sed);
}

Here we've used marked sub-expressions in the regular expression to split out the four parts of the card number as separate fields,
the format string then uses the sed-like syntax to replace the matched text with the reformatted version.

In the examples above, we haven't directly manipulated the results of a regular expression match, however in general the result of a
match contains a number of sub-expression matches in addition to the overall match. When the library needs to report a regular ex-
pression match it does so using an instance of the class match_results, as before there are typedefs of this class for the most
common cases:

namespace boost{

typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<std::string::const_iterator> smatch;
typedef match_results<std::wstring::const_iterator> wsmatch;

}

The algorithms regex_search and regex_match make use of match_results to report what matched; the difference between
these algorithms is that regex_match will only find matches that consume all of the input text, where as regex_search will search
for a match anywhere within the text being matched.

Note that these algorithms are not restricted to searching regular C-strings, any bidirectional iterator type can be searched, allowing
for the possibility of seamlessly searching almost any kind of data.

For search and replace operations, in addition to the algorithm regex_replace that we have already seen, the match_results
class has a format member that takes the result of a match and a format string, and produces a new string by merging the two.

For iterating through all occurences of an expression within a text, there are two iterator types: regex_iterator will enumerate
over the match_results objects found, while regex_token_iterator will enumerate a series of strings (similar to perl style
split operations).

For those that dislike templates, there is a high level wrapper class RegEx that is an encapsulation of the lower level template code
- it provides a simplified interface for those that don't need the full power of the library, and supports only narrow characters, and

9

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

the "extended" regular expression syntax. This class is now deprecated as it does not form part of the regular expressions C++
standard library proposal.

The POSIX API functions: regcomp, regexec, regfree and [regerr], are available in both narrow character and Unicode versions,
and are provided for those who need compatibility with these API's.

Finally, note that the library now has run-time localization support, and recognizes the full POSIX regular expression syntax - including
advanced features like multi-character collating elements and equivalence classes - as well as providing compatibility with other
regular expression libraries including GNU and BSD4 regex packages, PCRE and Perl 5.

Unicode and Boost.Regex
There are two ways to use Boost.Regex with Unicode strings:

Rely on wchar_t

If your platform's wchar_t type can hold Unicode strings, and your platform's C/C++ runtime correctly handles wide character
constants (when passed to std::iswspace std::iswlower etc), then you can use boost::wregex to process Unicode. However,
there are several disadvantages to this approach:

• It's not portable: there's no guarantee on the width of wchar_t, or even whether the runtime treats wide characters as Unicode at
all, most Windows compilers do so, but many Unix systems do not.

• There's no support for Unicode-specific character classes: [[:Nd:]], [[:Po:]] etc.

• You can only search strings that are encoded as sequences of wide characters, it is not possible to search UTF-8, or even UTF-16
on many platforms.

Use a Unicode Aware Regular Expression Type.

If you have the ICU library, then Boost.Regex can be configured to make use of it, and provide a distinct regular expression type
(boost::u32regex), that supports both Unicode specific character properties, and the searching of text that is encoded in either UTF-
8, UTF-16, or UTF-32. See: ICU string class support.

Understanding Marked Sub-Expressions and Captures
Captures are the iterator ranges that are "captured" by marked sub-expressions as a regular expression gets matched. Each marked
sub-expression can result in more than one capture, if it is matched more than once. This document explains how captures and marked
sub-expressions in Boost.Regex are represented and accessed.

Marked sub-expressions

Every time a Perl regular expression contains a parenthesis group (), it spits out an extra field, known as a marked sub-expression,
for example the expression:

(\w+)\W+(\w+)

Has two marked sub-expressions (known as $1 and $2 respectively), in addition the complete match is known as $&, everything
before the first match as $`, and everything after the match as $'. So if the above expression is searched for within "@abc def--",
then we obtain:

10

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ibm.com/software/globalization/icu/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Text foundSub-expression

"@"$`

"abc def"$&

"abc"$1

"def"$2

"--"$'

In Boost.Regex all these are accessible via the match_results class that gets filled in when calling one of the regular expression
matching algorithms (regex_search, regex_match, or regex_iterator). So given:

boost::match_results<IteratorType> m;

The Perl and Boost.Regex equivalents are as follows:

Boost.RegexPerl

m.prefix()$`

m[0]$&

m[n]$n

m.suffix()$'

In Boost.Regex each sub-expression match is represented by a sub_match object, this is basically just a pair of iterators denoting
the start and end position of the sub-expression match, but there are some additional operators provided so that objects of type
sub_match behave a lot like a std::basic_string: for example they are implicitly convertible to a basic_string, they can
be compared to a string, added to a string, or streamed out to an output stream.

Unmatched Sub-Expressions

When a regular expression match is found there is no need for all of the marked sub-expressions to have participated in the match,
for example the expression:

(abc)|(def)

can match either $1 or $2, but never both at the same time. In Boost.Regex you can determine which sub-expressions matched by
accessing the sub_match::matched data member.

Repeated Captures

When a marked sub-expression is repeated, then the sub-expression gets "captured" multiple times, however normally only the final
capture is available, for example if

(?:(\w+)\W+)+

is matched against

one fine day

11

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Then $1 will contain the string "day", and all the previous captures will have been forgotten.

However, Boost.Regex has an experimental feature that allows all the capture information to be retained - this is accessed either via
the match_results::captures member function or the sub_match::captures member function. These functions return a
container that contains a sequence of all the captures obtained during the regular expression matching. The following example program
shows how this information may be used:

#include <boost/regex.hpp>
#include <iostream>

void print_captures(const std::string& regx, const std::string& text)
{
 boost::regex e(regx);
 boost::smatch what;
 std::cout << "Expression: \"" << regx << "\"\n";
 std::cout << "Text: \"" << text << "\"\n";

if(boost::regex_match(text, what, e, boost::match_extra))
{

unsigned i, j;
 std::cout << "** Match found **\n Sub-Expressions:\n";

for(i = 0; i < what.size(); ++i)
 std::cout << " $" << i << " = \"" << what[i] << "\"\n";
 std::cout << " Captures:\n";

for(i = 0; i < what.size(); ++i)
{

 std::cout << " $" << i << " = {";
for(j = 0; j < what.captures(i).size(); ++j)
{

if(j)
 std::cout << ", ";

else
 std::cout << " ";
 std::cout << "\"" << what.captures(i)[j] << "\"";

}
 std::cout << " }\n";

}
}
else
{

 std::cout << "** No Match found **\n";
}

}

int main(int , char* [])
{
 print_captures("(([[:lower:]]+)|([[:upper:]]+))+", "aBBcccDDDDDeeeeeeee");
 print_captures("(.*)bar|(.*)bah", "abcbar");
 print_captures("(.*)bar|(.*)bah", "abcbah");
 print_captures("^(?:(\\w+)|(?>\\W+))*$",

"now is the time for all good men to come to the aid of the party");
return 0;

}

Which produces the following output:

12

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expression: "(([[:lower:]]+)|([[:upper:]]+))+"
Text: "aBBcccDDDDDeeeeeeee"
** Match found **
 Sub-Expressions:
 $0 = "aBBcccDDDDDeeeeeeee"
 $1 = "eeeeeeee"
 $2 = "eeeeeeee"
 $3 = "DDDDD"
 Captures:
 $0 = { "aBBcccDDDDDeeeeeeee" }
 $1 = { "a", "BB", "ccc", "DDDDD", "eeeeeeee" }
 $2 = { "a", "ccc", "eeeeeeee" }
 $3 = { "BB", "DDDDD" }
Expression: "(.*)bar|(.*)bah"
Text: "abcbar"
** Match found **
 Sub-Expressions:
 $0 = "abcbar"
 $1 = "abc"
 $2 = ""
 Captures:
 $0 = { "abcbar" }
 $1 = { "abc" }
 $2 = { }
Expression: "(.*)bar|(.*)bah"
Text: "abcbah"
** Match found **
 Sub-Expressions:
 $0 = "abcbah"
 $1 = ""
 $2 = "abc"
 Captures:
 $0 = { "abcbah" }
 $1 = { }
 $2 = { "abc" }
Expression: "^(?:(\w+)|(?>\W+))*$"
Text: "now is the time for all good men to come to the aid of the party"
** Match found **
 Sub-Expressions:
 $0 = "now is the time for all good men to come to the aid of the party"
 $1 = "party"
 Captures:
 $0 = { "now is the time for all good men to come to the aid of the party" }
 $1 = { "now", "is", "the", "time", "for", "all", "good", "men", "to",
 "come", "to", "the", "aid", "of", "the", "party" }

Unfortunately enabling this feature has an impact on performance (even if you don't use it), and a much bigger impact if you do use
it, therefore to use this feature you need to:

• Define BOOST_REGEX_MATCH_EXTRA for all translation units including the library source (the best way to do this is to
uncomment this define in boost/regex/user.hpp and then rebuild everything.

• Pass the match_extra flag to the particular algorithms where you actually need the captures information (regex_search, regex_match,
or regex_iterator).

Partial Matches
The match_flag_type match_partial can be passed to the following algorithms: regex_match, regex_search, and
regex_grep, and used with the iterator regex_iterator. When used it indicates that partial as well as full matches should be
found. A partial match is one that matched one or more characters at the end of the text input, but did not match all of the regular
expression (although it may have done so had more input been available). Partial matches are typically used when either validating

13

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

data input (checking each character as it is entered on the keyboard), or when searching texts that are either too long to load into
memory (or even into a memory mapped file), or are of indeterminate length (for example the source may be a socket or similar).
Partial and full matches can be differentiated as shown in the following table (the variable M represents an instance of
match_results as filled in by regex_match, regex_search or regex_grep):

M[0].secondM[0].firstM[0].matchedResult

UndefinedUndefinedUndefinedFalseNo match

End of partial match (end of text).Start of partial match.FalseTruePartial match

End of full match.Start of full match.TrueTrueFull match

Be aware that using partial matches can sometimes result in somewhat imperfect behavior:

• There are some expressions, such as ".*abc" that will always produce a partial match. This problem can be reduced by careful
construction of the regular expressions used, or by setting flags like match_not_dot_newline so that expressions like .* can't match
past line boundaries.

• Boost.Regex currently prefers leftmost matches to full matches, so for example matching "abc|b" against "ab" produces a partial
match against the "ab" rather than a full match against "b". It's more efficient to work this way, but may not be the behavior you
want in all situations.

The following example tests to see whether the text could be a valid credit card number, as the user presses a key, the character
entered would be added to the string being built up, and passed to is_possible_card_number. If this returns true then the text
could be a valid card number, so the user interface's OK button would be enabled. If it returns false, then this is not yet a valid card
number, but could be with more input, so the user interface would disable the OK button. Finally, if the procedure throws an exception
the input could never become a valid number, and the inputted character must be discarded, and a suitable error indication displayed
to the user.

14

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <string>
#include <iostream>
#include <boost/regex.hpp>

boost::regex e("(\\d{3,4})[-]?(\\d{4})[-]?(\\d{4})[-]?(\\d{4})");

bool is_possible_card_number(const std::string& input)
{

//
// return false for partial match, true for full match, or throw for
// impossible match based on what we have so far...

 boost::match_results<std::string::const_iterator> what;
if(0 == boost::regex_match(input, what, e, boost::match_default | boost::match_partial))
{

// the input so far could not possibly be valid so reject it:
throw std::runtime_error(

"Invalid data entered - this could not possibly be a valid card number");
}
// OK so far so good, but have we finished?
if(what[0].matched)
{

// excellent, we have a result:
return true;

}
// what we have so far is only a partial match...
return false;

}

In the following example, text input is taken from a stream containing an unknown amount of text; this example simply counts the
number of html tags encountered in the stream. The text is loaded into a buffer and searched a part at a time, if a partial match was
encountered, then the partial match gets searched a second time as the start of the next batch of text:

15

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <boost/regex.hpp>

// match some kind of html tag:
boost::regex e("<[^>]*>");
// count how many:
unsigned int tags = 0;

void search(std::istream& is)
{

// buffer we'll be searching in:
char buf[4096];
// saved position of end of partial match:
const char* next_pos = buf + sizeof(buf);
// flag to indicate whether there is more input to come:
bool have_more = true;

while(have_more)
{

// how much do we copy forward from last try:
unsigned leftover = (buf + sizeof(buf)) - next_pos;
// and how much is left to fill:
unsigned size = next_pos - buf;
// copy forward whatever we have left:

 std::memmove(buf, next_pos, leftover);
// fill the rest from the stream:

 is.read(buf + leftover, size);
unsigned read = is.gcount();
// check to see if we've run out of text:

 have_more = read == size;
// reset next_pos:

 next_pos = buf + sizeof(buf);
// and then iterate:

 boost::cregex_iterator a(
 buf,
 buf + read + leftover,
 e,
 boost::match_default | boost::match_partial);
 boost::cregex_iterator b;

while(a != b)
{

if((*a)[0].matched == false)
{

// Partial match, save position and break:
 next_pos = (*a)[0].first;

break;
}
else
{

// full match:
++tags;

}

16

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// move to next match:
++a;

}
}

}

Regular Expression Syntax
This section covers the regular expression syntax used by this library, this is a programmers guide, the actual syntax presented to
your program's users will depend upon the flags used during expression compilation.

There are three main syntax options available, depending upon how you construct the regular expression object:

• Perl (this is the default behavior).

• POSIX extended (including the egrep and awk variations).

• POSIX Basic (including the grep and emacs variations).

You can also construct a regular expression that treats every character as a literal, but that's not really a "syntax"!

Perl Regular Expression Syntax

Synopsis

The Perl regular expression syntax is based on that used by the programming language Perl . Perl regular expressions are the default
behavior in Boost.Regex or you can pass the flag perl to the basic_regex constructor, for example:

// e1 is a case sensitive Perl regular expression:
// since Perl is the default option there's no need to explicitly specify the syntax used here:
boost::regex e1(my_expression);
// e2 a case insensitive Perl regular expression:
boost::regex e2(my_expression, boost::regex::perl|boost::regex::icase);

Perl Regular Expression Syntax

In Perl regular expressions, all characters match themselves except for the following special characters:

.[{()*+?|^$

Wildcard

The single character '.' when used outside of a character set will match any single character except:

• The NULL character when the flag match_not_dot_null is passed to the matching algorithms.

• The newline character when the flag match_not_dot_newline is passed to the matching algorithms.

Anchors

A '^' character shall match the start of a line.

A '$' character shall match the end of a line.

17

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Marked sub-expressions

A section beginning (and ending) acts as a marked sub-expression. Whatever matched the sub-expression is split out in a separate
field by the matching algorithms. Marked sub-expressions can also repeated, or referred to by a back-reference.

Non-marking grouping

A marked sub-expression is useful to lexically group part of a regular expression, but has the side-effect of spitting out an extra field
in the result. As an alternative you can lexically group part of a regular expression, without generating a marked sub-expression by
using (?: and) , for example (?:ab)+ will repeat ab without splitting out any separate sub-expressions.

Repeats

Any atom (a single character, a marked sub-expression, or a character class) can be repeated with the *, +, ?, and {} operators.

The * operator will match the preceding atom zero or more times, for example the expression a*b will match any of the following:

b
ab
aaaaaaaab

The + operator will match the preceding atom one or more times, for example the expression a+b will match any of the following:

ab
aaaaaaaab

But will not match:

b

The ? operator will match the preceding atom zero or one times, for example the expression ca?b will match any of the following:

cb
cab

But will not match:

caab

An atom can also be repeated with a bounded repeat:

a{n} Matches 'a' repeated exactly n times.

a{n,} Matches 'a' repeated n or more times.

a{n, m} Matches 'a' repeated between n and m times inclusive.

For example:

^a{2,3}$

Will match either of:

18

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

aa
aaa

But neither of:

a
aaaa

It is an error to use a repeat operator, if the preceding construct can not be repeated, for example:

a(*)

Will raise an error, as there is nothing for the * operator to be applied to.

Non greedy repeats

The normal repeat operators are "greedy", that is to say they will consume as much input as possible. There are non-greedy versions
available that will consume as little input as possible while still producing a match.

*? Matches the previous atom zero or more times, while consuming as little input as possible.

+? Matches the previous atom one or more times, while consuming as little input as possible.

?? Matches the previous atom zero or one times, while consuming as little input as possible.

{n,}? Matches the previous atom n or more times, while consuming as little input as possible.

{n,m}? Matches the previous atom between n and m times, while consuming as little input as possible.

Back references

An escape character followed by a digit n, where n is in the range 1-9, matches the same string that was matched by sub-expression
n. For example the expression:

^(a*).*\1$

Will match the string:

aaabbaaa

But not the string:

aaabba

Alternation

The | operator will match either of its arguments, so for example: abc|def will match either "abc" or "def".

Parenthesis can be used to group alternations, for example: ab(d|ef) will match either of "abd" or "abef".

Empty alternatives are not allowed (these are almost always a mistake), but if you really want an empty alternative use (?:) as a
placeholder, for example:

|abc is not a valid expression, but

(?:)|abc is and is equivalent, also the expression:

19

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

(?:abc)?? has exactly the same effect.

Character sets

A character set is a bracket-expression starting with [and ending with], it defines a set of characters, and matches any single
character that is a member of that set.

A bracket expression may contain any combination of the following:

Single characters

For example [abc], will match any of the characters 'a', 'b', or 'c'.

Character ranges

For example [a-c] will match any single character in the range 'a' to 'c'. By default, for Perl regular expressions, a character x is
within the range y to z, if the code point of the character lies within the codepoints of the endpoints of the range. Alternatively, if
you set the collate flag when constructing the regular expression, then ranges are locale sensitive.

Negation

If the bracket-expression begins with the ^ character, then it matches the complement of the characters it contains, for example
[^a-c] matches any character that is not in the range a-c.

Character classes

An expression of the form [[:name:]] matches the named character class "name", for example [[:lower:]] matches any lower
case character. See character class names.

Collating Elements

An expression of the form [[.col.] matches the collating element col. A collating element is any single character, or any sequence
of characters that collates as a single unit. Collating elements may also be used as the end point of a range, for example: [[.ae.]-
c] matches the character sequence "ae", plus any single character in the range "ae"-c, assuming that "ae" is treated as a single collating
element in the current locale.

As an extension, a collating element may also be specified via it's symbolic name, for example:

[[.NUL.]]

matches a \0 character.

Equivalence classes

An expression of the form [[=col=]], matches any character or collating element whose primary sort key is the same as that for
collating element col, as with collating elements the name col may be a symbolic name. A primary sort key is one that ignores case,
accentation, or locale-specific tailorings; so for example [[=a=]] matches any of the characters: a, À, Á, Â, Ã, Ä, Å, A, à, á, â, ã,
ä and å. Unfortunately implementation of this is reliant on the platform's collation and localisation support; this feature can not be
relied upon to work portably across all platforms, or even all locales on one platform.

Escaped Characters

All the escape sequences that match a single character, or a single character class are permitted within a character class definition.
For example [\[\]] would match either of [or] while [\W\d] would match any character that is either a "digit", or is not a "word"
character.

Combinations

All of the above can be combined in one character set declaration, for example: [[:digit:]a-c[.NUL.]].

20

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Escapes

Any special character preceded by an escape shall match itself.

The following escape sequences are all synonyms for single characters:

CharacterEscape

\a\a

0x1B\e

\f\f

\n\n

\r\r

\t\t

\v\v

\b (but only inside a character class declaration).\b

An ASCII escape sequence - the character whose code point is X % 32\cX

A hexadecimal escape sequence - matches the single character whose code point is 0xdd.\xdd

A hexadecimal escape sequence - matches the single character whose code point is 0xdddd.\x{dddd}

An octal escape sequence - matches the single character whose code point is 0ddd.\0ddd

Matches the single character which has the symbolic name name. For example \N{newline} matches the single
character \n.

\N{name}

"Single character" character classes:

Any escaped character x, if x is the name of a character class shall match any character that is a member of that class, and any escaped
character X, if x is the name of a character class, shall match any character not in that class.

The following are supported by default:

21

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalent toEscape sequence

[[:digit:]]\d

[[:lower:]]\l

[[:space:]]\s

[[:upper:]]\u

[[:word:]]\w

[^[:digit:]]\D

[^[:lower:]]\L

[^[:space:]]\S

[^[:upper:]]\U

[^[:word:]]\W

Character Properties

The character property names in the following table are all equivalent to the names used in character classes.

Equivalent character set formDescriptionForm

[[:X:]]Matches any character that has the property X.\pX

[[:Name:]]Matches any character that has the property Name.\p{Name}

[^[:X:]]Matches any character that does not have the property X.\PX

[^[:Name:]]Matches any character that does not have the property Name.\P{Name}

For example \pd matches any "digit" character, as does \p{digit}.

Word Boundaries

The following escape sequences match the boundaries of words:

\< Matches the start of a word.

\> Matches the end of a word.

\b Matches a word boundary (the start or end of a word).

\B Matches only when not at a word boundary.

Buffer boundaries

The following match only at buffer boundaries: a "buffer" in this context is the whole of the input text that is being matched against
(note that ^ and $ may match embedded newlines within the text).

\` Matches at the start of a buffer only.

\' Matches at the end of a buffer only.

22

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

\A Matches at the start of a buffer only (the same as \`).

\z Matches at the end of a buffer only (the same as \').

\Z Matches an optional sequence of newlines at the end of a buffer: equivalent to the regular expression \n*\z

Continuation Escape

The sequence \G matches only at the end of the last match found, or at the start of the text being matched if no previous match was
found. This escape useful if you're iterating over the matches contained within a text, and you want each subsequence match to start
where the last one ended.

Quoting escape

The escape sequence \Q begins a "quoted sequence": all the subsequent characters are treated as literals, until either the end of the
regular expression or \E is found. For example the expression: \Q*+\Ea+ would match either of:

*+a
*+aaa

Unicode escapes

\C Matches a single code point: in Boost regex this has exactly the same effect as a "." operator. \X Matches a combining character
sequence: that is any non-combining character followed by a sequence of zero or more combining characters.

Any other escape

Any other escape sequence matches the character that is escaped, for example \@ matches a literal '@'.

Perl Extended Patterns

Perl-specific extensions to the regular expression syntax all start with (?.

Comments

(?# ...) is treated as a comment, it's contents are ignored.

Modifiers

(?imsx-imsx ...) alters which of the perl modifiers are in effect within the pattern, changes take effect from the point that the
block is first seen and extend to any enclosing). Letters before a '-' turn that perl modifier on, letters afterward, turn it off.

(?imsx-imsx:pattern) applies the specified modifiers to pattern only.

Non-marking groups

(?:pattern) lexically groups pattern, without generating an additional sub-expression.

Lookahead

(?=pattern) consumes zero characters, only if pattern matches.

(?!pattern) consumes zero characters, only if pattern does not match.

Lookahead is typically used to create the logical AND of two regular expressions, for example if a password must contain a lower
case letter, an upper case letter, a punctuation symbol, and be at least 6 characters long, then the expression:

(?=.*[[:lower:]])(?=.*[[:upper:]])(?=.*[[:punct:]]).{6,}

could be used to validate the password.

23

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lookbehind

(?<=pattern) consumes zero characters, only if pattern could be matched against the characters preceding the current position
(pattern must be of fixed length).

(?<!pattern) consumes zero characters, only if pattern could not be matched against the characters preceding the current position
(pattern must be of fixed length).

Independent sub-expressions

(?>pattern) pattern is matched independently of the surrounding patterns, the expression will never backtrack into pattern. Inde-
pendent sub-expressions are typically used to improve performance; only the best possible match for pattern will be considered, if
this doesn't allow the expression as a whole to match then no match is found at all.

Conditional Expressions

(?(condition)yes-pattern|no-pattern) attempts to match yes-pattern if the condition is true, otherwise attempts to match
no-pattern.

(?(condition)yes-pattern) attempts to match yes-pattern if the condition is true, otherwise fails.

condition may be either a forward lookahead assert, or the index of a marked sub-expression (the condition becomes true if the sub-
expression has been matched).

Operator precedence

The order of precedence for of operators is as follows:

1. Collation-related bracket symbols [==] [::] [..]

2. Escaped characters \

3. Character set (bracket expression) []

4. Grouping ()

5. Single-character-ERE duplication * + ? {m,n}

6. Concatenation

7. Anchoring ^$

8. Alternation |

What gets matched

If you view the regular expression as a directed (possibly cyclic) graph, then the best match found is the first match found by a depth-
first-search performed on that graph, while matching the input text.

Alternatively:

The best match found is the leftmost match, with individual elements matched as follows;

24

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

What gets matchedConstruct

Locates the best match for AtomA that has a following match for AtomB.AtomA AtomB

If Expresion1 can be matched then returns that match, otherwise attempts to match
Expression2.

Expression1 | Expression2

Matches S repeated exactly N times.S{N}

Matches S repeated between N and M times, and as many times as possible.S{N,M}

Matches S repeated between N and M times, and as few times as possible.S{N,M}?

The same as S{0,1}, S{0,UINT_MAX}, S{1,UINT_MAX} respectively.S?, S*, S+

The same as S{0,1}?, S{0,UINT_MAX}?, S{1,UINT_MAX}? respectively.S??, S*?, S+?

Matches the best match for S, and only that.(?>S)

Matches only the best match for S (this is only visible if there are capturing parenthesis
within S).

(?=S), (?<=S)

Considers only whether a match for S exists or not.(?!S), (?<!S)

If condition is true, then only yes-pattern is considered, otherwise only no-pattern is
considered.

(?(condition)yes-pattern | no-

pattern)

Variations

The options normal, ECMAScript, JavaScript and JScript are all synonyms for perl.

Options

There are a variety of flags that may be combined with the perl option when constructing the regular expression, in particular note
that the newline_alt option alters the syntax, while the collate, nosubs and icase options modify how the case and locale
sensitivity are to be applied.

Pattern Modifiers

The perl smix modifiers can either be applied using a (?smix-smix) prefix to the regular expression, or with one of the regex-
compile time flags no_mod_m, mod_x, mod_s, and no_mod_s.

References

Perl 5.8.

POSIX Extended Regular Expression Syntax

Synopsis

The POSIX-Extended regular expression syntax is supported by the POSIX C regular expression API's, and variations are used by
the utilities egrep and awk. You can construct POSIX extended regular expressions in Boost.Regex by passing the flag extended
to the regex constructor, for example:

25

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://perldoc.perl.org/perlre.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// e1 is a case sensitive POSIX-Extended expression:
boost::regex e1(my_expression, boost::regex::extended);
// e2 a case insensitive POSIX-Extended expression:
boost::regex e2(my_expression, boost::regex::extended|boost::regex::icase);

POSIX Extended Syntax

In POSIX-Extended regular expressions, all characters match themselves except for the following special characters:

.[{()*+?|^$

Wildcard:

The single character '.' when used outside of a character set will match any single character except:

• The NULL character when the flag match_no_dot_null is passed to the matching algorithms.

• The newline character when the flag match_not_dot_newline is passed to the matching algorithms.

Anchors:

A '^' character shall match the start of a line when used as the first character of an expression, or the first character of a sub-expression.

A '$' character shall match the end of a line when used as the last character of an expression, or the last character of a sub-expression.

Marked sub-expressions:

A section beginning (and ending) acts as a marked sub-expression. Whatever matched the sub-expression is split out in a separate
field by the matching algorithms. Marked sub-expressions can also repeated, or referred to by a back-reference.

Repeats:

Any atom (a single character, a marked sub-expression, or a character class) can be repeated with the *, +, ?, and {} operators.

The * operator will match the preceding atom zero or more times, for example the expression a*b will match any of the following:

b
ab
aaaaaaaab

The + operator will match the preceding atom one or more times, for example the expression a+b will match any of the following:

ab
aaaaaaaab

But will not match:

b

The ? operator will match the preceding atom zero or one times, for example the expression ca?b will match any of the following:

cb
cab

But will not match:

26

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

caab

An atom can also be repeated with a bounded repeat:

a{n} Matches 'a' repeated exactly n times.

a{n,} Matches 'a' repeated n or more times.

a{n, m} Matches 'a' repeated between n and m times inclusive.

For example:

^a{2,3}$

Will match either of:

aa
aaa

But neither of:

a
aaaa

It is an error to use a repeat operator, if the preceding construct can not be repeated, for example:

a(*)

Will raise an error, as there is nothing for the * operator to be applied to.

Back references:

An escape character followed by a digit n, where n is in the range 1-9, matches the same string that was matched by sub-expression
n. For example the expression:

^(a*).*\1$

Will match the string:

aaabbaaa

But not the string:

aaabba

Caution

The POSIX standard does not support back-references for "extended" regular expressions, this is a compatible extension
to that standard.

Alternation

The | operator will match either of its arguments, so for example: abc|def will match either "abc" or "def".

27

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parenthesis can be used to group alternations, for example: ab(d|ef) will match either of "abd" or "abef".

Character sets:

A character set is a bracket-expression starting with [and ending with], it defines a set of characters, and matches any single char-
acter that is a member of that set.

A bracket expression may contain any combination of the following:

Single characters:

For example [abc], will match any of the characters 'a', 'b', or 'c'.

Character ranges:

For example [a-c] will match any single character in the range 'a' to 'c'. By default, for POSIX-Extended regular expressions, a
character x is within the range y to z, if it collates within that range; this results in locale specific behavior . This behavior can be
turned off by unsetting the collate option flag - in which case whether a character appears within a range is determined by com-
paring the code points of the characters only.

Negation:

If the bracket-expression begins with the ^ character, then it matches the complement of the characters it contains, for example
[^a-c] matches any character that is not in the range a-c.

Character classes:

An expression of the form [[:name:]] matches the named character class "name", for example [[:lower:]] matches any lower
case character. See character class names.

Collating Elements:

An expression of the form [[.col.] matches the collating element col. A collating element is any single character, or any sequence
of characters that collates as a single unit. Collating elements may also be used as the end point of a range, for example: [[.ae.]-
c] matches the character sequence "ae", plus any single character in the range "ae"-c, assuming that "ae" is treated as a single collating
element in the current locale.

Collating elements may be used in place of escapes (which are not normally allowed inside character sets), for example [[.^.]abc]
would match either one of the characters 'abc^'.

As an extension, a collating element may also be specified via its symbolic name, for example:

[[.NUL.]]

matches a NUL character.

Equivalence classes:

An expression of the form [[=col=]], matches any character or collating element whose primary sort key is the same as that for
collating element col, as with colating elements the name col may be a symbolic name. A primary sort key is one that ignores case,
accentation, or locale-specific tailorings; so for example [[=a=]] matches any of the characters: a, À, Á, Â, Ã, Ä, Å, A, à, á, â, ã,
ä and å. Unfortunately implementation of this is reliant on the platform's collation and localisation support; this feature can not be
relied upon to work portably across all platforms, or even all locales on one platform.

Combinations:

All of the above can be combined in one character set declaration, for example: [[:digit:]a-c[.NUL.]].

28

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Escapes

The POSIX standard defines no escape sequences for POSIX-Extended regular expressions, except that:

• Any special character preceded by an escape shall match itself.

• The effect of any ordinary character being preceded by an escape is undefined.

• An escape inside a character class declaration shall match itself: in other words the escape character is not "special" inside a
character class declaration; so [\^] will match either a literal '\' or a '^'.

However, that's rather restrictive, so the following standard-compatible extensions are also supported by Boost.Regex:

Escapes matching a specific character

The following escape sequences are all synonyms for single characters:

CharacterEscape

'\a'\a

0x1B\e

\f\f

\n\n

\r\r

\t\t

\v\v

\b (but only inside a character class declaration).\b

An ASCII escape sequence - the character whose code point is X % 32\cX

A hexadecimal escape sequence - matches the single character whose code point is 0xdd.\xdd

A hexadecimal escape sequence - matches the single character whose code point is 0xdddd.\x{dddd}

An octal escape sequence - matches the single character whose code point is 0ddd.\0ddd

Matches the single character which has the symbolic name name. For example \\N{newline} matches the single
character \n.

\N{Name}

"Single character" character classes:

Any escaped character x, if x is the name of a character class shall match any character that is a member of that class, and any escaped
character X, if x is the name of a character class, shall match any character not in that class.

The following are supported by default:

29

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalent toEscape sequence

[[:digit:]]\d

[[:lower:]]\l

[[:space:]]\s

[[:upper:]]\u

[[:word:]]\w

[^[:digit:]]\D

[^[:lower:]]\L

[^[:space:]]\S

[^[:upper:]]\U

[^[:word:]]\W

Character Properties

The character property names in the following table are all equivalent to the names used in character classes.

Equivalent character set formDescriptionForm

[[:X:]]Matches any character that has the property X.\pX

[[:Name:]]Matches any character that has the property Name.\p{Name}

[^[:X:]]Matches any character that does not have the property X.\PX

[^[:Name:]]Matches any character that does not have the property Name.\P{Name}

For example \pd matches any "digit" character, as does \p{digit}.

Word Boundaries

The following escape sequences match the boundaries of words:

MeaningEscape

Matches the start of a word.\<

Matches the end of a word.\>

Matches a word boundary (the start or end of a word).\b

Matches only when not at a word boundary.\B

Buffer boundaries

The following match only at buffer boundaries: a "buffer" in this context is the whole of the input text that is being matched against
(note that ^ and $ may match embedded newlines within the text).

30

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

MeaningEscape

Matches at the start of a buffer only.\`

Matches at the end of a buffer only.\'

Matches at the start of a buffer only (the same as \`).\A

Matches at the end of a buffer only (the same as \').\z

Matches an optional sequence of newlines at the end of a buffer: equivalent to the regular expression \n*\z\Z

Continuation Escape

The sequence \G matches only at the end of the last match found, or at the start of the text being matched if no previous match was
found. This escape useful if you're iterating over the matches contained within a text, and you want each subsequence match to start
where the last one ended.

Quoting escape

The escape sequence \Q begins a "quoted sequence": all the subsequent characters are treated as literals, until either the end of the
regular expression or \E is found. For example the expression: \Q*+\Ea+ would match either of:

*+a
*+aaa

Unicode escapes

MeaningEscape

Matches a single code point: in Boost regex this has exactly the same effect as a "." operator.\C

Matches a combining character sequence: that is any non-combining character followed by a sequence of zero or more
combining characters.

\X

Any other escape

Any other escape sequence matches the character that is escaped, for example \@ matches a literal '@'.

Operator precedence

The order of precedence for of operators is as follows:

1. Collation-related bracket symbols [==] [::] [..]

2. Escaped characters \

3. Character set (bracket expression) []

4. Grouping ()

5. Single-character-ERE duplication * + ? {m,n}

6. Concatenation

7. Anchoring ^$

8. Alternation |

31

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

What Gets Matched

When there is more that one way to match a regular expression, the "best" possible match is obtained using the leftmost-longest rule.

Variations

Egrep

When an expression is compiled with the flag egrep set, then the expression is treated as a newline separated list of POSIX-Extended
expressions, a match is found if any of the expressions in the list match, for example:

boost::regex e("abc\ndef", boost::regex::egrep);

will match either of the POSIX-Basic expressions "abc" or "def".

As its name suggests, this behavior is consistent with the Unix utility egrep, and with grep when used with the -E option.

awk

In addition to the POSIX-Extended features the escape character is special inside a character class declaration.

In addition, some escape sequences that are not defined as part of POSIX-Extended specification are required to be supported -
however Boost.Regex supports these by default anyway.

Options

There are a variety of flags that may be combined with the extended and egrep options when constructing the regular expression,
in particular note that the newline_alt option alters the syntax, while the collate, nosubs and icase options modify how the
case and locale sensitivity are to be applied.

References

IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Base Definitions and Headers, Section 9, Regular Expressions.

IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Shells and Utilities, Section 4, Utilities, egrep.

IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Shells and Utilities, Section 4, Utilities, awk.

POSIX Basic Regular Expression Syntax

Synopsis

The POSIX-Basic regular expression syntax is used by the Unix utility sed, and variations are used by grep and emacs. You can
construct POSIX basic regular expressions in Boost.Regex by passing the flag basic to the regex constructor (see syntax_op-
tion_type), for example:

// e1 is a case sensitive POSIX-Basic expression:
boost::regex e1(my_expression, boost::regex::basic);
// e2 a case insensitive POSIX-Basic expression:
boost::regex e2(my_expression, boost::regex::basic|boost::regex::icase);

POSIX Basic Syntax

In POSIX-Basic regular expressions, all characters are match themselves except for the following special characters:

.[*^$

32

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/utilities/grep.html
http://www.opengroup.org/onlinepubs/000095399/utilities/awk.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Wildcard:

The single character '.' when used outside of a character set will match any single character except:

• The NULL character when the flag match_no_dot_null is passed to the matching algorithms.

• The newline character when the flag match_not_dot_newline is passed to the matching algorithms.

Anchors:

A '^' character shall match the start of a line when used as the first character of an expression, or the first character of a sub-expression.

A '$' character shall match the end of a line when used as the last character of an expression, or the last character of a sub-expression.

Marked sub-expressions:

A section beginning \(and ending \) acts as a marked sub-expression. Whatever matched the sub-expression is split out in a separate
field by the matching algorithms. Marked sub-expressions can also repeated, or referred-to by a back-reference.

Repeats:

Any atom (a single character, a marked sub-expression, or a character class) can be repeated with the * operator.

For example a* will match any number of letter a's repeated zero or more times (an atom repeated zero times matches an empty
string), so the expression a*b will match any of the following:

b
ab
aaaaaaaab

An atom can also be repeated with a bounded repeat:

a\{n\} Matches 'a' repeated exactly n times.

a\{n,\} Matches 'a' repeated n or more times.

a\{n, m\} Matches 'a' repeated between n and m times inclusive.

For example:

^a{2,3}$

Will match either of:

aa
aaa

But neither of:

a
aaaa

It is an error to use a repeat operator, if the preceding construct can not be repeated, for example:

a(*)

Will raise an error, as there is nothing for the * operator to be applied to.

33

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Back references:

An escape character followed by a digit n, where n is in the range 1-9, matches the same string that was matched by sub-expression
n. For example the expression:

^\(a*\).*\1$

Will match the string:

aaabbaaa

But not the string:

aaabba

Character sets:

A character set is a bracket-expression starting with [and ending with], it defines a set of characters, and matches any single char-
acter that is a member of that set.

A bracket expression may contain any combination of the following:

Single characters:

For example [abc], will match any of the characters 'a', 'b', or 'c'.

Character ranges:

For example [a-c] will match any single character in the range 'a' to 'c'. By default, for POSIX-Basic regular expressions, a character
x is within the range y to z, if it collates within that range; this results in locale specific behavior. This behavior can be turned off by
unsetting the collate option flag when constructing the regular expression - in which case whether a character appears within a
range is determined by comparing the code points of the characters only.

Negation:

If the bracket-expression begins with the ^ character, then it matches the complement of the characters it contains, for example
[^a-c] matches any character that is not in the range a-c.

Character classes:

An expression of the form [[:name:]] matches the named character class "name", for example [[:lower:]] matches any lower
case character. See character class names.

Collating Elements:

An expression of the form [[.col.] matches the collating element col. A collating element is any single character, or any sequence
of characters that collates as a single unit. Collating elements may also be used as the end point of a range, for example: [[.ae.]-
c] matches the character sequence "ae", plus any single character in the rangle "ae"-c, assuming that "ae" is treated as a single col-
lating element in the current locale.

Collating elements may be used in place of escapes (which are not normally allowed inside character sets), for example [[.^.]abc]
would match either one of the characters 'abc^'.

As an extension, a collating element may also be specified via its symbolic name, for example:

[[.NUL.]]

matches a 'NUL' character. See collating element names.

34

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalence classes:

An expression of theform [[=col=]], matches any character or collating element whose primary sort key is the same as that for
collating element col, as with collating elements the name col may be a collating symbolic name. A primary sort key is one that ignores
case, accentation, or locale-specific tailorings; so for example [[=a=]] matches any of the characters: a, À, Á, Â, Ã, Ä, Å, A, à, á,
â, ã, ä and å. Unfortunately implementation of this is reliant on the platform's collation and localisation support; this feature can not
be relied upon to work portably across all platforms, or even all locales on one platform.

Combinations:

All of the above can be combined in one character set declaration, for example: [[:digit:]a-c[.NUL.]].

Escapes

With the exception of the escape sequences \{, \}, \(, and \), which are documented above, an escape followed by any character
matches that character. This can be used to make the special characters

.[*^$

"ordinary". Note that the escape character loses its special meaning inside a character set, so [\^] will match either a literal '\' or a
'^'.

What Gets Matched

When there is more that one way to match a regular expression, the "best" possible match is obtained using the leftmost-longest rule.

Variations

Grep

When an expression is compiled with the flag grep set, then the expression is treated as a newline separated list of POSIX-Basic
expressions, a match is found if any of the expressions in the list match, for example:

boost::regex e("abc\ndef", boost::regex::grep);

will match either of the POSIX-Basic expressions "abc" or "def".

As its name suggests, this behavior is consistent with the Unix utility grep.

emacs

In addition to the POSIX-Basic features the following characters are also special:

DescriptionCharacter

repeats the preceding atom one or more times.+

repeats the preceding atom zero or one times.?

A non-greedy version of *.*?

A non-greedy version of +.+?

A non-greedy version of ?.??

And the following escape sequences are also recognised:

35

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionEscape

specifies an alternative.\|

is a non-marking grouping construct - allows you to lexically group something without spitting out an extra sub-ex-
pression.

\(?: ...)

matches any word character.\w

matches any non-word character.\W

matches any character in the syntax group x, the following emacs groupings are supported: 's', ' ', '_', 'w', '.', ')', '(',
'"', '\'', '>' and '<'. Refer to the emacs docs for details.

\sx

matches any character not in the syntax grouping x.\Sx

These are not supported.\c and \C

matches zero characters only at the start of a buffer (or string being matched).\`

matches zero characters only at the end of a buffer (or string being matched).\'

matches zero characters at a word boundary.\b

matches zero characters, not at a word boundary.\B

matches zero characters only at the start of a word.\<

matches zero characters only at the end of a word.\>

Finally, you should note that emacs style regular expressions are matched according to the Perl "depth first search" rules. Emacs
expressions are matched this way because they contain Perl-like extensions, that do not interact well with the POSIX-style leftmost-
longest rule.

Options

There are a variety of flags that may be combined with the basic and grep options when constructing the regular expression, in
particular note that the newline_alt, no_char_classes, no-intervals, bk_plus_qm and bk_plus_vbar options all alter
the syntax, while the collate and icase options modify how the case and locale sensitivity are to be applied.

References

IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Base Definitions and Headers, Section 9, Regular Expressions
(FWD.1).

IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Shells and Utilities, Section 4, Utilities, grep (FWD.1).

Emacs Version 21.3.

Character Class Names

Character Classes that are Always Supported

The following character class names are always supported by Boost.Regex:

36

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/utilities/grep.html
http://www.gnu.org/software/emacs/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionPOSIX-standard nameName

Any alpha-numeric character.Yesalnum

Any alphabetic character.Yesalpha

Any whitespace character that is not a line separator.Yesblank

Any control character.Yescntrl

Any decimal digitNod

Any decimal digit.Yesdigit

Any graphical character.Yesgraph

Any lower case character.Nol

Any lower case character.Yeslower

Any printable character.Yesprint

Any punctuation character.Yespunct

Any whitespace character.Nos

Any whitespace character.Yesspace

Any extended character whose code point is above 255 in value.Nounicode

Any upper case character.Nou

Any upper case character.Yesupper

Any word character (alphanumeric characters plus the underscore).Now

Any word character (alphanumeric characters plus the underscore).Noword

Any hexadecimal digit character.Yesxdigit

Character classes that are supported by Unicode Regular Expressions

The following character classes are only supported by Unicode Regular Expressions: that is those that use the u32regex type. The
names used are the same as those from Chapter 4 of the Unicode standard.

37

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Long NameShort Name

ASCII

Any

Assigned

OtherC*

ControlCc

FormatCf

Not AssignedCn

Private UseCo

SurrogateCs

LetterL*

Lowercase LetterLl

Modifier LetterLm

Other LetterLo

TitlecaseLt

Uppercase LetterLu

MarkM*

Spacing Combining MarkMc

Enclosing MarkMe

Non-Spacing MarkMn

NumberN*

Decimal Digit NumberNd

Letter NumberNl

Other NumberNo

PunctuationP*

Connector PunctuationPc

Dash PunctuationPd

Close PunctuationPe

Final PunctuationPf

38

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Long NameShort Name

Initial PunctuationPi

Other PunctuationPo

Open PunctuationPs

SymbolS*

Currency SymbolSc

Modifier SymbolSk

Math SymbolSm

Other SymbolSo

SeparatorZ*

Line SeparatorZl

Paragraph SeparatorZp

Space SeparatorZs

Collating Names

Digraphs

The following are treated as valid digraphs when used as a collating name:

"ae", "Ae", "AE", "ch", "Ch", "CH", "ll", "Ll", "LL", "ss", "Ss", "SS", "nj", "Nj", "NJ", "dz", "Dz", "DZ", "lj", "Lj", "LJ".

So for example the expression:

[[.ae.]-c] ↵

will match any character that collates between the digraph "ae" and the character "c".

POSIX Symbolic Names

The following symbolic names are recognised as valid collating element names, in addition to any single character, this allows you
to write for example:

[[.left-square-bracket.][.right-square-bracket.]]

if you wanted to match either "[" or "]".

39

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CharacterName

\x00NUL

\x01SOH

\x02STX

\x03ETX

\x04EOT

\x05ENQ

\x06ACK

\x07alert

\x08backspace

\ttab

\nnewline

\vvertical-tab

\fform-feed

\rcarriage-return

\xESO

\xFSI

\x10DLE

\x11DC1

\x12DC2

\x13DC3

\x14DC4

\x15NAK

\x16SYN

\x17ETB

\x18CAN

\x19EM

\x1ASUB

\x1BESC

40

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CharacterName

\x1CIS4

\x1DIS3

\x1EIS2

\x1FIS1

\x20space

!exclamation-mark

"quotation-mark

#number-sign

$dollar-sign

%percent-sign

&ersand

'apostrophe

(left-parenthesis

)right-parenthesis

*asterisk

+plus-sign

,comma

-hyphen

.period

/slash

0zero

1one

2two

3three

4four

5five

6six

7seven

41

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CharacterName

8eight

9nine

:colon

;semicolon

<less-than-sign

=equals-sign

>greater-than-sign

?question-mark

@commercial-at

[left-square-bracket

\backslash

]right-square-bracket

~circumflex

_underscore

`grave-accent

{left-curly-bracket

|vertical-line

}right-curly-bracket

~tilde

\x7FDEL

Named Unicode Characters

When using Unicode aware regular expressions (with the u32regex type), all the normal symbolic names for Unicode characters
(those given in Unidata.txt) are recognised. So for example:

[[.CYRILLIC CAPITAL LETTER I.]] ↵

would match the Unicode character 0x0418.

The Leftmost Longest Rule
Often there is more than one way of matching a regular expression at a particular location, for POSIX basic and extended regular
expressions, the "best" match is determined as follows:

42

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

1. Find the leftmost match, if there is only one match possible at this location then return it.

2. Find the longest of the possible matches, along with any ties. If there is only one such possible match then return it.

3. If there are no marked sub-expressions, then all the remaining alternatives are indistinguishable; return the first of these found.

4. Find the match which has matched the first sub-expression in the leftmost position, along with any ties. If there is only on such
match possible then return it.

5. Find the match which has the longest match for the first sub-expression, along with any ties. If there is only one such match then
return it.

6. Repeat steps 4 and 5 for each additional marked sub-expression.

7. If there is still more than one possible match remaining, then they are indistinguishable; return the first one found.

Search and Replace Format String Syntax
Format strings are used by the algorithm regex_replace and by match_results<>::format, and are used to transform one
string into another.

There are three kind of format string: Sed, Perl and Boost-Extended.

Alternatively, when the flag format_literal is passed to one of these functions, then the format string is treated as a string literal,
and is copied unchanged to the output.

Sed Format String Syntax
Sed-style format strings treat all characters as literals except:

descriptioncharacter

The ampersand character is replaced in the output stream by the the whole of what matched the regular expression.
Use \& to output a literal '&' character.

&

Specifies an escape sequence.\

An escape character followed by any character x, outputs that character unless x is one of the escape sequences shown below.

43

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

MeaningEscape

Outputs the bell character: '\a'.\a

Outputs the ANSI escape character (code point 27).\e

Outputs a form feed character: '\f'\f

Outputs a newline character: '\n'.\n

Outputs a carriage return character: '\r'.\r

Outputs a tab character: '\t'.\t

Outputs a vertical tab character: '\v'.\v

Outputs the character whose hexadecimal code point is 0xDD\xDD

Outputs the character whose hexadecimal code point is 0xDDDDD\x{DDDD}

Outputs the ANSI escape sequence "escape-X".\cX

If D is a decimal digit in the range 1-9, then outputs the text that matched sub-expression D.\D

Perl Format String Syntax
Perl-style format strings treat all characters as literals except '$' and '\' which start placeholder and escape sequences respectively.

Placeholder sequences specify that some part of what matched the regular expression should be sent to output as follows:

MeaningPlaceholder

Outputs what matched the whole expression.$&

Outputs the text between the end of the last match found (or the start of the text if no previous match was found),
and the start of the current match.

$`

Outputs all the text following the end of the current match.$'

Outputs a literal '$'$$

Outputs what matched the n'th sub-expression.$n

Outputs what matched the n'th sub-expression.${n}

Any $-placeholder sequence not listed above, results in '$' being treated as a literal.

An escape character followed by any character x, outputs that character unless x is one of the escape sequences shown below.

44

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

MeaningEscape

Outputs the bell character: '\a'.\a

Outputs the ANSI escape character (code point 27).\e

Outputs a form feed character: '\f'\f

Outputs a newline character: '\n'.\n

Outputs a carriage return character: '\r'.\r

Outputs a tab character: '\t'.\t

Outputs a vertical tab character: '\v'.\v

Outputs the character whose hexadecimal code point is 0xDD\xDD

Outputs the character whose hexadecimal code point is 0xDDDDD\x{DDDD}

Outputs the ANSI escape sequence "escape-X".\cX

If D is a decimal digit in the range 1-9, then outputs the text that matched sub-expression D.\D

Causes the next character to be outputted, to be output in lower case.\l

Causes the next character to be outputted, to be output in upper case.\u

Causes all subsequent characters to be output in lower case, until a \E is found.\L

Causes all subsequent characters to be output in upper case, until a \E is found.\U

Terminates a \L or \U sequence.\E

Boost-Extended Format String Syntax
Boost-Extended format strings treat all characters as literals except for '$', '\', '(', ')', '?', and ':'.

Grouping

The characters '(' and ')' perform lexical grouping, so use \(and \) if you want a to output literal parenthesis.

Conditionals

The character '?' begins a conditional expression, the general form is:

?Ntrue-expression:false-expression

where N is decimal digit.

If sub-expression N was matched, then true-expression is evaluated and sent to output, otherwise false-expression is evaluated and
sent to output.

You will normally need to surround a conditional-expression with parenthesis in order to prevent ambiguities.

For example, the format string "(?1foo:bar)" will replace each match found with "foo" if the sub-expression $1 was matched, and
with "bar" otherwise.

45

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Placeholder Sequences

Placeholder sequences specify that some part of what matched the regular expression should be sent to output as follows:

MeaningPlaceholder

Outputs what matched the whole expression.$&

Outputs the text between the end of the last match found (or the start of the text if no previous match was found),
and the start of the current match.

$`

Outputs all the text following the end of the current match.$'

Outputs a literal '$'$$

Outputs what matched the n'th sub-expression.$n

Any $-placeholder sequence not listed above, results in '$' being treated as a literal.

Escape Sequences

An escape character followed by any character x, outputs that character unless x is one of the escape sequences shown below.

MeaningEscape

Outputs the bell character: '\a'.\a

Outputs the ANSI escape character (code point 27).\e

Outputs a form feed character: '\f'\f

Outputs a newline character: '\n'.\n

Outputs a carriage return character: '\r'.\r

Outputs a tab character: '\t'.\t

Outputs a vertical tab character: '\v'.\v

Outputs the character whose hexadecimal code point is 0xDD\xDD

Outputs the character whose hexadecimal code point is 0xDDDDD\x{DDDD}

Outputs the ANSI escape sequence "escape-X".\cX

If D is a decimal digit in the range 1-9, then outputs the text that matched sub-expression D.\D

Causes the next character to be outputted, to be output in lower case.\l

Causes the next character to be outputted, to be output in upper case.\u

Causes all subsequent characters to be output in lower case, until a \E is found.\L

Causes all subsequent characters to be output in upper case, until a \E is found.\U

Terminates a \L or \U sequence.\E

46

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

basic_regex

Synopsis

#include <boost/regex.hpp>

The template class basic_regex encapsulates regular expression parsing and compilation. The class takes two template parameters:

• charT: determines the character type, i.e. either char or wchar_t; see charT concept.

• traits: determines the behavior of the character type, for example which character class names are recognized. A default traits
class is provided: regex_traits<charT>. See also traits concept.

For ease of use there are two typedefs that define the two standard basic_regex instances, unless you want to use custom traits
classes or non-standard character types (for example see unicode support), you won't need to use anything other than these:

namespace boost{

template <class charT, class traits = regex_traits<charT> >
class basic_regex;

typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

}

The definition of basic_regex follows: it is based very closely on class basic_string, and fulfils the requirements for a constant-
container of charT.

47

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost{

template <class charT, class traits = regex_traits<charT> >
class basic_regex {

public:
// types:
typedef charT value_type;
typedef implementation-specific const_iterator;
typedef const_iterator iterator;
typedef charT& reference;
typedef const charT& const_reference;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
typedef regex_constants:: syntax_option_type flag_type;
typedef typename traits::locale_type locale_type;

// constants:
// main option selection:
static const regex_constants:: syntax_option_type normal

= regex_constants::normal;
static const regex_constants:: syntax_option_type ECMAScript

= normal;
static const regex_constants:: syntax_option_type JavaScript

= normal;
static const regex_constants:: syntax_option_type JScript

= normal;
static const regex_constants:: syntax_option_type basic

= regex_constants::basic;
static const regex_constants:: syntax_option_type extended

= regex_constants::extended;
static const regex_constants:: syntax_option_type awk

= regex_constants::awk;
static const regex_constants:: syntax_option_type grep

= regex_constants::grep;
static const regex_constants:: syntax_option_type egrep

= regex_constants::egrep;
static const regex_constants:: syntax_option_type sed

= basic = regex_constants::sed;
static const regex_constants:: syntax_option_type perl

= regex_constants::perl;
static const regex_constants:: syntax_option_type literal

= regex_constants::literal;

// modifiers specific to perl expressions:
static const regex_constants:: syntax_option_type no_mod_m

= regex_constants::no_mod_m;
static const regex_constants:: syntax_option_type no_mod_s

= regex_constants::no_mod_s;
static const regex_constants:: syntax_option_type mod_s

= regex_constants::mod_s;
static const regex_constants:: syntax_option_type mod_x

= regex_constants::mod_x;

// modifiers specific to POSIX basic expressions:
static const regex_constants:: syntax_option_type bk_plus_qm

= regex_constants::bk_plus_qm;
static const regex_constants:: syntax_option_type bk_vbar

= regex_constants::bk_vbar
static const regex_constants:: syntax_option_type no_char_classes

= regex_constants::no_char_classes
static const regex_constants:: syntax_option_type no_intervals

= regex_constants::no_intervals

48

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// common modifiers:
static const regex_constants:: syntax_option_type nosubs

= regex_constants::nosubs;
static const regex_constants:: syntax_option_type optimize

= regex_constants::optimize;
static const regex_constants:: syntax_option_type collate

= regex_constants::collate;
static const regex_constants:: syntax_option_type newline_alt

= regex_constants::newline_alt;
static const regex_constants:: syntax_option_type no_except

= regex_constants::newline_alt;

// construct/copy/destroy:
explicit basic_regex ();
explicit basic_regex(const charT* p, flag_type f = regex_constants::normal);
basic_regex(const charT* p1, const charT* p2,

 flag_type f = regex_constants::normal);
basic_regex(const charT* p, size_type len, flag_type f);
basic_regex(const basic_regex&);

template <class ST, class SA>
explicit basic_regex(const basic_string<charT, ST, SA>& p,

 flag_type f = regex_constants::normal);

template <class InputIterator>
basic_regex(InputIterator first, InputIterator last,

 flag_type f = regex_constants::normal);

~basic_regex();
basic_regex& operator=(const basic_regex&);
basic_regex& operator= (const charT* ptr);

template <class ST, class SA>
basic_regex& operator= (const basic_string<charT, ST, SA>& p);
// iterators:
std::pair<const_iterator, const_iterator> subexpression(size_type n) const;
const_iterator begin() const;
const_iterator end() const;
// capacity:
size_type size() const;
size_type max_size() const;
bool empty() const;
unsigned mark_count()const;
//
// modifiers:
basic_regex& assign(const basic_regex& that);
basic_regex& assign(const charT* ptr,

 flag_type f = regex_constants::normal);
basic_regex& assign(const charT* ptr, unsigned int len, flag_type f);

template <class string_traits, class A>
basic_regex& assign(const basic_string<charT, string_traits, A>& s,

 flag_type f = regex_constants::normal);

template <class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,

 flag_type f = regex_constants::normal);

// const operations:
flag_type flags() const;
int status()const;
basic_string<charT> str() const;
int compare(basic_regex&) const;

49

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// locale:
locale_type imbue(locale_type loc);
locale_type getloc() const;
// swap
void swap(basic_regex&) throw();

};

template <class charT, class traits>
bool operator == (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class traits>
bool operator != (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class traits>
bool operator < (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class traits>
bool operator <= (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class traits>
bool operator >= (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class traits>
bool operator > (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

template <class charT, class io_traits, class re_traits>
basic_ostream<charT, io_traits>&

operator << (basic_ostream<charT, io_traits>& os,
const basic_regex<charT, re_traits>& e);

template <class charT, class traits>
void swap(basic_regex<charT, traits>& e1,
 basic_regex<charT, traits>& e2);

typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

} // namespace boost

Description

Class basic_regex has the following public members:

50

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// main option selection:
static const regex_constants:: syntax_option_type normal

= regex_constants::normal;
static const regex_constants:: syntax_option_type ECMAScript

= normal;
static const regex_constants:: syntax_option_type JavaScript

= normal;
static const regex_constants:: syntax_option_type JScript

= normal;
static const regex_constants:: syntax_option_type basic

= regex_constants::basic;
static const regex_constants:: syntax_option_type extended

= regex_constants::extended;
static const regex_constants:: syntax_option_type awk

= regex_constants::awk;
static const regex_constants:: syntax_option_type grep

= regex_constants::grep;
static const regex_constants:: syntax_option_type egrep

= regex_constants::egrep;
static const regex_constants:: syntax_option_type sed

= regex_constants::sed;
static const regex_constants:: syntax_option_type perl

= regex_constants::perl;
static const regex_constants:: syntax_option_type literal

= regex_constants::literal;

// modifiers specific to perl expressions:
static const regex_constants:: syntax_option_type no_mod_m

= regex_constants::no_mod_m;
static const regex_constants:: syntax_option_type no_mod_s

= regex_constants::no_mod_s;
static const regex_constants:: syntax_option_type mod_s

= regex_constants::mod_s;
static const regex_constants:: syntax_option_type mod_x

= regex_constants::mod_x;

// modifiers specific to POSIX basic expressions:
static const regex_constants:: syntax_option_type bk_plus_qm

= regex_constants::bk_plus_qm;
static const regex_constants:: syntax_option_type bk_vbar

= regex_constants::bk_vbar
static const regex_constants:: syntax_option_type no_char_classes

= regex_constants::no_char_classes
static const regex_constants:: syntax_option_type no_intervals

= regex_constants::no_intervals

// common modifiers:
static const regex_constants:: syntax_option_type nosubs

= regex_constants::nosubs;
static const regex_constants:: syntax_option_type optimize

= regex_constants::optimize;
static const regex_constants:: syntax_option_type collate

= regex_constants::collate;
static const regex_constants:: syntax_option_type newline_alt

= regex_constants::newline_alt;

The meaning of these options is documented in the syntax_option_type section.

The static constant members are provided as synonyms for the constants declared in namespace boost::regex_constants; for
each constant of type syntax_option_type declared in namespace boost::regex_constants then a constant with the same
name, type and value is declared within the scope of basic_regex.

51

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_regex();

Effects: Constructs an object of class basic_regex.

Table 1. basic_regex default construction postconditions

ValueElement

trueempty()

0size()

basic_string<charT>()str()

basic_regex(const charT* p, flag_type f = regex_constants::normal);

Requires: p shall not be a null pointer.

Throws: bad_expression if p is not a valid regular expression, unless the flag no_except is set in f.

Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression
contained in the null-terminated string p, and interpreted according to the option flags specified in f.

Table 2. Postconditions for basic_regex construction

ValueElement

falseempty()

char_traits<charT>::length(p)size()

basic_string<charT>(p)str()

fflags()

The number of marked sub-expressions within the expression.mark_count()

basic_regex(const charT* p1, const charT* p2,
 flag_type f = regex_constants::normal);

Requires: p1 and p2 are not null pointers, p1 < p2.

Throws: bad_expression if [p1,p2) is not a valid regular expression, unless the flag no_except is set in f.

Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression
contained in the sequence of characters [p1,p2), and interpreted according the option flags specified in f.

52

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Postconditions for basic_regex construction

ValueElement

falseempty()

std::distance(p1,p2)size()

basic_string<charT>(p1,p2)str()

fflags()

The number of marked sub-expressions within the expression.mark_count()

basic_regex(const charT* p, size_type len, flag_type f);

Requires: p shall not be a null pointer, len < max_size().

Throws: bad_expression if p is not a valid regular expression, unless the flag no_except is set in f.

Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression
contained in the sequence of characters [p, p+len), and interpreted according the option flags specified in f.

Table 4. Postconditions for basic_regex construction

ValueElement

falseempty()

lensize()

basic_string<charT>(p, len)str()

fflags()

The number of marked sub-expressions within the expression.mark_count()

basic_regex(const basic_regex& e);

Effects: Constructs an object of class basic_regex as a copy of the object e.

template <class ST, class SA>
basic_regex(const basic_string<charT, ST, SA>& s,
 flag_type f = regex_constants::normal);

Throws: bad_expression if s is not a valid regular expression, unless the flag no_except is set in f.

Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression
contained in the string s, and interpreted according to the option flags specified in f.

53

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 5. Postconditions for basic_regex construction

ValueElement

falseempty()

s.size()size()

sstr()

fflags()

The number of marked sub-expressions within the expression.mark_count()

template <class ForwardIterator>
basic_regex(ForwardIterator first, ForwardIterator last,
 flag_type f = regex_constants::normal);

Throws: bad_expression if the sequence [first, last) is not a valid regular expression, unless the flag no_except is set in f.

Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression
contained in the sequence of characters [first, last), and interpreted according to the option flags specified in f.

Table 6. Postconditions for basic_regex construction

ValueElement

falseempty()

distance(first,last)size()

basic_string<charT>(first,last)str()

fflags()

The number of marked sub-expressions within the expression.mark_count()

basic_regex& operator=(const basic_regex& e);

Effects: Returns the result of assign(e.str(), e.flags()).

basic_regex& operator=(const charT* ptr);

Requires: p shall not be a null pointer.

Effects: Returns the result of assign(ptr).

template <class ST, class SA>
basic_regex& operator=(const basic_string<charT, ST, SA>& p);

Effects: Returns the result of assign(p).

54

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::pair<const_iterator, const_iterator> subexpression(size_type n) const;

Effects: Returns a pair of iterators denoting the location of marked subexpression n within the original regular expression string.
The returned iterators are relative to begin() and end().

Requires: The expression must have been compiled with the syntax_option_type save_subexpression_location set. Argument
n must be in within the range 1 <= n < mark_count().

const_iterator begin() const;

Effects: Returns a starting iterator to a sequence of characters representing the regular expression.

const_iterator end() const;

Effects: Returns termination iterator to a sequence of characters representing the regular expression.

size_type size() const;

Effects: Returns the length of the sequence of characters representing the regular expression.

size_type max_size() const;

Effects: Returns the maximum length of the sequence of characters representing the regular expression.

bool empty() const;

Effects: Returns true if the object does not contain a valid regular expression, otherwise false.

unsigned mark_count() const;

Effects: Returns the number of marked sub-expressions within the regular expresion.

basic_regex& assign(const basic_regex& that);

Effects: Returns assign(that.str(), that.flags()).

basic_regex& assign(const charT* ptr, flag_type f = regex_constants::normal);

Effects: Returns assign(string_type(ptr), f).

basic_regex& assign(const charT* ptr, unsigned int len, flag_type f);

Effects: Returns assign(string_type(ptr, len), f).

template <class string_traits, class A>
basic_regex& assign(const basic_string<charT, string_traits, A>& s,
 flag_type f = regex_constants::normal);

Throws: bad_expression if s is not a valid regular expression, unless the flag no_except is set in f.

Returns: *this.

55

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Assigns the regular expression contained in the string s, interpreted according the option flags specified in f.

Table 7. Postconditions for basic_regex::assign

ValueElement

falseempty()

s.size()size()

sstr()

fflags()

The number of marked sub-expressions within the expression.mark_count()

template <class InputIterator>
basic_regex& assign(InputIterator first, InputIterator last,
 flag_type f = regex_constants::normal);

Requires: The type InputIterator corresponds to the Input Iterator requirements (24.1.1).

Effects: Returns assign(string_type(first, last), f).

flag_type flags() const;

Effects: Returns a copy of the regular expression syntax flags that were passed to the object's constructor, or the last call to assign.

int status() const;

Effects: Returns zero if the expression contains a valid regular expression, otherwise an error code. This member function is retained
for use in environments that cannot use exception handling.

basic_string<charT> str() const;

Effects: Returns a copy of the character sequence passed to the object's constructor, or the last call to assign.

int compare(basic_regex& e)const;

Effects: If flags() == e.flags() then returns str().compare(e.str()), otherwise returns flags() - e.flags().

locale_type imbue(locale_type l);

Effects: Returns the result of traits_inst.imbue(l) where traits_inst is a (default initialized) instance of the template
parameter traits stored within the object. Calls to imbue invalidate any currently contained regular expression.

Postcondition: empty() == true.

locale_type getloc() const;

Effects: Returns the result of traits_inst.getloc() where traits_inst is a (default initialized) instance of the template
parameter traits stored within the object.

56

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://input_iterator
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void swap(basic_regex& e) throw();

Effects: Swaps the contents of the two regular expressions.

Postcondition: *this contains the regular expression that was in e, e contains the regular expression that was in *this.

Complexity: constant time.

Note

Comparisons between basic_regex objects are provided on an experimental basis: please note that these are not
present in the Technical Report on C++ Library Extensions, so use with care if you are writing code that may need to
be ported to other implementations of basic_regex.

template <class charT, class traits>
bool operator == (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) == 0.

template <class charT, class traits>
bool operator != (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) != 0.

template <class charT, class traits>
bool operator < (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) < 0.

template <class charT, class traits>
bool operator <= (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) <= 0.

template <class charT, class traits>
bool operator >= (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) >= 0.

template <class charT, class traits>
bool operator > (const basic_regex<charT, traits>& lhs,

const basic_regex<charT, traits>& rhs);

Effects: Returns lhs.compare(rhs) > 0.

57

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The basic_regex stream inserter is provided on an experimental basis, and outputs the textual representation of the ex-
pression to the stream.

template <class charT, class io_traits, class re_traits>
basic_ostream<charT, io_traits>&

operator << (basic_ostream<charT, io_traits>& os
const basic_regex<charT, re_traits>& e);

Effects: Returns (os << e.str()).

template <class charT, class traits>
void swap(basic_regex<charT, traits>& lhs,
 basic_regex<charT, traits>& rhs);

Effects: calls lhs.swap(rhs).

match_results

Synopsis

#include <boost/regex.hpp>

Regular expressions are different from many simple pattern-matching algorithms in that as well as finding an overall match they can
also produce sub-expression matches: each sub-expression being delimited in the pattern by a pair of parenthesis (...). There has to
be some method for reporting sub-expression matches back to the user: this is achieved this by defining a class match_results
that acts as an indexed collection of sub-expression matches, each sub-expression match being contained in an object of type
sub_match.

Template class match_results denotes a collection of character sequences representing the result of a regular expression match.
Objects of type match_results are passed to the algorithms regex_match and regex_search, and are returned by the iterator
regex_iterator. Storage for the collection is allocated and freed as necessary by the member functions of class match_results.

The template class match_results conforms to the requirements of a Sequence, as specified in (lib.sequence.reqmts), except that
only operations defined for const-qualified Sequences are supported.

Class template match_results is most commonly used as one of the typedefs cmatch, wcmatch, smatch, or wsmatch:

58

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator,
class Allocator = std::allocator<sub_match<BidirectionalIterator> >

class match_results;

typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;

template <class BidirectionalIterator,
class Allocator = std::allocator<sub_match<BidirectionalIterator> >

class match_results
{
public:

typedef sub_match<BidirectionalIterator> value_type;
typedef const value_type& const_reference;
typedef const_reference reference;
typedef implementation defined const_iterator;
typedef const_iterator iterator;
typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
typedef typename Allocator::size_type size_type;
typedef Allocator allocator_type;
typedef typename iterator_traits<BidirectionalIterator>::value_type char_type;
typedef basic_string<char_type> string_type;

// construct/copy/destroy:
explicit match_results(const Allocator& a = Allocator());
match_results(const match_results& m);
match_results& operator=(const match_results& m);
~match_results();

// size:
 size_type size() const;
 size_type max_size() const;

bool empty() const;
// element access:

 difference_type length(int sub = 0) const;
 difference_type position(unsigned int sub = 0) const;
 string_type str(int sub = 0) const;
 const_reference operator[](int n) const;

 const_reference prefix() const;

 const_reference suffix() const;
 const_iterator begin() const;
 const_iterator end() const;

// format:
template <class OutputIterator>

 OutputIterator format(OutputIterator out,
const string_type& fmt,

 match_flag_type flags = format_default) const;
 string_type format(const string_type& fmt,
 match_flag_type flags = format_default) const;

 allocator_type get_allocator() const;
void swap(match_results& that);

#ifdef BOOST_REGEX_MATCH_EXTRA
typedef typename value_type::capture_sequence_type capture_sequence_type;
const capture_sequence_type& captures(std::size_t i)const;

#endif

};

59

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class Allocator>
bool operator == (const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);
template <class BidirectionalIterator, class Allocator>
bool operator != (const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

template <class charT, class traits, class BidirectionalIterator, class Allocator>
basic_ostream<charT, traits>&

operator << (basic_ostream<charT, traits>& os,
const match_results<BidirectionalIterator, Allocator>& m);

template <class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,
 match_results<BidirectionalIterator, Allocator>& m2);

Description

In all match_results constructors, a copy of the Allocator argument is used for any memory allocation performed by the constructor
or member functions during the lifetime of the object.

match_results(const Allocator& a = Allocator());

Effects: Constructs an object of class match_results. The postconditions of this function are indicated in the table:

ValueElement

trueempty()

0size()

basic_string<charT>()str()

match_results(const match_results& m);

Effects: Constructs an object of class match_results, as a copy of m.

match_results& operator=(const match_results& m);

Effects: Assigns m to *this. The postconditions of this function are indicated in the table:

60

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueElement

m.empty().empty()

m.size().size()

m.str(n) for all integers n < m.size().str(n)

m.prefix().prefix()

m.suffix().suffix()

m[n] for all integers n < m.size().(*this)[n]

m.length(n) for all integers n < m.size().length(n)

m.position(n) for all integers n < m.size().position(n)

size_type size()const;

Effects: Returns the number of sub_match elements stored in *this; that is the number of marked sub-expressions in the regular
expression that was matched plus one.

size_type max_size()const;

Effects: Returns the maximum number of sub_match elements that can be stored in *this.

bool empty()const;

Effects: Returns size() == 0.

difference_type length(int sub = 0)const;

Effects: Returns the length of sub-expression sub, that is to say: (*this)[sub].length().

difference_type position(unsigned int sub = 0)const;

Effects: Returns the starting location of sub-expression sub, or -1 if sub was not matched. Note that if this represents a partial match
, then position() will return the location of the partial match even though (*this)[0].matched is false.

string_type str(int sub = 0)const;

Effects: Returns sub-expression sub as a string: string_type((*this)[sub]).

const_reference operator[](int n) const;

Effects: Returns a reference to the sub_match object representing the character sequence that matched marked sub-expression n.
If n == 0 then returns a reference to a sub_match object representing the character sequence that matched the whole regular ex-
pression. If n is out of range, or if n is an unmatched sub-expression, then returns a sub_match object whose matched member is
false.

61

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_reference prefix()const;

Effects: Returns a reference to the sub_match object representing the character sequence from the start of the string being matched
or searched, to the start of the match found.

const_reference suffix()const;

Effects: Returns a reference to the sub_match object representing the character sequence from the end of the match found to the
end of the string being matched or searched.

const_iterator begin()const;

Effects: Returns a starting iterator that enumerates over all the marked sub-expression matches stored in *this.

const_iterator end()const;

Effects: Returns a terminating iterator that enumerates over all the marked sub-expression matches stored in *this.

template <class OutputIterator>
OutputIterator format(OutputIterator out,

const string_type& fmt,
 match_flag_type flags = format_default);

Requires: The type OutputIterator conforms to the Output Iterator requirements (C++ std 24.1.2).

Effects: Copies the character sequence [fmt.begin(), fmt.end()) to OutputIterator out. For each format specifier or escape
sequence in fmt, replace that sequence with either the character(s) it represents, or the sequence of characters within *this to which
it refers. The bitmasks specified in flags determines what format specifiers or escape sequences are recognized, by default this is the
format used by ECMA-262, ECMAScript Language Specification, Chapter 15 part 5.4.11 String.prototype.replace.

See the format syntax guide for more information.

Returns: out.

string_type format(const string_type& fmt,
 match_flag_type flags = format_default);

Effects: Returns a copy of the string fmt. For each format specifier or escape sequence in fmt, replace that sequence with either the
character(s) it represents, or the sequence of characters within *this to which it refers. The bitmasks specified in flags determines
what format specifiers or escape sequences are recognized, by default this is the format used by ECMA-262, ECMAScript Language
Specification, Chapter 15 part 5.4.11 String.prototype.replace.

See the format syntax guide for more information.

allocator_type get_allocator()const;

Effects: Returns a copy of the Allocator that was passed to the object's constructor.

void swap(match_results& that);

Effects: Swaps the contents of the two sequences.

Postcondition: *this contains the sequence of matched sub-expressions that were in that, that contains the sequence of matched sub-
expressions that were in *this.

62

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Complexity: constant time.

typedef typename value_type::capture_sequence_type capture_sequence_type;

Defines an implementation-specific type that satisfies the requirements of a standard library Sequence (21.1.1 including the optional
Table 68 operations), whose value_type is a sub_match<BidirectionalIterator>. This type happens to be std::vec-
tor<sub_match<BidirectionalIterator> >, but you shouldn't actually rely on that.

const capture_sequence_type& captures(std::size_t i)const;

Effects: returns a sequence containing all the captures obtained for sub-expression i.

Returns: (*this)[i].captures();

Preconditions: the library must be built and used with BOOST_REGEX_MATCH_EXTRA defined, and you must pass the flag
match_extra to the regex matching functions (regex_match, regex_search, regex_iterator or regex_token_iterator)
in order for this member function to be defined and return useful information.

Rationale: Enabling this feature has several consequences:

• sub_match occupies more memory resulting in complex expressions running out of memory or stack space more quickly during
matching.

• The matching algorithms are less efficient at handling some features (independent sub-expressions for example), even when
match_extra is not used.

• The matching algorithms are much less efficient (i.e. slower), when match_extra is used. Mostly this is down to the extra memory
allocations that have to take place.

template <class BidirectionalIterator, class Allocator>
bool operator == (const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

Effects: Compares the two sequences for equality.

template <class BidirectionalIterator, class Allocator>
bool operator != (const match_results<BidirectionalIterator, Allocator>& m1,

const match_results<BidirectionalIterator, Allocator>& m2);

Effects: Compares the two sequences for inequality.

template <class charT, class traits, class BidirectionalIterator, class Allocator>
basic_ostream<charT, traits>&

operator << (basic_ostream<charT, traits>& os,
const match_results<BidirectionalIterator, Allocator>& m);

Effects: Writes the contents of m to the stream os as if by calling os << m.str(); Returns os.

template <class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,
 match_results<BidirectionalIterator, Allocator>& m2);

Effects: Swaps the contents of the two sequences.

63

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

sub_match

#include <boost/regex.hpp>

Regular expressions are different from many simple pattern-matching algorithms in that as well as finding an overall match they can
also produce sub-expression matches: each sub-expression being delimited in the pattern by a pair of parenthesis (...). There has to
be some method for reporting sub-expression matches back to the user: this is achieved this by defining a class match_results
that acts as an indexed collection of sub-expression matches, each sub-expression match being contained in an object of type
sub_match.

Objects of type sub_match may only be obtained by subscripting an object of type match_results.

Objects of type sub_match may be compared to objects of type std::basic_string, or const charT* or const charT.

Objects of type sub_match may be added to objects of type std::basic_string, or const charT* or const charT, to produce
a new std::basic_string object.

When the marked sub-expression denoted by an object of type sub_match participated in a regular expression match then member
matched evaluates to true, and members first and second denote the range of characters [first,second) which formed that match.
Otherwise matched is false, and members first and second contained undefined values.

When the marked sub-expression denoted by an object of type sub_match was repeated, then the sub_match object represents the
match obtained by the last repeat. The complete set of all the captures obtained for all the repeats, may be accessed via the captures()
member function (Note: this has serious performance implications, you have to explicitly enable this feature).

If an object of type sub_match represents sub-expression 0 - that is to say the whole match - then member matched is always true,
unless a partial match was obtained as a result of the flag match_partial being passed to a regular expression algorithm, in which
case member matched is false, and members first and second represent the character range that formed the partial match.

64

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost{

template <class BidirectionalIterator>
class sub_match;

typedef sub_match<const char*> csub_match;
typedef sub_match<const wchar_t*> wcsub_match;
typedef sub_match<std::string::const_iterator> ssub_match;
typedef sub_match<std::wstring::const_iterator> wssub_match;

template <class BidirectionalIterator>
class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator>
{
public:

typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
typedef BidirectionalIterator iterator;

bool matched;

 difference_type length()const;
operator basic_string<value_type>()const;

 basic_string<value_type> str()const;

int compare(const sub_match& s)const;
int compare(const basic_string<value_type>& s)const;
int compare(const value_type* s)const;

#ifdef BOOST_REGEX_MATCH_EXTRA
typedef implementation-private capture_sequence_type;
const capture_sequence_type& captures()const;

#endif
};
//
// comparisons to another sub_match:
//
template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

//
// comparisons to a basic_string:
//
template <class BidirectionalIterator, class traits, class Allocator>
bool operator == (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

65

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class traits, class Allocator>
bool operator != (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator < (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator > (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator >= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator <= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

template <class BidirectionalIterator, class traits, class Allocator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);
template <class BidirectionalIterator, class traits, class Allocator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

//
// comparisons to a pointer to a character array:
//
template <class BidirectionalIterator>
bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

66

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator>
bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

//
// comparisons to a single character:
//
template <class BidirectionalIterator>
bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);
template <class BidirectionalIterator>
bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

67

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
//
// addition operators:
//
template <class BidirectionalIterator, class traits, class Allocator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>

operator + (const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& s,

const sub_match<BidirectionalIterator>& m);
template <class BidirectionalIterator, class traits, class Allocator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>

operator + (const sub_match<BidirectionalIterator>& m,
const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,

 traits,
 Allocator>& s);
template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (typename iterator_traits<BidirectionalIterator>::value_type const* s,
const sub_match<BidirectionalIterator>& m);

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m,
typename iterator_traits<BidirectionalIterator>::value_type const * s);

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (typename iterator_traits<BidirectionalIterator>::value_type const& s,
const sub_match<BidirectionalIterator>& m);

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m,
typename iterator_traits<BidirectionalIterator>::value_type const& s);

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m1,
const sub_match<BidirectionalIterator>& m2);

//
// stream inserter:
//

68

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT, class traits, class BidirectionalIterator>
basic_ostream<charT, traits>&

operator << (basic_ostream<charT, traits>& os,
const sub_match<BidirectionalIterator>& m);

} // namespace boost

Description

Members

typedef typename std::iterator_traits<iterator>::value_type value_type;

The type pointed to by the iterators.

typedef typename std::iterator_traits<iterator>::difference_type difference_type;

A type that represents the difference between two iterators.

typedef BidirectionalIterator iterator;

The iterator type.

iterator first

An iterator denoting the position of the start of the match.

iterator second

An iterator denoting the position of the end of the match.

bool matched

A Boolean value denoting whether this sub-expression participated in the match.

static difference_type length();

Effects: returns the length of this matched sub-expression, or 0 if this sub-expression was not matched: matched ? dis-
tance(first, second) : 0).

operator basic_string<value_type>()const;

Effects: converts *this into a string: returns (matched ? basic_string<value_type>(first, second) : ba-

sic_string<value_type>()).

basic_string<value_type> str()const;

Effects: returns a string representation of *this: (matched ? basic_string<value_type>(first, second) : ba-
sic_string<value_type>()).

69

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int compare(const sub_match& s)const;

Effects: performs a lexical comparison to s: returns str().compare(s.str()).

int compare(const basic_string<value_type>& s)const;

Effects: compares *this to the string s: returns str().compare(s).

int compare(const value_type* s)const;

Effects: compares *this to the null-terminated string s: returns str().compare(s).

typedef implementation-private capture_sequence_type;

Defines an implementation-specific type that satisfies the requirements of a standard library Sequence (21.1.1 including the optional
Table 68 operations), whose value_type is a sub_match<BidirectionalIterator>. This type happens to be std::vec-
tor<sub_match<BidirectionalIterator> >, but you shouldn't actually rely on that.

const capture_sequence_type& captures()const;

Effects: returns a sequence containing all the captures obtained for this sub-expression.

Preconditions: the library must be built and used with BOOST_REGEX_MATCH_EXTRA defined, and you must pass the flag
match_extra to the regex matching functions (regex_match, regex_search, regex_iterator or regex_token_iterator)
in order for this member #function to be defined and return useful information.

Rationale: Enabling this feature has several consequences:

• sub_match occupies more memory resulting in complex expressions running out of memory or stack space more quickly during
matching.

• The matching algorithms are less efficient at handling some features (independent sub-expressions for example), even when
match_extra is not used.

• The matching algorithms are much less efficient (i.e. slower), when match_extra is used. Mostly this is down to the extra memory
allocations that have to take place.

sub_match non-member operators

template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) == 0.

template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) != 0.

70

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) < 0.

template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) <= 0.

template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) >= 0.

template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs.compare(rhs) > 0.

template <class BidirectionalIterator, class traits, class Allocator>
bool operator == (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs == rhs.str().

template <class BidirectionalIterator, class traits, class Allocator>
bool operator != (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs != rhs.str().

template <class BidirectionalIterator, class traits, class Allocator>
bool operator < (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs < rhs.str().

template <class BidirectionalIterator, class traits, class Allocator>
bool operator > (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs > rhs.str().

71

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class traits, class Allocator>
bool operator >= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs >= rhs.str().

template <class BidirectionalIterator, class traits, class Allocator>
bool operator <= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs <= rhs.str().

template <class BidirectionalIterator, class traits, class Allocator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() == rhs.

template <class BidirectionalIterator, class traits, class Allocator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() != rhs.

template <class BidirectionalIterator, class traits, class Allocator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() < rhs.

template <class BidirectionalIterator, class traits, class Allocator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() > rhs.

template <class BidirectionalIterator, class traits, class Allocator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() >= rhs.

72

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class traits, class Allocator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& rhs);

Effects: returns lhs.str() <= rhs.

template <class BidirectionalIterator>
bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs == rhs.str().

template <class BidirectionalIterator>
bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs != rhs.str().

template <class BidirectionalIterator>
bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs < rhs.str().

template <class BidirectionalIterator>
bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs > rhs.str().

template <class BidirectionalIterator>
bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs >= rhs.str().

template <class BidirectionalIterator>
bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs <= rhs.str().

template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() == rhs.

73

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() != rhs.

template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() < rhs.

template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() > rhs.

template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() >= rhs.

template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const* rhs);

Effects: returns lhs.str() <= rhs.

template <class BidirectionalIterator>
bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs == rhs.str().

template <class BidirectionalIterator>
bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs != rhs.str().

template <class BidirectionalIterator>
bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs < rhs.str().

template <class BidirectionalIterator>
bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs > rhs.str().

74

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator>
bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs >= rhs.str().

template <class BidirectionalIterator>
bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,

const sub_match<BidirectionalIterator>& rhs);

Effects: returns lhs <= rhs.str().

template <class BidirectionalIterator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() == rhs.

template <class BidirectionalIterator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() != rhs.

template <class BidirectionalIterator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() < rhs.

template <class BidirectionalIterator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() > rhs.

template <class BidirectionalIterator>
bool operator >= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() >= rhs.

template <class BidirectionalIterator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,

typename iterator_traits<BidirectionalIterator>::value_type const& rhs);

Effects: returns lhs.str() <= rhs.

The addition operators for sub_match allow you to add a sub_match to any type to which you can add a std::string and obtain
a new string as the result.

75

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class traits, class Allocator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>

operator + (const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
 traits,
 Allocator>& s,

const sub_match<BidirectionalIterator>& m);

Effects: returns s + m.str().

template <class BidirectionalIterator, class traits, class Allocator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>

operator + (const sub_match<BidirectionalIterator>& m,
const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,

 traits,
 Allocator>& s);

Effects: returns m.str() + s.

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (typename iterator_traits<BidirectionalIterator>::value_type const* s,
const sub_match<BidirectionalIterator>& m);

Effects: returns s + m.str().

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m,
typename iterator_traits<BidirectionalIterator>::value_type const * s);

Effects: returns m.str() + s.

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (typename iterator_traits<BidirectionalIterator>::value_type const& s,
const sub_match<BidirectionalIterator>& m);

Effects: returns s + m.str().

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m,
typename iterator_traits<BidirectionalIterator>::value_type const& s);

Effects: returns m.str() + s.

template <class BidirectionalIterator>
std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>

operator + (const sub_match<BidirectionalIterator>& m1,
const sub_match<BidirectionalIterator>& m2);

Effects: returns m1.str() + m2.str().

76

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Stream inserter

template <class charT, class traits, class BidirectionalIterator>
basic_ostream<charT, traits>&

operator << (basic_ostream<charT, traits>& os
const sub_match<BidirectionalIterator>& m);

Effects: returns (os << m.str()).

regex_match

#include <boost/regex.hpp>

The algorithm regex_match determines whether a given regular expression matches all of a given character sequence denoted by
a pair of bidirectional-iterators, the algorithm is defined as follows, the main use of this function is data input validation.

Important

Note that the result is true only if the expression matches the whole of the input sequence. If you want to search for an
expression somewhere within the sequence then use regex_search. If you want to match a prefix of the character
string then use regex_search with the flag match_continuous set.

77

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
 match_results<BidirectionalIterator, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

template <class charT, class Allocator, class traits>
bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

template <class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,
 match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

template <class charT, class traits>
bool regex_match(const charT* str,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

template <class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Description

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
 match_results<BidirectionalIterator, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Requires: Type BidirectionalIterator meets the requirements of a Bidirectional Iterator (24.1.4).

Effects: Determines whether there is an exact match between the regular expression e, and all of the character sequence [first, last),
parameter flags (see match_flag_type) is used to control how the expression is matched against the character sequence. Returns
true if such a match exists, false otherwise.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Postconditions: If the function returns false, then the effect on parameter m is undefined, otherwise the effects on parameter m are
given in the table:

78

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueElement

e.mark_count()m.size()

falsem.empty()

firstm.prefix().first

firstm.prefix().last

falsem.prefix().matched

lastm.suffix().first

lastm.suffix().last

falsem.suffix().matched

firstm[0].first

lastm[0].second

true if a full match was found, and false if it was a partial match (found as a result of the match_partial
flag being set).

m[0].matched

For all integers n < m.size(), the start of the sequence that matched sub-expression n. Alternatively,
if sub-expression n did not participate in the match, then last.

m[n].first

For all integers n < m.size(), the end of the sequence that matched sub-expression n. Alternatively,
if sub-expression n did not participate in the match, then last.

m[n].second

For all integers n < m.size(), true if sub-expression n participated in the match, false otherwise.m[n].matched

template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Behaves "as if" by constructing an instance of match_results<BidirectionalIterator> what, and then returning
the result of regex_match(first, last, what, e, flags).

template <class charT, class Allocator, class traits>
bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_match(str, str + char_traits<charT>::length(str), m, e, flags).

template <class ST, class SA, class Allocator,
class charT, class traits>

bool regex_match(const basic_string<charT, ST, SA>& s,
 match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_match(s.begin(), s.end(), m, e, flags).

79

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT, class traits>
bool regex_match(const charT* str,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_match(str, str + char_traits<charT>::length(str), e, flags).

template <class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,

const basic_regex <charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_match(s.begin(), s.end(), e, flags).

Examples

The following example processes an ftp response:

#include <stdlib.h>
#include <boost/regex.hpp>
#include <string>
#include <iostream>

using namespace boost;

regex expression("([0-9]+)(\\-| |$)(.*)");

// process_ftp:
// on success returns the ftp response code, and fills
// msg with the ftp response message.
int process_ftp(const char* response, std::string* msg)
{
 cmatch what;

if(regex_match(response, what, expression))
{

// what[0] contains the whole string
// what[1] contains the response code
// what[2] contains the separator character
// what[3] contains the text message.
if(msg)

 msg->assign(what[3].first, what[3].second);
return std::atoi(what[1].first);

}
// failure did not match
if(msg)

 msg->erase();
return -1;

}

regex_search

#include <boost/regex.hpp>

The algorithm regex_search will search a range denoted by a pair of bidirectional-iterators for a given regular expression. The
algorithm uses various heuristics to reduce the search time by only checking for a match if a match could conceivably start at that
position. The algorithm is defined as follows:

80

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator,
class Allocator, class charT, class traits>

bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
 match_results<BidirectionalIterator, Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

template <class ST, class SA,
class Allocator, class charT, class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
 match_results<

typename basic_string<charT, ST,SA>::const_iterator,
 Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

template<class charT, class Allocator, class traits>
bool regex_search(const charT* str,
 match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

template <class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

template <class charT, class traits>
bool regex_search(const charT* str,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

template<class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Description

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
 match_results<BidirectionalIterator, Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Requires: Type BidirectionalIterator meets the requirements of a Bidirectional Iterator (24.1.4).

Effects: Determines whether there is some sub-sequence within [first,last) that matches the regular expression e, parameter flags is
used to control how the expression is matched against the character sequence. Returns true if such a sequence exists, false otherwise.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Postconditions: If the function returns false, then the effect on parameter m is undefined, otherwise the effects on parameter m are
given in the table:

81

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueElement

e.mark_count()m.size()

falsem.empty()

firstm.prefix().first

m[0].firstm.prefix().last

m.prefix().first != m.prefix().secondm.prefix().matched

m[0].secondm.suffix().first

lastm.suffix().last

m.suffix().first != m.suffix().secondm.suffix().matched

The start of the sequence of characters that matched the regular expressionm[0].first

The end of the sequence of characters that matched the regular expressionm[0].second

true if a full match was found, and false if it was a partial match (found as a result of the match_partial
flag being set).

m[0].matched

For all integers n < m.size(), the start of the sequence that matched sub-expression n. Alternatively,
if sub-expression n did not participate in the match, then last.

m[n].first

For all integers n < m.size(), the end of the sequence that matched sub-expression n. Alternatively,
if sub-expression n did not participate in the match, then last.

m[n].second

For all integers n < m.size(), true if sub-expression n participated in the match, false otherwise.m[n].matched

template <class charT, class Allocator, class traits>
bool regex_search(const charT* str, match_results<const charT*, Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_search(str, str + char_traits<charT>::length(str), m, e, flags).

template <class ST, class SA, class Allocator, class charT,
class traits>

bool regex_search(const basic_string<charT, ST, SA>& s,
 match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_search(s.begin(), s.end(), m, e, flags).

template <class iterator, class charT, class traits>
bool regex_search(iterator first, iterator last,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Behaves "as if" by constructing an instance of match_results<BidirectionalIterator> what, and then returning
the result of regex_search(first, last, what, e, flags).

82

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT, class traits>
bool regex_search(const charT* str

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_search(str, str + char_traits<charT>::length(str), e, flags).

template <class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,

const basic_regex<charT, traits>& e,
 match_flag_type flags = match_default);

Effects: Returns the result of regex_search(s.begin(), s.end(), e, flags).

Examples

The following example, takes the contents of a file in the form of a string, and searches for all the C++ class declarations in the file.
The code will work regardless of the way that std::string is implemented, for example it could easily be modified to work with
the SGI rope class, which uses a non-contiguous storage strategy.

83

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <string>
#include <map>
#include <boost/regex.hpp>

// purpose:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's
typedef std::map<std::string, int, std::less<std::string> > map_type;

boost::regex expression(
"^(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"
"(class|struct)[[:space:]]*"
"(\\<\\w+\\>([[:blank:]]*\\([^)]*\\))?"
"[[:space:]]*)*(\\<\\w*\\>)[[:space:]]*"
"(<[^;:{]+>[[:space:]]*)?(\\{|:[^;\\{()]*\\{)");

void IndexClasses(map_type& m, const std::string& file)
{
 std::string::const_iterator start, end;
 start = file.begin();
 end = file.end();
 boost::match_results<std::string::const_iterator> what;
 boost::match_flag_type flags = boost::match_default;

while(regex_search(start, end, what, expression, flags))
{

// what[0] contains the whole string
// what[5] contains the class name.
// what[6] contains the template specialisation if any.
// add class name and position to map:

 m[std::string(what[5].first, what[5].second)
+ std::string(what[6].first, what[6].second)]

= what[5].first - file.begin();
// update search position:

 start = what[0].second;
// update flags:

 flags |= boost::match_prev_avail;
 flags |= boost::match_not_bob;

}
}

regex_replace

#include <boost/regex.hpp>

The algorithm regex_replace searches through a string finding all the matches to the regular expression: for each match it then
calls match_results<>::format to format the string and sends the result to the output iterator. Sections of text that do not match
are copied to the output unchanged only if the flags parameter does not have the flag format_no_copy set. If the flag
format_first_only is set then only the first occurrence is replaced rather than all occurrences.

84

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator regex_replace(OutputIterator out,
 BidirectionalIterator first,
 BidirectionalIterator last,

const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,

 match_flag_type flags = match_default);

template <class traits, class charT>
basic_string<charT> regex_replace(const basic_string<charT>& s,

const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,

 match_flag_type flags = match_default);

Description

template <class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator regex_replace(OutputIterator out,
 BidirectionalIterator first,
 BidirectionalIterator last,

const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,

 match_flag_type flags = match_default);

Enumerates all the occurences of expression e in the sequence [first, last), replacing each occurence with the string that results by
merging the match found with the format string fmt, and copies the resulting string to out.

If the flag format_no_copy is set in flags then unmatched sections of text are not copied to output.

If the flag format_first_only is set in flags then only the first occurence of e is replaced.

The manner in which the format string fmt is interpretted, along with the rules used for finding matches, are determined by the flags
set in flags: see match_flag_type.

Effects: Constructs an regex_iterator object:

regex_iterator<BidirectionalIterator, charT, traits, Allocator>
 i(first, last, e, flags),

and uses i to enumerate through all of the matches m of type match_results <BidirectionalIterator> that occur within the
sequence [first, last).

If no such matches are found and

!(flags & format_no_copy)

then calls

std::copy(first, last, out).

Otherwise, for each match found, if

!(flags & format_no_copy)

calls

85

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::copy(m.prefix().first, m.prefix().last, out),

and then calls

m.format(out, fmt, flags).

Finally if

!(flags & format_no_copy)

calls

std::copy(last_m.suffix().first, last_m,suffix().last, out)

where last_m is a copy of the last match found.

If flags & format_first_only is non-zero then only the first match found is replaced.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Returns: out.

template <class traits, class charT>
basic_string<charT> regex_replace(const basic_string<charT>& s,

const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,

 match_flag_type flags = match_default);

Effects: Constructs an object basic_string<charT> result, calls regex_replace(back_inserter(result), s.begin(),
s.end(), e, fmt, flags), and then returns result.

Examples

The following example takes C/C++ source code as input, and outputs syntax highlighted HTML code.

86

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <fstream>
#include <sstream>
#include <string>
#include <iterator>
#include <boost/regex.hpp>
#include <fstream>
#include <iostream>

// purpose:
// takes the contents of a file and transform to
// syntax highlighted code in html format

boost::regex e1, e2;
extern const char* expression_text;
extern const char* format_string;
extern const char* pre_expression;
extern const char* pre_format;
extern const char* header_text;
extern const char* footer_text;

void load_file(std::string& s, std::istream& is)
{
 s.erase();
 s.reserve(is.rdbuf()->in_avail());

char c;
while(is.get(c))
{

if(s.capacity() == s.size())
 s.reserve(s.capacity() * 3);
 s.append(1, c);

}
}

int main(int argc, const char** argv)
{

try{
 e1.assign(expression_text);
 e2.assign(pre_expression);

for(int i = 1; i < argc; ++i)
{

 std::cout << "Processing file " << argv[i] << std::endl;
 std::ifstream fs(argv[i]);
 std::string in;
 load_file(in, fs);
 std::string out_name(std::string(argv[i]) + std::string(".htm"));
 std::ofstream os(out_name.c_str());
 os << header_text;

// strip '<' and '>' first by outputting to a
// temporary string stream

 std::ostringstream t(std::ios::out | std::ios::binary);
 std::ostream_iterator<char, char> oi(t);
 boost::regex_replace(oi, in.begin(), in.end(),
 e2, pre_format, boost::match_default | boost::format_all);

// then output to final output stream
// adding syntax highlighting:

 std::string s(t.str());
 std::ostream_iterator<char, char> out(os);
 boost::regex_replace(out, s.begin(), s.end(),
 e1, format_string, boost::match_default | boost::format_all);
 os << footer_text;

}
}
catch(...)

87

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{ return -1; }
return 0;

}

extern const char* pre_expression = "(<)|(>)|(&)|\\r";
extern const char* pre_format = "(?1<)(?2>)(?3&)";

const char* expression_text =
// preprocessor directives: index 1
"(^[[:blank:]]*#(?:[^\\\\\\n]|\\\\[^\\n[:punct:][:word:]]*[\\n[:punct:][:word:]])*)|"
// comment: index 2
"(//[^\\n]*|/*.*?*/)|"
// literals: index 3
"\\<([+-]?(?:(?:0x[[:xdigit:]]+)|(?:(?:[[:digit:]]*\\.)?[[:digit:]]+"
"(?:[eE][+-]?[[:digit:]]+)?))u?(?:(?:int(?:8|16|32|64))|L)?)\\>|"
// string literals: index 4
"('(?:[^\\\\']|\\\\.)*'|\"(?:[^\\\\\"]|\\\\.)*\")|"
// keywords: index 5
"\\<(__asm|__cdecl|__declspec|__export|__far16|__fastcall|__fortran|__import"
"|__pascal|__rtti|__stdcall|_asm|_cdecl|__except|_export|_far16|_fastcall"
"|__finally|_fortran|_import|_pascal|_stdcall|__thread|__try|asm|auto|bool"
"|break|case|catch|cdecl|char|class|const|const_cast|continue|default|delete"
"|do|double|dynamic_cast|else|enum|explicit|extern|false|float|for|friend|goto"
"|if|inline|int|long|mutable|namespace|new|operator|pascal|private|protected"
"|public|register|reinterpret_cast|return|short|signed|sizeof|static|static_cast"
"|struct|switch|template|this|throw|true|try|typedef|typeid|typename|union|unsigned"
"|using|virtual|void|volatile|wchar_t|while)\\>"
;

const char* format_string = "(?1$&)"
"(?2<I>$&</I>)"
"(?3$&)"
"(?4$&)"
"(?5$&)";

const char* header_text =
"<HTML>\n<HEAD>\n"
"<TITLE>Auto-generated html formated source</TITLE>\n"
"<META HTTP-EQUIV=\"Content-Type\" CONTENT=\"text/html; charset=windows-1252\">\n"
"</HEAD>\n"
"<BODY LINK=\"#0000ff\" VLINK=\"#800080\" BGCOLOR=\"#ffffff\">\n"
"<P> </P>\n<PRE>";

const char* footer_text = "</PRE>\n</BODY>\n\n";

regex_iterator
The iterator type regex_iterator will enumerate all of the regular expression matches found in some sequence: dereferencing a
regex_iterator yields a reference to a match_results object.

88

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator,
class charT = iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >

class regex_iterator
{
public:

typedef basic_regex<charT, traits> regex_type;
typedef match_results<BidirectionalIterator> value_type;
typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;

regex_iterator();
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,

const regex_type& re,
 match_flag_type m = match_default);

regex_iterator(const regex_iterator&);
 regex_iterator& operator=(const regex_iterator&);

bool operator==(const regex_iterator&)const;
bool operator!=(const regex_iterator&)const;
const value_type& operator*()const;
const value_type* operator->()const;

 regex_iterator& operator++();
 regex_iterator operator++(int);
};

typedef regex_iterator<const char*> cregex_iterator;
typedef regex_iterator<std::string::const_iterator> sregex_iterator;

#ifndef BOOST_NO_WREGEX
typedef regex_iterator<const wchar_t*> wcregex_iterator;
typedef regex_iterator<std::wstring::const_iterator> wsregex_iterator;
#endif

template <class charT, class traits> regex_iterator<const charT*, charT, traits>
make_regex_iterator(const charT* p, const basic_regex<charT, traits>& e,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
 regex_iterator<typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>

make_regex_iterator(const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,

 regex_constants::match_flag_type m = regex_constants::match_default);

Description

A regex_iterator is constructed from a pair of iterators, and enumerates all occurrences of a regular expression within that iter-
ator range.

regex_iterator();

Effects: constructs an end of sequence regex_iterator.

regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
const regex_type& re,

 match_flag_type m = match_default);

Effects: constructs a regex_iterator that will enumerate all occurrences of the expression re, within the sequence [a,b), and
found using match_flag_type m. The object re must exist for the lifetime of the regex_iterator.

89

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

regex_iterator(const regex_iterator& that);

Effects: constructs a copy of that.

Postconditions: *this == that.

regex_iterator& operator=(const regex_iterator&);

Effects: sets *this equal to those in that.

Postconditions: *this == that.

bool operator==(const regex_iterator& that)const;

Effects: returns true if *this is equal to that.

bool operator!=(const regex_iterator&)const;

Effects: returns !(*this == that).

const value_type& operator*()const;

Effects: dereferencing a regex_iterator object it yields a const reference to a match_results object, whose members are set
as follows:

90

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ValueElement

re.mark_count()(*it).size()

false(*it).empty()

The end of the last match found, or the start of the underlying sequence if this is the first match
enumerated

(*it).prefix().first

The same as the start of the match found: (*it)[0].first(*it).prefix().last

True if the prefix did not match an empty string: (*it).prefix().first != (*it).pre-
fix().second

(*it).prefix().matched

The same as the end of the match found: (*it)[0].second(*it).suffix().first

The end of the underlying sequence.(*it).suffix().last

True if the suffix did not match an empty string: (*it).suffix().first != (*it).suf-
fix().second

(*it).suffix().matched

The start of the sequence of characters that matched the regular expression(*it)[0].first

The end of the sequence of characters that matched the regular expression(*it)[0].second

true if a full match was found, and false if it was a partial match (found as a result of the
match_partial flag being set).

(*it)[0].matched

For all integers n < (*it).size(), the start of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last.

(*it)[n].first

For all integers n < (*it).size(), the end of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last.

(*it)[n].second

For all integers n < (*it).size(), true if sub-expression n participated in the match, false
otherwise.

(*it)[n].matched

For all integers n < (*it).size(), then the distance from the start of the underlying sequence
to the start of sub-expression match n.

(*it).position(n)

const value_type* operator->()const;

Effects: returns &(*this).

regex_iterator& operator++();

Effects: moves the iterator to the next match in the underlying sequence, or the end of sequence iterator if none if found. When the
last match found matched a zero length string, then the regex_iterator will find the next match as follows: if there exists a non-
zero length match that starts at the same location as the last one, then returns it, otherwise starts looking for the next (possibly zero
length) match from one position to the right of the last match.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Returns: *this.

91

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regex_iterator operator++(int);

Effects: constructs a copy result of *this, then calls ++(*this).

Returns: result.

template <class charT, class traits>
regex_iterator<const charT*, charT, traits>
 make_regex_iterator(const charT* p, const basic_regex<charT, traits>& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
regex_iterator<typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>
 make_regex_iterator(const std::basic_string<charT, ST, SA>& p,

const basic_regex<charT, traits>& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

Effects: returns an iterator that enumerates all occurences of expression e in text p using match_flag_type m.

Examples

The following example takes a C++ source file and builds up an index of class names, and the location of that class in the file.

92

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <string>
#include <map>
#include <fstream>
#include <iostream>
#include <boost/regex.hpp>

using namespace std;

// purpose:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's

typedef std::map<std::string, std::string::difference_type, std::less<std::string> > map_type;

const char* re =
// possibly leading whitespace:
"^[[:space:]]*"
// possible template declaration:
"(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"
// class or struct:
"(class|struct)[[:space:]]*"
// leading declspec macros etc:
"("

"\\<\\w+\\>"
"("

"[[:blank:]]*\\([^)]*\\)"
")?"
"[[:space:]]*"

")*"
// the class name
"(\\<\\w*\\>)[[:space:]]*"
// template specialisation parameters
"(<[^;:{]+>)?[[:space:]]*"
// terminate in { or :
"(\\{|:[^;\\{()]*\\{)";

boost::regex expression(re);
map_type class_index;

bool regex_callback(const boost::match_results<std::string::const_iterator>& what)
{

// what[0] contains the whole string
// what[5] contains the class name.
// what[6] contains the template specialisation if any.
// add class name and position to map:

 class_index[what[5].str() + what[6].str()] = what.position(5);
return true;

}

void load_file(std::string& s, std::istream& is)
{
 s.erase();
 s.reserve(is.rdbuf()->in_avail());

char c;
while(is.get(c))
{

if(s.capacity() == s.size())
 s.reserve(s.capacity() * 3);
 s.append(1, c);

}
}

93

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main(int argc, const char** argv)
{
 std::string text;

for(int i = 1; i < argc; ++i)
{

 cout << "Processing file " << argv[i] << endl;
 std::ifstream fs(argv[i]);
 load_file(text, fs);

// construct our iterators:
 boost::sregex_iterator m1(text.begin(), text.end(), expression);
 boost::sregex_iterator m2;
 std::for_each(m1, m2, ®ex_callback);

// copy results:
 cout << class_index.size() << " matches found" << endl;
 map_type::iterator c, d;
 c = class_index.begin();
 d = class_index.end();

while(c != d)
{

 cout << "class \"" << (*c).first << "\" found at index: " << (*c).second << endl;
++c;

}
 class_index.erase(class_index.begin(), class_index.end());

}
return 0;

}

regex_token_iterator
The template class regex_token_iterator is an iterator adapter; that is to say it represents a new view of an existing iterator se-
quence, by enumerating all the occurrences of a regular expression within that sequence, and presenting one or more character sequence
for each match found. Each position enumerated by the iterator is a sub_match object that represents what matched a particular
sub-expression within the regular expression. When class regex_token_iterator is used to enumerate a single sub-expression
with index -1, then the iterator performs field splitting: that is to say it enumerates one character sequence for each section of the
character container sequence that does not match the regular expression specified.

94

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class BidirectionalIterator,
class charT = iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >

class regex_token_iterator
{
public:

typedef basic_regex<charT, traits> regex_type;
typedef sub_match<BidirectionalIterator> value_type;
typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;

regex_token_iterator();
regex_token_iterator(BidirectionalIterator a,

 BidirectionalIterator b,
const regex_type& re,
int submatch = 0,

 match_flag_type m = match_default);
regex_token_iterator(BidirectionalIterator a,

 BidirectionalIterator b,
const regex_type& re,
const std::vector<int>& submatches,

 match_flag_type m = match_default);
template <std::size_t N>
regex_token_iterator(BidirectionalIterator a,

 BidirectionalIterator b,
const regex_type& re,
const int (&submatches)[N],

 match_flag_type m = match_default);
regex_token_iterator(const regex_token_iterator&);

 regex_token_iterator& operator=(const regex_token_iterator&);
bool operator==(const regex_token_iterator&)const;
bool operator!=(const regex_token_iterator&)const;
const value_type& operator*()const;
const value_type* operator->()const;

 regex_token_iterator& operator++();
 regex_token_iterator operator++(int);
};

typedef regex_token_iterator<const char*> cregex_token_iterator;
typedef regex_token_iterator<std::string::const_iterator> sregex_token_iterator;
#ifndef BOOST_NO_WREGEX
typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator;
typedef regex_token_iterator<<std::wstring::const_iterator> wsregex_token_iterator;
#endif

template <class charT, class traits>
regex_token_iterator<const charT*, charT, traits>

make_regex_token_iterator(
const charT* p,
const basic_regex<charT, traits>& e,
int submatch = 0,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
regex_token_iterator<typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>

make_regex_token_iterator(
const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
int submatch = 0,

 regex_constants::match_flag_type m = regex_constants::match_default);

95

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT, class traits, std::size_t N>
regex_token_iterator<const charT*, charT, traits>
make_regex_token_iterator(

const charT* p,
const basic_regex<charT, traits>& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA, std::size_t N>
regex_token_iterator<typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>

make_regex_token_iterator(
const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits>
regex_token_iterator<const charT*, charT, traits>

make_regex_token_iterator(
const charT* p,
const basic_regex<charT, traits>& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
regex_token_iterator<

typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>
make_regex_token_iterator(

const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

Description

regex_token_iterator();

Effects: constructs an end of sequence iterator.

regex_token_iterator(BidirectionalIterator a,
 BidirectionalIterator b,

const regex_type& re,
int submatch = 0,

 match_flag_type m = match_default);

Preconditions: !re.empty(). Object re shall exist for the lifetime of the iterator constructed from it.

Effects: constructs a regex_token_iterator that will enumerate one string for each regular expression match of the expression
re found within the sequence [a,b), using match flags m (see match_flag_type). The string enumerated is the sub-expression
submatch for each match found; if submatch is -1, then enumerates all the text sequences that did not match the expression re (that
is to performs field splitting).

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

96

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regex_token_iterator(BidirectionalIterator a,
 BidirectionalIterator b,

const regex_type& re,
const std::vector<int>& submatches,

 match_flag_type m = match_default);

Preconditions: submatches.size() && !re.empty(). Object re shall exist for the lifetime of the iterator constructed from it.

Effects: constructs a regex_token_iterator that will enumerate submatches.size() strings for each regular expression match
of the expression re found within the sequence [a,b), using match flags m (see match_flag_type). For each match found one string
will be enumerated for each sub-expression index contained within submatches vector; if submatches[0] is -1, then the first string
enumerated for each match will be all of the text from end of the last match to the start of the current match, in addition there will
be one extra string enumerated when no more matches can be found: from the end of the last match found, to the end of the underlying
sequence.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

template <std::size_t N>
regex_token_iterator(BidirectionalIterator a,
 BidirectionalIterator b,

const regex_type& re,
const int (&submatches)[R],

 match_flag_type m = match_default);

Preconditions: !re.empty(). Object re shall exist for the lifetime of the iterator constructed from it.

Effects: constructs a regex_token_iterator that will enumerate R strings for each regular expression match of the expression
re found within the sequence [a,b), using match flags m (see match_flag_type). For each match found one string will be enumerated
for each sub-expression index contained within the submatches array; if submatches[0] is -1, then the first string enumerated for
each match will be all of the text from end of the last match to the start of the current match, in addition there will be one extra string
enumerated when no more matches can be found: from the end of the last match found, to the end of the underlying sequence.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

regex_token_iterator(const regex_token_iterator& that);

Effects: constructs a copy of that.

Postconditions: *this == that.

regex_token_iterator& operator=(const regex_token_iterator& that);

Effects: sets *this to be equal to that.

Postconditions: *this == that.

bool operator==(const regex_token_iterator&)const;

Effects: returns true if *this is the same position as that.

97

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool operator!=(const regex_token_iterator&)const;

Effects: returns !(*this == that).

const value_type& operator*()const;

Effects: returns the current character sequence being enumerated.

const value_type* operator->()const;

Effects: returns &(*this).

regex_token_iterator& operator++();

Effects: Moves on to the next character sequence to be enumerated.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Returns: *this.

regex_token_iterator& operator++(int);

Effects: constructs a copy result of *this, then calls ++(*this).

Returns: result.

98

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT, class traits>
regex_token_iterator<const charT*, charT, traits>
 make_regex_token_iterator(

const charT* p,
const basic_regex<charT, traits>& e,
int submatch = 0,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
regex_token_iterator<typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>
 make_regex_token_iterator(

const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
int submatch = 0,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, std::size_t N>
regex_token_iterator<const charT*, charT, traits>
make_regex_token_iterator(

const charT* p,
const basic_regex<charT, traits>& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA, std::size_t N>
regex_token_iterator<

typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>
 make_regex_token_iterator(

const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits>
regex_token_iterator<const charT*, charT, traits>
 make_regex_token_iterator(

const charT* p,
const basic_regex<charT, traits>& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class traits, class ST, class SA>
regex_token_iterator<

typename std::basic_string<charT, ST, SA>::const_iterator, charT, traits>
 make_regex_token_iterator(

const std::basic_string<charT, ST, SA>& p,
const basic_regex<charT, traits>& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

Effects: returns a regex_token_iterator that enumerates one sub_match for each value in submatch for each occurrence of
regular expression e in string p, matched using match_flag_type m.

Examples

The following example takes a string and splits it into a series of tokens:

99

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/regex.hpp>

using namespace std;

int main(int argc)
{
 string s;

do{
if(argc == 1)
{

 cout << "Enter text to split (or \"quit\" to exit): ";
 getline(cin, s);

if(s == "quit") break;
}
else

 s = "This is a string of tokens";

 boost::regex re("\\s+");
 boost::sregex_token_iterator i(s.begin(), s.end(), re, -1);
 boost::sregex_token_iterator j;

unsigned count = 0;
while(i != j)
{

 cout << *i++ << endl;
 count++;

}
 cout << "There were " << count << " tokens found." << endl;

}while(argc == 1);
return 0;

}

The following example takes a html file and outputs a list of all the linked files:

100

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <fstream>
#include <iostream>
#include <iterator>
#include <boost/regex.hpp>

boost::regex e("<\\s*A\\s+[^>]*href\\s*=\\s*\"([^\"]*)\"",
 boost::regex::normal | boost::regbase::icase);

void load_file(std::string& s, std::istream& is)
{
 s.erase();

//
// attempt to grow string buffer to match file size,
// this doesn't always work...

 s.reserve(is.rdbuf()->in_avail());
char c;
while(is.get(c))
{

// use logarithmic growth stategy, in case
// in_avail (above) returned zero:
if(s.capacity() == s.size())

 s.reserve(s.capacity() * 3);
 s.append(1, c);

}
}

int main(int argc, char** argv)
{
 std::string s;

int i;
for(i = 1; i < argc; ++i)
{

 std::cout << "Findings URL's in " << argv[i] << ":" << std::endl;
 s.erase();
 std::ifstream is(argv[i]);
 load_file(s, is);
 boost::sregex_token_iterator i(s.begin(), s.end(), e, 1);
 boost::sregex_token_iterator j;

while(i != j)
{

 std::cout << *i++ << std::endl;
}

}
//
// alternative method:
// test the array-literal constructor, and split out the whole
// match as well as $1....
//
for(i = 1; i < argc; ++i)
{

 std::cout << "Findings URL's in " << argv[i] << ":" << std::endl;
 s.erase();
 std::ifstream is(argv[i]);
 load_file(s, is);

const int subs[] = {1, 0,};
 boost::sregex_token_iterator i(s.begin(), s.end(), e, subs);
 boost::sregex_token_iterator j;

while(i != j)
{

101

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 std::cout << *i++ << std::endl;
}

}

return 0;
}

bad_expression

Synopsis

#include <boost/pattern_except.hpp>

The class regex_error defines the type of objects thrown as exceptions to report errors during the conversion from a string repres-
enting a regular expression to a finite state machine.

namespace boost{

class regex_error : public std::runtime_error
{
public:

explicit regex_error(const std::string& s, regex_constants::error_type err, std::ptrdiff_t pos);
explicit regex_error(boost::regex_constants::error_type err);

 boost::regex_constants::error_type code()const;
 std::ptrdiff_t position()const;
};

typedef regex_error bad_pattern; // for backwards compatibility
typedef regex_error bad_expression; // for backwards compatibility

} // namespace boost

Description

regex_error(const std::string& s, regex_constants::error_type err, std::ptrdiff_t pos);
regex_error(boost::regex_constants::error_type err);

Effects: Constructs an object of class regex_error.

boost::regex_constants::error_type code()const;

Effects: returns the error code that represents parsing error that occurred.

std::ptrdiff_t position()const;

Effects: returns the location in the expression where parsing stopped.

Footnotes: the choice of std::runtime_error as the base class for regex_error is moot; depending upon how the library is
used exceptions may be either logic errors (programmer supplied expressions) or run time errors (user supplied expressions). The
library previously used bad_pattern and bad_expression for errors, these have been replaced by the single class regex_error
to keep the library in synchronization with the Technical Report on C++ Library Extensions.

102

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

syntax_option_type

syntax_option_type Synopsis

Type syntax_option_type is an implementation specific bitmask type that controls how a regular expression string is to be inter-
preted. For convenience note that all the constants listed here, are also duplicated within the scope of class template basic_regex.

namespace std{ namespace regex_constants{

typedef implementation-specific-bitmask-type syntax_option_type;

// these flags are standardized:
static const syntax_option_type normal;
static const syntax_option_type ECMAScript = normal;
static const syntax_option_type JavaScript = normal;
static const syntax_option_type JScript = normal;
static const syntax_option_type perl = normal;
static const syntax_option_type basic;
static const syntax_option_type sed = basic;
static const syntax_option_type extended;
static const syntax_option_type awk;
static const syntax_option_type grep;
static const syntax_option_type egrep;
static const syntax_option_type icase;
static const syntax_option_type nosubs;
static const syntax_option_type optimize;
static const syntax_option_type collate;

//
// The remaining options are specific to Boost.Regex:
//

// Options common to both Perl and POSIX regular expressions:
static const syntax_option_type newline_alt;
static const syntax_option_type no_except;
static const syntax_option_type save_subexpression_location;

// Perl specific options:
static const syntax_option_type no_mod_m;
static const syntax_option_type no_mod_s;
static const syntax_option_type mod_s;
static const syntax_option_type mod_x;
static const syntax_option_type no_empty_expressions;

// POSIX extended specific options:
static const syntax_option_type no_escape_in_lists;
static const syntax_option_type no_bk_refs;

// POSIX basic specific options:
static const syntax_option_type no_escape_in_lists;
static const syntax_option_type no_char_classes;

103

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const syntax_option_type no_intervals;
static const syntax_option_type bk_plus_qm;
static const syntax_option_type bk_vbar;

} // namespace regex_constants
} // namespace std

Overview of syntax_option_type

The type syntax_option_type is an implementation specific bitmask type (see C++ standard 17.3.2.1.2). Setting its elements has
the effects listed in the table below, a valid value of type syntax_option_type will always have exactly one of the elements
normal, basic, extended, awk, grep, egrep, sed, literal or perl set.

Note that for convenience all the constants listed here are duplicated within the scope of class template basic_regex, so you can
use any of:

boost::regex_constants::constant_name

or

boost::regex::constant_name

or

boost::wregex::constant_name

in an interchangeable manner.

Options for Perl Regular Expressions

One of the following must always be set for perl regular expressions:

Effect when setStandardizedElement

Specifies that the grammar recognized by the regular expression engine uses its normal se-
mantics: that is the same as that given in the ECMA-262, ECMAScript Language Specification,
Chapter 15 part 10, RegExp (Regular Expression) Objects (FWD.1).

This is functionally identical to the Perl regular expression syntax.

Boost.Regex also recognizes all of the perl-compatible (?...) extensions in this mode.

YesECMAScript

As above.Noperl

As above.Nonormal

As above.NoJavaScript

As above.NoJScript

The following options may also be set when using perl-style regular expressions:

104

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect when setStandardizedElement

Specifies that matching of regular expressions against a character container sequence
shall be performed without regard to case.

Yesicase

Specifies that when a regular expression is matched against a character container se-
quence, then no sub-expression matches are to be stored in the supplied match_res-
ults structure.

Yesnosubs

Specifies that the regular expression engine should pay more attention to the speed
with which regular expressions are matched, and less to the speed with which regular
expression objects are constructed. Otherwise it has no detectable effect on the program
output. This currently has no effect for Boost.Regex.

Yesoptimize

Specifies that character ranges of the form [a-b] should be locale sensitive.Yescollate

Specifies that the \n character has the same effect as the alternation operator |. Allows
newline separated lists to be used as a list of alternatives.

Nonewline_alt

Prevents basic_regex from throwing an exception when an invalid expression is
encountered.

Nono_except

Normally Boost.Regex behaves as if the Perl m-modifier is on: so the assertions ^ and
$ match after and before embedded newlines respectively, setting this flags is equivalent
to prefixing the expression with (?-m).

Nono_mod_m

Normally whether Boost.Regex will match "." against a newline character is determined
by the match flag match_dot_not_newline. Specifying this flag is equivalent to
prefixing the expression with (?-s) and therefore causes "." not to match a newline
character regardless of whether match_not_dot_newline is set in the match flags.

Nono_mod_s

Normally whether Boost.Regex will match "." against a newline character is determined
by the match flag match_dot_not_newline. Specifying this flag is equivalent to
prefixing the expression with (?s) and therefore causes "." to match a newline character
regardless of whether match_not_dot_newline is set in the match flags.

Nomod_s

Turns on the perl x-modifier: causes unescaped whitespace in the expression to be ig-
nored.

Nomod_x

When set then empty expressions/alternatives are prohibited.Nono_empty_expressions

When set then the locations of individual sub-expressions within the original regular
expression string can be accessed via the subexpression() member function of
basic_regex.

Nos a v e _ s u b e x p r e s -
sion_location

Options for POSIX Extended Regular Expressions

Exactly one of the following must always be set for POSIX extended regular expressions:

105

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect when setStandard-
ized

Element

Specifies that the grammar recognized by the regular expression engine is the same as that used by
POSIX extended regular expressions in IEEE Std 1003.1-2001, Portable Operating System Interface
(POSIX), Base Definitions and Headers, Section 9, Regular Expressions (FWD.1).

Refer to the POSIX extended regular expression guide for more information.

In addition some perl-style escape sequences are supported (The POSIX standard specifies that only
"special" characters may be escaped, all other escape sequences result in undefined behavior).

Yesextended

Specifies that the grammar recognized by the regular expression engine is the same as that used by
POSIX utility grep when given the -E option in IEEE Std 1003.1-2001, Portable Operating System
Interface (POSIX), Shells and Utilities, Section 4, Utilities, grep (FWD.1).

That is to say, the same as POSIX extended syntax, but with the newline character acting as an altern-
ation character in addition to "|".

Yesegrep

Specifies that the grammar recognized by the regular expression engine is the same as that used by
POSIX utility awk in IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX), Shells
and Utilities, Section 4, awk (FWD.1).

That is to say: the same as POSIX extended syntax, but with escape sequences in character classes
permitted.

In addition some perl-style escape sequences are supported (actually the awk syntax only requires \a
\b \t \v \f \n and \r to be recognised, all other Perl-style escape sequences invoke undefined behavior
according to the POSIX standard, but are in fact recognised by Boost.Regex).

Yesawk

The following options may also be set when using POSIX extended regular expressions:

106

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect when setStandardizedElement

Specifies that matching of regular expressions against a character container sequence
shall be performed without regard to case.

Yesicase

Specifies that when a regular expression is matched against a character container se-
quence, then no sub-expression matches are to be stored in the supplied match_res-
ults structure.

Yesnosubs

Specifies that the regular expression engine should pay more attention to the speed
with which regular expressions are matched, and less to the speed with which regular
expression objects are constructed. Otherwise it has no detectable effect on the program
output. This currently has no effect for Boost.Regex.

Yesoptimize

Specifies that character ranges of the form [a-b] should be locale sensitive. This bit
is on by default for POSIX-Extended regular expressions, but can be unset to force
ranges to be compared by code point only.

Yescollate

Specifies that the \n character has the same effect as the alternation operator |. Allows
newline separated lists to be used as a list of alternatives.

Nonewline_alt

When set this makes the escape character ordinary inside lists, so that [\b] would
match either '\' or 'b'. This bit is on by default for POSIX-Extended regular expressions,
but can be unset to force escapes to be recognised inside lists.

Nono_escape_in_lists

When set then backreferences are disabled. This bit is on by default for POSIX-Exten-
ded regular expressions, but can be unset to support for backreferences on.

Nono_bk_refs

Prevents basic_regex from throwing an exception when an invalid expression is
encountered.

Nono_except

When set then the locations of individual sub-expressions within the original regular
expression string can be accessed via the subexpression() member function of
basic_regex.

Nos a v e _ s u b e x p r e s -
sion_location

Options for POSIX Basic Regular Expressions

Exactly one of the following must always be set for POSIX basic regular expressions:

Effect When SetStandardizedElement

Specifies that the grammar recognized by the regular expression engine is the same as that used
by POSIX basic regular expressions in IEEE Std 1003.1-2001, Portable Operating System Interface
(POSIX), Base Definitions and Headers, Section 9, Regular Expressions (FWD.1).

Yesbasic

As Above.Nosed

Specifies that the grammar recognized by the regular expression engine is the same as that used
by POSIX utility grep in IEEE Std 1003.1-2001, Portable Operating System Interface (POSIX
), Shells and Utilities, Section 4, Utilit\ies, grep (FWD.1).

That is to say, the same as POSIX basic syntax, but with the newline character acting as an altern-
ation character; the expression is treated as a newline separated list of alternatives.

Yesgrep

Specifies that the grammar recognised is the superset of the POSIX-Basic syntax used by the
emacs program.

Noemacs

107

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The following options may also be set when using POSIX basic regular expressions:

Effect when setStandardizedElement

Specifies that matching of regular expressions against a character container sequence
shall be performed without regard to case.

Yesicase

Specifies that when a regular expression is matched against a character container
sequence, then no sub-expression matches are to be stored in the supplied
match_results structure.

Yesnosubs

Specifies that the regular expression engine should pay more attention to the speed
with which regular expressions are matched, and less to the speed with which regular
expression objects are constructed. Otherwise it has no detectable effect on the
program output. This currently has no effect for Boost.Regex.

Yesoptimize

Specifies that character ranges of the form [a-b] should be locale sensitive. This
bit is on by default for POSIX-Basic regular expressions, but can be unset to force
ranges to be compared by code point only.

Yescollate

Specifies that the \n character has the same effect as the alternation operator |. Allows
newline separated lists to be used as a list of alternatives. This bit is already set, if
you use the grep option.

Nonewline_alt

When set then character classes such as [[:alnum:]] are not allowed.Nono_char_classes

When set this makes the escape character ordinary inside lists, so that [\b] would
match either '\' or 'b'. This bit is on by default for POSIX-basic regular expressions,
but can be unset to force escapes to be recognised inside lists.

Nono_escape_in_lists

When set then bounded repeats such as a{2,3} are not permitted.Nono_intervals

When set then \? acts as a zero-or-one repeat operator, and \+ acts as a one-or-more
repeat operator.

Nobk_plus_qm

When set then \| acts as the alternation operator.Nobk_vbar

Prevents basic_regex from throwing an exception when an invalid expression is
encountered.

Nono_except

When set then the locations of individual sub-expressions within the original regular
expression string can be accessed via the subexpression() member function of
basic_regex.

Nosave_subexpression_loc-
ation

Options for Literal Strings

The following must always be set to interpret the expression as a string literal:

Effect when setStandardizedElement

Treat the string as a literal (no special characters).Yesliteral

The following options may also be combined with the literal flag:

108

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect when setStandardizedElement

Specifies that matching of regular expressions against a character container sequence shall be
performed without regard to case.

Yesicase

Specifies that the regular expression engine should pay more attention to the speed with which
regular expressions are matched, and less to the speed with which regular expression objects are
constructed. Otherwise it has no detectable effect on the program output. This currently has no
effect for Boost.Regex.

Yesoptimize

match_flag_type
The type match_flag_type is an implementation specific bitmask type (see C++ std 17.3.2.1.2) that controls how a regular expression
is matched against a character sequence. The behavior of the format flags is described in more detail in the format syntax guide.

namespace boost{ namespace regex_constants{

typedef implemenation-specific-bitmask-type match_flag_type;

static const match_flag_type match_default = 0;
static const match_flag_type match_not_bob;
static const match_flag_type match_not_eob;
static const match_flag_type match_not_bol;
static const match_flag_type match_not_eol;
static const match_flag_type match_not_bow;
static const match_flag_type match_not_eow;
static const match_flag_type match_any;
static const match_flag_type match_not_null;
static const match_flag_type match_continuous;
static const match_flag_type match_partial;
static const match_flag_type match_single_line;
static const match_flag_type match_prev_avail;
static const match_flag_type match_not_dot_newline;
static const match_flag_type match_not_dot_null;
static const match_flag_type match_posix;
static const match_flag_type match_perl;
static const match_flag_type match_nosubs;
static const match_flag_type match_extra;

static const match_flag_type format_default = 0;
static const match_flag_type format_sed;
static const match_flag_type format_perl;
static const match_flag_type format_literal;

static const match_flag_type format_no_copy;
static const match_flag_type format_first_only;
static const match_flag_type format_all;

} // namespace regex_constants
} // namespace boost

Description

The type match_flag_type is an implementation specific bitmask type (see C++ std 17.3.2.1.2). When matching a regular expression
against a sequence of characters [first, last) then setting its elements has the effects listed in the table below:

109

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect if setElement

Specifies that matching of regular expressions proceeds without any modification of the normal rules
used in ECMA-262, ECMAScript Language Specification, Chapter 15 part 10, RegExp (Regular
Expression) Objects (FWD.1)

match_default

Specifies that the expressions "\A" and "\`" should not match against the sub-sequence [first,first).match_not_bob

Specifies that the expressions "\'", "\z" and "\Z" should not match against the sub-sequence [last,last).match_not_eob

Specifies that the expression "^" should not be matched against the sub-sequence [first,first).match_not_bol

Specifies that the expression "$" should not be matched against the sub-sequence [last,last).match_not_eol

Specifies that the expressions "\<" and "\b" should not be matched against the sub-sequence [first,first).match_not_bow

Specifies that the expressions "\>" and "\b" should not be matched against the sub-sequence [last,last).match_not_eow

Specifies that if more than one match is possible then any match is an acceptable result: this will still
find the leftmost match, but may not find the "best" match at that position. Use this flag if you care
about the speed of matching, but don't care what was matched (only whether there is one or not).

match_any

Specifies that the expression can not be matched against an empty sequence.match_not_null

Specifies that the expression must match a sub-sequence that begins at first.match_continuous

Specifies that if no match can be found, then it is acceptable to return a match [from, last) such that
from!= last, if there could exist some longer sequence of characters [from,to) of which [from,last) is

match_partial

a prefix, and which would result in a full match. This flag is used when matching incomplete or very
long texts, see the partial matches documentation for more information.

Instructs the matching engine to retain all available capture information; if a capturing group is repeated
then information about every repeat is available via match_results::captures() or sub_match_captures().

match_extra

Equivalent to the inverse of Perl's m/ modifier; prevents ^ from matching after an embedded newline
character (so that it only matches at the start of the text being matched), and $ from matching before
an embedded newline (so that it only matches at the end of the text being matched).

match_single_line

Specifies that --first is a valid iterator position, when this flag is set then the flags match_not_bol and
match_not_bow are ignored by the regular expression algorithms (RE.7) and iterators (RE.8).

match_prev_avail

Specifies that the expression "." does not match a newline character. This is the inverse of Perl's s/
modifier.

match_not_dot_newline

Specifies that the expression "." does not match a character null '\0'.match_not_dot_null

Specifies that the expression should be matched according to the POSIX leftmost-longest rule, regard-
less of what kind of expression was compiled. Be warned that these rules do not work well with many
Perl-specific features such as non-greedy repeats.

match_posix

Specifies that the expression should be matched according to the Perl matching rules, irrespective of
what kind of expression was compiled.

match_perl

Makes the expression behave as if it had no marked subexpressions, no matter how many capturing
groups are actually present. The match_results class will only contain information about the
overall match, and not any sub-expressions.

match_nosubs

110

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effect if setElement

Specifies that when a regular expression match is to be replaced by a new string, that the new string
is constructed using the rules used by the ECMAScript replace function in ECMA-262, ECMAScript
Language Specification, Chapter 15 part 5.4.11 String.prototype.replace. (FWD.1).

This is functionally identical to the Perl format string rules.

In addition during search and replace operations then all non-overlapping occurrences of the regular
expression are located and replaced, and sections of the input that did not match the expression, are
copied unchanged to the output string.

format_default

Specifies that when a regular expression match is to be replaced by a new string, that the new string
is constructed using the rules used by the Unix sed utility in IEEE Std 1003.1-2001, Portable Operating
SystemInterface (POSIX), Shells and Utilities. See also the Sed Format string reference.

format_sed

Specifies that when a regular expression match is to be replaced by a new string, that the new string
is constructed using the same rules as Perl 5.

format_perl

Specifies that when a regular expression match is to be replaced by a new string, that the new string
is a literal copy of the replacement text.

format_literal

Specifies that all syntax extensions are enabled, including conditional (?ddexpression1:expression2)
replacements: see the format string guide for more details.

format_all

When specified during a search and replace operation, then sections of the character container sequence
being searched that do match the regular expression, are not copied to the output string.

format_no_copy

When specified during a search and replace operation, then only the first occurrence of the regular
expression is replaced.

format_first_only

error_type

Synopsis

Type error type represents the different types of errors that can be raised by the library when parsing a regular expression.

111

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost{ namespace regex_constants{

typedef implementation-specific-type error_type;

static const error_type error_collate;
static const error_type error_ctype;
static const error_type error_escape;
static const error_type error_backref;
static const error_type error_brack;
static const error_type error_paren;
static const error_type error_brace;
static const error_type error_badbrace;
static const error_type error_range;
static const error_type error_space;
static const error_type error_badrepeat;
static const error_type error_complexity;
static const error_type error_stack;
static const error_type error_bad_pattern;

} // namespace regex_constants
} // namespace boost

Description

The type error_type is an implementation-specific enumeration type that may take one of the following values:

MeaningConstant

An invalid collating element was specified in a [[.name.]] block.error_collate

An invalid character class name was specified in a [[:name:]] block.error_ctype

An invalid or trailing escape was encountered.error_escape

A back-reference to a non-existant marked sub-expression was encountered.error_backref

An invalid character set [...] was encountered.error_brack

Mismatched '(' and ')'.error_paren

Mismatched '{' and '}'.error_brace

Invalid contents of a {...} block.error_badbrace

A character range was invalid, for example [d-a].error_range

Out of memory.error_space

An attempt to repeat something that can not be repeated - for example a*+error_badrepeat

The expression became too complex to handle.error_complexity

Out of program stack space.error_stack

Other unspecified errors.error_bad_pattern

112

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regex_traits

namespace boost{

template <class charT, class implementationT = sensible_default_choice>
struct regex_traits : public implementationT
{
 regex_traits() : implementationT() {}
};

template <class charT>
struct c_regex_traits;

template <class charT>
class cpp_regex_traits;

template <class charT>
class w32_regex_traits;

} // namespace boost

Description

The class regex_traits is just a thin wrapper around an actual implemention class, which may be one of:

• c_regex_traits: this class is deprecated, it wraps the C locale, and is used as the default implementation when the platform is
not Win32, and the C++ locale is not available.

• cpp_regex_traits: the default traits class for non-Win32 platforms, allows the regex class to be imbued with a std::locale instance.

• w32_regex_traits: the default traits class implementation on Win32 platforms, allows the regex class to be imbued with an
LCID.

The default behavior can be altered by defining one of the following configuration macros in boost/regex/user.hpp

• BOOST_REGEX_USE_C_LOCALE: makes c_regex_traits the default.

• BOOST_REGEX_USE_CPP_LOCALE: makes cpp_regex_traits the default.

All these traits classes fulfil the traits class requirements.

Interfacing With Non-Standard String Types
The Boost.Regex algorithms and iterators are all iterator-based, with convenience overloads of the algorithms provided that convert
standard library string types to iterator pairs internally. If you want to search a non-standard string type then the trick is to convert
that string into an iterator pair: so far I haven't come across any string types that can't be handled this way, even if they're not officially
iterator based. Certainly any string type that provides access to it's internal buffer, along with it's length, can be converted into a pair
of pointers (which can be used as iterators).

Some non-standard string types are sufficiently common that wappers have been provided for them already: currently this includes
the ICU and MFC string class types.

Working With Unicode and ICU String Types

Introduction to using Regex with ICU

The header:

113

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/regex/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

<boost/regex/icu.hpp>

contains the data types and algorithms necessary for working with regular expressions in a Unicode aware environment.

In order to use this header you will need the ICU library, and you will need to have built the Boost.Regex library with ICU support
enabled.

The header will enable you to:

• Create regular expressions that treat Unicode strings as sequences of UTF-32 code points.

• Create regular expressions that support various Unicode data properties, including character classification.

• Transparently search Unicode strings that are encoded as either UTF-8, UTF-16 or UTF-32.

Unicode regular expression types

Header <boost/regex/icu.hpp> provides a regular expression traits class that handles UTF-32 characters:

class icu_regex_traits;

and a regular expression type based upon that:

typedef basic_regex<UChar32,icu_regex_traits> u32regex;

The type u32regex is regular expression type to use for all Unicode regular expressions; internally it uses UTF-32 code points, but
can be created from, and used to search, either UTF-8, or UTF-16 encoded strings as well as UTF-32 ones.

The constructors, and assign member functions of u32regex, require UTF-32 encoded strings, but there are a series of overloaded
algorithms called make_u32regex which allow regular expressions to be created from UTF-8, UTF-16, or UTF-32 encoded strings:

template <class InputIterator>
u32regex make_u32regex(InputIterator i,
 InputIterator j,
 boost::regex_constants::syntax_option_type opt);

Effects: Creates a regular expression object from the iterator sequence [i,j). The character encoding of the sequence is determined
based upon sizeof(*i): 1 implies UTF-8, 2 implies UTF-16, and 4 implies UTF-32.

u32regex make_u32regex(const char* p,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the Null-terminated UTF-8 characater sequence p.

u32regex make_u32regex(const unsigned char* p,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the Null-terminated UTF-8 characater sequence p.

114

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ibm.com/software/globalization/icu/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

u32regex make_u32regex(const wchar_t* p,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the Null-terminated characater sequence p. The character encoding of the sequence
is determined based upon sizeof(wchar_t): 1 implies UTF-8, 2 implies UTF-16, and 4 implies UTF-32.

u32regex make_u32regex(const UChar* p,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the Null-terminated UTF-16 characater sequence p.

template<class C, class T, class A>
u32regex make_u32regex(const std::basic_string<C, T, A>& s,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the string s. The character encoding of the string is determined based upon sizeof(C):
1 implies UTF-8, 2 implies UTF-16, and 4 implies UTF-32.

u32regex make_u32regex(const UnicodeString& s,
 boost::regex_constants::syntax_option_type opt

= boost::regex_constants::perl);

Effects: Creates a regular expression object from the UTF-16 encoding string s.

Unicode Regular Expression Algorithms

The regular expression algorithms regex_match, regex_search and regex_replace all expect that the character sequence upon
which they operate, is encoded in the same character encoding as the regular expression object with which they are used. For Unicode
regular expressions that behavior is undesirable: while we may want to process the data in UTF-32 "chunks", the actual data is much
more likely to encoded as either UTF-8 or UTF-16. Therefore the header <boost/regex/icu.hpp> provides a series of thin wrappers
around these algorithms, called u32regex_match, u32regex_search, and u32regex_replace. These wrappers use iterator-
adapters internally to make external UTF-8 or UTF-16 data look as though it's really a UTF-32 sequence, that can then be passed
on to the "real" algorithm.

u32regex_match

For each regex_match algorithm defined by <boost/regex.hpp>, then <boost/regex/icu.hpp> defines an overloaded algorithm
that takes the same arguments, but which is called u32regex_match, and which will accept UTF-8, UTF-16 or UTF-32 encoded
data, as well as an ICU UnicodeString as input.

Example: match a password, encoded in a UTF-16 UnicodeString:

//
// Find out if *password* meets our password requirements,
// as defined by the regular expression *requirements*.
//
bool is_valid_password(const UnicodeString& password, const UnicodeString& requirements)
{

return boost::u32regex_match(password, boost::make_u32regex(requirements));
}

Example: match a UTF-8 encoded filename:

115

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//
// Extract filename part of a path from a UTF-8 encoded std::string and return the result
// as another std::string:
//
std::string get_filename(const std::string& path)
{
 boost::u32regex r = boost::make_u32regex("(?:\\A|.*\\\\)([^\\\\]+)");
 boost::smatch what;

if(boost::u32regex_match(path, what, r))
{

// extract $1 as a std::string:
return what.str(1);

}
else
{

throw std::runtime_error("Invalid pathname");
}

}

u32regex_search

For each regex_search algorithm defined by <boost/regex.hpp>, then <boost/regex/icu.hpp> defines an overloaded al-
gorithm that takes the same arguments, but which is called u32regex_search, and which will accept UTF-8, UTF-16 or UTF-32
encoded data, as well as an ICU UnicodeString as input.

Example: search for a character sequence in a specific language block:

UnicodeString extract_greek(const UnicodeString& text)
{

// searches through some UTF-16 encoded text for a block encoded in Greek,
// this expression is imperfect, but the best we can do for now - searching
// for specific scripts is actually pretty hard to do right.
//
// Here we search for a character sequence that begins with a Greek letter,
// and continues with characters that are either not-letters ([^[:L*:]])
// or are characters in the Greek character block ([\\x{370}-\\x{3FF}]).
//

 boost::u32regex r = boost::make_u32regex(
 L"[\\x{370}-\\x{3FF}](?:[^[:L*:]]|[\\x{370}-\\x{3FF}])*");
 boost::u16match what;

if(boost::u32regex_search(text, what, r))
{

// extract $0 as a UnicodeString:
return UnicodeString(what[0].first, what.length(0));

}
else
{

throw std::runtime_error("No Greek found!");
}

}

u32regex_replace

For each regex_replace algorithm defined by <boost/regex.hpp>, then <boost/regex/icu.hpp> defines an overloaded
algorithm that takes the same arguments, but which is called u32regex_replace, and which will accept UTF-8, UTF-16 or UTF-
32 encoded data, as well as an ICU UnicodeString as input. The input sequence and the format string specifier passed to the algorithm,
can be encoded independently (for example one can be UTF-8, the other in UTF-16), but the result string / output iterator argument
must use the same character encoding as the text being searched.

Example: Credit card number reformatting:

116

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//
// Take a credit card number as a string of digits,
// and reformat it as a human readable string with "-"
// separating each group of four digit;,
// note that we're mixing a UTF-32 regex, with a UTF-16
// string and a UTF-8 format specifier, and it still all
// just works:
//
const boost::u32regex e = boost::make_u32regex(

"\\A(\\d{3,4})[-]?(\\d{4})[-]?(\\d{4})[-]?(\\d{4})\\z");
const char* human_format = "$1-$2-$3-$4";

UnicodeString human_readable_card_number(const UnicodeString& s)
{

return boost::u32regex_replace(s, e, human_format);
}

Unicode Aware Regex Iterators

u32regex_iterator

Type u32regex_iterator is in all respects the same as regex_iterator except that since the regular expression type is always
u32regex it only takes one template parameter (the iterator type). It also calls u32regex_search internally, allowing it to interface
correctly with UTF-8, UTF-16, and UTF-32 data:

template <class BidirectionalIterator>
class u32regex_iterator
{

// for members see regex_iterator
};

typedef u32regex_iterator<const char*> utf8regex_iterator;
typedef u32regex_iterator<const UChar*> utf16regex_iterator;
typedef u32regex_iterator<const UChar32*> utf32regex_iterator;

In order to simplify the construction of a u32regex_iterator from a string, there are a series of non-member helper functions
called make_u32regex_iterator:

117

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

u32regex_iterator<const char*>
 make_u32regex_iterator(const char* s,

const u32regex& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_iterator<const wchar_t*>
 make_u32regex_iterator(const wchar_t* s,

const u32regex& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_iterator<const UChar*>
 make_u32regex_iterator(const UChar* s,

const u32regex& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class Traits, class Alloc>
u32regex_iterator<typename std::basic_string<charT, Traits, Alloc>::const_iterator>
 make_u32regex_iterator(const std::basic_string<charT, Traits, Alloc>& s,

const u32regex& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_iterator<const UChar*>
 make_u32regex_iterator(const UnicodeString& s,

const u32regex& e,
 regex_constants::match_flag_type m = regex_constants::match_default);

Each of these overloads returns an iterator that enumerates all occurrences of expression e, in text s, using match_flags m.

Example: search for international currency symbols, along with their associated numeric value:

void enumerate_currencies(const std::string& text)
{

// enumerate and print all the currency symbols, along
// with any associated numeric values:
const char* re =

"([[:Sc:]][[:Cf:][:Cc:][:Z*:]]*)?"
"([[:Nd:]]+(?:[[:Po:]][[:Nd:]]+)?)?"
"(?(1)"

"|(?(2)"
"[[:Cf:][:Cc:][:Z*:]]*"

")"
"[[:Sc:]]"

")";
 boost::u32regex r = boost::make_u32regex(re);
 boost::u32regex_iterator<std::string::const_iterator>
 i(boost::make_u32regex_iterator(text, r)), j;

while(i != j)
{

 std::cout << (*i)[0] << std::endl;
++i;

}
}

Calling

enumerate_currencies(" $100.23 or £198.12 ");

Yields the output:

118

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

$100.23
£198.12

Provided of course that the input is encoded as UTF-8.

u32regex_token_iterator

Type u32regex_token_iterator is in all respects the same as regex_token_iterator except that since the regular expression
type is always u32regex it only takes one template parameter (the iterator type). It also calls u32regex_search internally, allowing
it to interface correctly with UTF-8, UTF-16, and UTF-32 data:

template <class BidirectionalIterator>
class u32regex_token_iterator
{

// for members see regex_token_iterator
};

typedef u32regex_token_iterator<const char*> utf8regex_token_iterator;
typedef u32regex_token_iterator<const UChar*> utf16regex_token_iterator;
typedef u32regex_token_iterator<const UChar32*> utf32regex_token_iterator;

In order to simplify the construction of a u32regex_token_iterator from a string, there are a series of non-member helper
functions called make_u32regex_token_iterator:

119

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

u32regex_token_iterator<const char*>
 make_u32regex_token_iterator(

const char* s,
const u32regex& e,
int sub,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const wchar_t*>
 make_u32regex_token_iterator(

const wchar_t* s,
const u32regex& e,
int sub,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UChar* s,
const u32regex& e,
int sub,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class Traits, class Alloc>
u32regex_token_iterator<typename std::basic_string<charT, Traits, Alloc>::const_iterator>
 make_u32regex_token_iterator(

const std::basic_string<charT, Traits, Alloc>& s,
const u32regex& e,
int sub,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UnicodeString& s,
const u32regex& e,
int sub,

 regex_constants::match_flag_type m = regex_constants::match_default);

Each of these overloads returns an iterator that enumerates all occurrences of marked sub-expression sub in regular expression e,
found in text s, using match_flags m.

120

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <std::size_t N>
u32regex_token_iterator<const char*>
 make_u32regex_token_iterator(

const char* p,
const u32regex& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <std::size_t N>
u32regex_token_iterator<const wchar_t*>
 make_u32regex_token_iterator(

const wchar_t* p,
const u32regex& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <std::size_t N>
u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UChar* p,
const u32regex& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class Traits, class Alloc, std::size_t N>
u32regex_token_iterator<typename std::basic_string<charT, Traits, Alloc>::const_iterator>
 make_u32regex_token_iterator(

const std::basic_string<charT, Traits, Alloc>& p,
const u32regex& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

template <std::size_t N>
u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UnicodeString& s,
const u32regex& e,
const int (&submatch)[N],

 regex_constants::match_flag_type m = regex_constants::match_default);

Each of these overloads returns an iterator that enumerates one sub-expression for each submatch in regular expression e, found in
text s, using match_flags m.

121

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

u32regex_token_iterator<const char*>
 make_u32regex_token_iterator(

const char* p,
const u32regex& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const wchar_t*>
 make_u32regex_token_iterator(

const wchar_t* p,
const u32regex& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UChar* p,
const u32regex& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

template <class charT, class Traits, class Alloc>
u32regex_token_iterator<typename std::basic_string<charT, Traits, Alloc>::const_iterator>
 make_u32regex_token_iterator(

const std::basic_string<charT, Traits, Alloc>& p,
const u32regex& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

u32regex_token_iterator<const UChar*>
 make_u32regex_token_iterator(

const UnicodeString& s,
const u32regex& e,
const std::vector<int>& submatch,

 regex_constants::match_flag_type m = regex_constants::match_default);

Each of these overloads returns an iterator that enumerates one sub-expression for each submatch in regular expression e, found in
text s, using match_flags m.

Example: search for international currency symbols, along with their associated numeric value:

122

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void enumerate_currencies2(const std::string& text)
{

// enumerate and print all the currency symbols, along
// with any associated numeric values:
const char* re =

"([[:Sc:]][[:Cf:][:Cc:][:Z*:]]*)?"
"([[:Nd:]]+(?:[[:Po:]][[:Nd:]]+)?)?"
"(?(1)"

"|(?(2)"
"[[:Cf:][:Cc:][:Z*:]]*"

")"
"[[:Sc:]]"

")";
 boost::u32regex r = boost::make_u32regex(re);
 boost::u32regex_token_iterator<std::string::const_iterator>
 i(boost::make_u32regex_token_iterator(text, r, 1)), j;

while(i != j)
{

 std::cout << *i << std::endl;
++i;

}
}

Using Boost Regex With MFC Strings

Introduction to Boost.Regex and MFC Strings

The header <boost/regex/mfc.hpp> provides Boost.Regex support for MFC string types: note that this support requires Visual
Studio .NET (Visual C++ 7) or later, where all of the MFC and ATL string types are based around the CSimpleStringT class template.

In the following documentation, whenever you see CSimpleStringT<charT>, then you can substitute any of the following MFC/ATL
types (all of which inherit from CSimpleStringT):

CString
CStringA
CStringW
CAtlString
CAtlStringA
CAtlStringW
CStringT<charT,traits>
CFixedStringT<charT,N>
CSimpleStringT<charT>

Regex Types Used With MFC Strings

The following typedefs are provided for the convenience of those working with TCHAR's:

typedef basic_regex<TCHAR> tregex;
typedef match_results<TCHAR const*> tmatch;
typedef regex_iterator<TCHAR const*> tregex_iterator;
typedef regex_token_iterator<TCHAR const*> tregex_token_iterator;

If you are working with explicitly narrow or wide characters rather than TCHAR, then use the regular Boost.Regex types regex
and wregex instead.

Regular Expression Creation From an MFC String

The following helper function is available to assist in the creation of a regular expression from an MFC/ATL string type:

123

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class charT>
basic_regex<charT>
 make_regex(const ATL::CSimpleStringT<charT>& s,

::boost::regex_constants::syntax_option_type f = boost::regex_constants::normal);

Effects: returns basic_regex<charT>(s.GetString(), s.GetString() + s.GetLength(), f);

Overloaded Algorithms For MFC String Types

For each regular expression algorithm that's overloaded for a std::basic_string argument, there is also one overloaded for the
MFC/ATL string types. These algorithm signatures all look a lot more complex than they actually are, but for completeness here
they are anyway:

regex_match

There are two overloads, the first reports what matched in a match_results structure, the second does not.

All the usual caveats for regex_match apply, in particular the algorithm will only report a successful match if all of the input text
matches the expression, if this isn't what you want then use regex_search instead.

template <class charT, class T, class A>
bool regex_match(

const ATL::CSimpleStringT<charT>& s,
 match_results<const B*, A>& what,

const basic_regex<charT, T>& e,
 boost::regex_constants::match_flag_type f = boost::regex_constants::match_default);

Effects: returns ::boost::regex_match(s.GetString(), s.GetString() + s.GetLength(), what, e, f);

Example:

//
// Extract filename part of a path from a CString and return the result
// as another CString:
//
CString get_filename(const CString& path)
{
 boost::tregex r(__T("(?:\\A|.*\\\\)([^\\\\]+)"));
 boost::tmatch what;

if(boost::regex_match(path, what, r))
{

// extract $1 as a CString:
return CString(what[1].first, what.length(1));

}
else
{

throw std::runtime_error("Invalid pathname");
}

}

regex_match (second overload)

template <class charT, class T>
bool regex_match(

const ATL::CSimpleStringT<charT>& s,
const basic_regex<B, T>& e,

 boost::regex_constants::match_flag_type f = boost::regex_constants::match_default)

Effects: returns ::boost::regex_match(s.GetString(), s.GetString() + s.GetLength(), e, f);

124

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example:

//
// Find out if *password* meets our password requirements,
// as defined by the regular expression *requirements*.
//
bool is_valid_password(const CString& password, const CString& requirements)
{

return boost::regex_match(password, boost::make_regex(requirements));
}

regex_search

There are two additional overloads for regex_search, the first reports what matched the second does not:

template <class charT, class A, class T>
bool regex_search(const ATL::CSimpleStringT<charT>& s,
 match_results<const charT*, A>& what,

const basic_regex<charT, T>& e,
 boost::regex_constants::match_flag_type f = boost::regex_constants::match_default)

Effects: returns ::boost::regex_search(s.GetString(), s.GetString() + s.GetLength(), what, e, f);

Example: Postcode extraction from an address string.

CString extract_postcode(const CString& address)
{

// searches throw address for a UK postcode and returns the result,
// the expression used is by Phil A. on www.regxlib.com:

 boost::tregex r(__T("^(([A-Z]{1,2}[0-9]{1,2})|([A-Z]{1,2}[0-9][A-Z]))\\s?([0-9][A-Z]{2})$"));
 boost::tmatch what;

if(boost::regex_search(address, what, r))
{

// extract $0 as a CString:
return CString(what[0].first, what.length());

}
else
{

throw std::runtime_error("No postcode found");
}

}

regex_search (second overload)

template <class charT, class T>
inline bool regex_search(const ATL::CSimpleStringT<charT>& s,

const basic_regex<charT, T>& e,
 boost::regex_constants::match_flag_type f = boost::regex_constants::match_default)

Effects: returns ::boost::regex_search(s.GetString(), s.GetString() + s.GetLength(), e, f);

regex_replace

There are two additional overloads for regex_replace, the first sends output to an output iterator, while the second creates a new
string

125

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class OutputIterator, class BidirectionalIterator, class traits, class
 charT>
OutputIterator regex_replace(OutputIterator out,
 BidirectionalIterator first,
 BidirectionalIterator last,

const basic_regex<charT, traits>& e,
const ATL::CSimpleStringT<charT>& fmt,

 match_flag_type flags = match_default)

Effects: returns ::boost::regex_replace(out, first, last, e, fmt.GetString(), flags);

template <class traits, charT>
ATL::CSimpleStringT<charT> regex_replace(const ATL::CSimpleStringT<charT>& s,

const basic_regex<charT, traits>& e,
const ATL::CSimpleStringT<charT>& fmt,

 match_flag_type flags = match_default)

Effects: returns a new string created using regex_replace, and the same memory manager as string s.

Example:

//
// Take a credit card number as a string of digits,
// and reformat it as a human readable string with "-"
// separating each group of four digits:
//
const boost::tregex e(__T("\\A(\\d{3,4})[-]?(\\d{4})[-]?(\\d{4})[-]?(\\d{4})\\z"));
const CString human_format = __T("$1-$2-$3-$4");

CString human_readable_card_number(const CString& s)
{

return boost::regex_replace(s, e, human_format);
}

Iterating Over the Matches Within An MFC String

The following helper functions are provided to ease the conversion from an MFC/ATL string to a regex_iterator or
regex_token_iterator:

regex_iterator creation helper

template <class charT>
regex_iterator<charT const*>
 make_regex_iterator(

const ATL::CSimpleStringT<charT>& s,
const basic_regex<charT>& e,
::boost::regex_constants::match_flag_type f = boost::regex_constants::match_default);

Effects: returns regex_iterator(s.GetString(), s.GetString() + s.GetLength(), e, f);

Example:

126

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void enumerate_links(const CString& html)
{

// enumerate and print all the links in some HTML text,
// the expression used is by Andew Lee on www.regxlib.com:

 boost::tregex r(
 __T("href=[\"\']((http:\\/\\/|\\.\\/|\\/)?\\w+"

"(\\.\\w+)*(\\/\\w+(\\.\\w+)?)*"
"(\\/|\\?\\w*=\\w*(&\\w*=\\w*)*)?)[\"\']"));

 boost::tregex_iterator i(boost::make_regex_iterator(html, r)), j;
while(i != j)
{

 std::cout << (*i)[1] << std::endl;
++i;

}
}

regex_token_iterator creation helpers

template <class charT>
regex_token_iterator<charT const*>
 make_regex_token_iterator(

const ATL::CSimpleStringT<charT>& s,
const basic_regex<charT>& e,
int sub = 0,
::boost::regex_constants::match_flag_type f = boost::regex_constants::match_default);

Effects: returns regex_token_iterator(s.GetString(), s.GetString() + s.GetLength(), e, sub, f);

template <class charT>
regex_token_iterator<charT const*>
 make_regex_token_iterator(

const ATL::CSimpleStringT<charT>& s,
const basic_regex<charT>& e,
const std::vector<int>& subs,
::boost::regex_constants::match_flag_type f = boost::regex_constants::match_default);

Effects: returns regex_token_iterator(s.GetString(), s.GetString() + s.GetLength(), e, subs, f);

template <class charT, std::size_t N>
regex_token_iterator<charT const*>
 make_regex_token_iterator(

const ATL::CSimpleStringT<charT>& s,
const basic_regex<charT>& e,
const int (& subs)[N],
::boost::regex_constants::match_flag_type f = boost::regex_constants::match_default);

Effects: returns regex_token_iterator(s.GetString(), s.GetString() + s.GetLength(), e, subs, f);

Example:

127

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void enumerate_links2(const CString& html)
{

// enumerate and print all the links in some HTML text,
// the expression used is by Andew Lee on www.regxlib.com:

 boost::tregex r(
 __T("href=[\"\']((http:\\/\\/|\\.\\/|\\/)?\\w+"

"(\\.\\w+)*(\\/\\w+(\\.\\w+)?)*"
"(\\/|\\?\\w*=\\w*(&\\w*=\\w*)*)?)[\"\']"));

 boost::tregex_token_iterator i(boost::make_regex_token_iterator(html, r, 1)), j;
while(i != j)
{

 std::cout << *i << std::endl;
++i;

}
}

POSIX Compatible C API's

Note

this is an abridged reference to the POSIX API functions, these are provided for compatibility with other libraries,
rather than as an API to be used in new code (unless you need access from a language other than C++). This version
of these functions should also happily coexist with other versions, as the names used are macros that expand to the
actual function names.

#include <boost/cregex.hpp>

or:

#include <boost/regex.h>

The following functions are available for users who need a POSIX compatible C library, they are available in both Unicode and
narrow character versions, the standard POSIX API names are macros that expand to one version or the other depending upon
whether UNICODE is defined or not.

Important

Note that all the symbols defined here are enclosed inside namespace boost when used in C++ programs, unless you
use #include <boost/regex.h> instead - in which case the symbols are still defined in namespace boost, but are
made available in the global namespace as well.

The functions are defined as:

128

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

extern "C" {

struct regex_tA;
struct regex_tW;

int regcompA(regex_tA*, const char*, int);
unsigned int regerrorA(int, const regex_tA*, char*, unsigned int);
int regexecA(const regex_tA*, const char*, unsigned int, regmatch_t*, int);
void regfreeA(regex_tA*);

int regcompW(regex_tW*, const wchar_t*, int);
unsigned int regerrorW(int, const regex_tW*, wchar_t*, unsigned int);
int regexecW(const regex_tW*, const wchar_t*, unsigned int, regmatch_t*, int);
void regfreeW(regex_tW*);

#ifdef UNICODE
#define regcomp regcompW
#define regerror regerrorW
#define regexec regexecW
#define regfree regfreeW
#define regex_t regex_tW
#else
#define regcomp regcompA
#define regerror regerrorA
#define regexec regexecA
#define regfree regfreeA
#define regex_t regex_tA
#endif
}

All the functions operate on structure regex_t, which exposes two public members:

MeaningMember

This is filled in by regcomp and indicates the number of sub-expressions contained in the regular
expression.

unsigned int re_nsub

Points to the end of the expression to compile when the flag REG_PEND is set.const TCHAR* re_endp

Note

regex_t is actually a #define - it is either regex_tA or regex_tW depending upon whether UNICODE is defined or
not, TCHAR is either char or wchar_t again depending upon the macro UNICODE.

regcomp

regcomp takes a pointer to a regex_t, a pointer to the expression to compile and a flags parameter which can be a combination of:

129

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

MeaningFlag

Compiles modern regular expressions. Equivalent to regbase::char_classes | regbase::in-
tervals | regbase::bk_refs.

REG_EXTENDED

Compiles basic (obsolete) regular expression syntax. Equivalent to regbase::char_classes
| regbase::intervals | regbase::limited_ops | regbase::bk_braces | reg-

base::bk_parens | regbase::bk_refs.

REG_BASIC

All characters are ordinary, the expression is a literal string.REG_NOSPEC

Compiles for matching that ignores character case.REG_ICASE

Has no effect in this library.REG_NOSUB

When this flag is set a dot does not match the newline character.REG_NEWLINE

When this flag is set the re_endp parameter of the regex_t structure must point to the end of the
regular expression to compile.

REG_PEND

When this flag is set then locale dependent collation for character ranges is turned off.REG_NOCOLLATE

When this flag is set, then escape sequences are permitted in bracket expressions (character sets).REG_ESCAPE_IN_LISTS

When this flag is set then the newline character is equivalent to the alternation operator |.REG_NEWLINE_ALT

Compiles Perl like regular expressions.REG_PERL

A shortcut for awk-like behavior: REG_EXTENDED | REG_ESCAPE_IN_LISTSREG_AWK

A shortcut for grep like behavior: REG_BASIC | REG_NEWLINE_ALTREG_GREP

A shortcut for egrep like behavior: REG_EXTENDED | REG_NEWLINE_ALTREG_EGREP

regerror

regerror takes the following parameters, it maps an error code to a human readable string:

MeaningParameter

The error code.int code

The regular expression (can be null).const regex_t* e

The buffer to fill in with the error message.char* buf

The length of buf.unsigned int buf_size

If the error code is OR'ed with REG_ITOA then the message that results is the printable name of the code rather than a message, for
example "REG_BADPAT". If the code is REG_ATIO then e must not be null and e->re_pend must point to the printable name of
an error code, the return value is then the value of the error code. For any other value of code, the return value is the number of
characters in the error message, if the return value is greater than or equal to buf_size then regerror will have to be called again with
a larger buffer.

130

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regexec

regexec finds the first occurrence of expression e within string buf. If len is non-zero then *m is filled in with what matched the
regular expression, m[0] contains what matched the whole string, m[1] the first sub-expression etc, see regmatch_t in the header file
declaration for more details. The eflags parameter can be a combination of:

MeaningFlag

Parameter buf does not represent the start of a line.REG_NOTBOL

Parameter buf does not terminate at the end of a line.REG_NOTEOL

The string searched starts at buf + pmatch[0].rm_so and ends at buf + pmatch[0].rm_eo.REG_STARTEND

regfree

regfree frees all the memory that was allocated by regcomp.

Concepts

charT Requirements

Type charT used a template argument to class template basic_regex, must have a trivial default constructor, copy constructor,
assignment operator, and destructor. In addition the following requirements must be met for objects; c of type charT, c1 and c2 of
type charT const, and i of type int:

Assertion / Note / Pre- / Post-conditionReturn typeExpression

Default constructor (must be trivial).charTcharT c

Copy constructor (must be trivial).charTcharT c(c1)

Assignment operator (must be trivial).charTc1 = c2

true if c1 has the same value as c2.boolc1 == c2

true if c1 and c2 are not equal.boolc1 != c2

true if the value of c1 is less than c2.boolc1 < c2

true if the value of c1 is greater than c2.boolc1 > c2

true if c1 is less than or equal to c2.boolc1 <= c2

true if c1 is greater than or equal to c2.boolc1 >= c2

charT must be convertible to an integral type.

Note: type charT is not required to support this operation, if the traits class used supports the
full Boost-specific interface, rather than the minimal standardised-interface (see traits class
requirements below).

intintmax_t i = c1

charT must be constructable from an integral type.charTcharT c(i);

131

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Traits Class Requirements

There are two sets of requirements for the traits template argument to basic_regex: a mininal interface (which is part of the
regex standardization proposal), and an optional Boost-specific enhanced interface.

Minimal requirements.

In the following table X denotes a traits class defining types and functions for the character container type charT; u is an object of
type X; v is an object of type const X; p is a value of type const charT*; I1 and I2 are Input Iterators; c is a value of type const
charT; s is an object of type X::string_type; cs is an object of type const X::string_type; b is a value of type bool; I is
a value of type int; F1 and F2 are values of type const charT*; and loc is an object of type X::locale_type.

132

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Assertion / Note Pre / Post conditionReturn typeExpression

The character container type used in the implementation of class template
basic_regex.

charTX::char_type

An unsigned integer type, capable of holding the length of a null-termin-
ated string of charT's.

X::size_type

s t d : : b a -
sic_string<charT> or
std::vector<charT>

X::string_type

A copy constructible type that represents the locale used by the traits class.Implementation definedX::locale_type

A bitmask type representing a particular character classification. Multiple
values of this type can be bitwise-or'ed together to obtain a new valid
value.

Implementation definedX::char_class_type

Yields the smallest i such that p[i] == 0. Complexity is linear in i.X::size_typeX::length(p)

Returns a character such that for any character d that is to be considered
equivalent to c then v.translate(c) == v.translate(d).

X::char_typev.translate(c)

For all characters C that are to be considered equivalent to c when com-
parisons are to be performed without regard to case, then v.trans-
late_nocase(c) == v.translate_nocase(C).

X::char_typev.translate_nocase(c)

Returns a sort key for the character sequence designated by the iterator
range [F1, F2) such that if the character sequence [G1, G2) sorts before

X::string_typev.transform(F1, F2)

the character sequence [H1, H2) then v.transform(G1, G2) < v.trans-
form(H1, H2).

Returns a sort key for the character sequence designated by the iterator
range [F1, F2) such that if the character sequence [G1, G2) sorts before

X::string_typev.transform_primary(F1,
F2)

the character sequence [H1, H2) when character case is not considered
then v.transform_primary(G1, G2) < v.transform_primary(H1, H2).

Converts the character sequence designated by the iterator range [F1,F2)
into a bitmask type that can subsequently be passed to isctype. Values

X::char_class_typev.lookup_classname(F1,
F2)

returned from lookup_classname can be safely bitwise or'ed together.
Returns 0 if the character sequence is not the name of a character class
recognized by X. The value returned shall be independent of the case of
the characters in the sequence.

Returns a sequence of characters that represents the collating element
consisting of the character sequence designated by the iterator range [F1,

X::string_typev.lookup_collatename(F1,
F2)

F2). Returns an empty string if the character sequence is not a valid col-
lating element.

Returns true if character c is a member of the character class designated
by the iterator range [F1, F2), false otherwise.

boolv.isctype(c, v.lookup_class-
name (F1, F2))

Returns the value represented by the digit c in base I if the character c is
a valid digit in base I; otherwise returns -1. [Note: the value of I will only
be 8, 10, or 16. -end note]

intv.value(c, I)

Imbues u with the locale loc, returns the previous locale used by u if any.X::locale_typeu.imbue(loc)

133

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Assertion / Note Pre / Post conditionReturn typeExpression

Returns the current locale used by v if any.X::locale_typev.getloc()

Additional Optional Requirements

The following additional requirements are strictly optional, however in order for basic_regex to take advantage of these additional
interfaces, all of the following requirements must be met; basic_regex will detect the presence or absense of the member
boost_extensions_tag and configure itself appropriately.

Assertion / Note Pre / Post conditionResultExpression

When present, all of the extensions listed in this table must be present.An unspecified type.X : : b o o s t _ e x t e n -
sions_tag

Returns a symbolic value of type regex_constants::syntax_type that signifies
the meaning of character c within the regular expression grammar.

regex_constants: :syn-
tax_type

v.syntax_type(c)

Returns a symbolic value of type regex_constants::escape_syntax_type,
that signifies the meaning of character c within the regular expression
grammar, when c has been preceded by an escape character. Precondition:
if b is the character preceding c in the expression being parsed then:
v.syntax_type(b) == syntax_escape

r egex_cons t an t s : : e s -
cape_syntax_type

v . e s c a p e _ s y n -
tax_type(c)

Returns a character d such that: for any character d that is to be considered
equivalent to c then v.translate(c,false)==v.trans-

late(d,false). Likewise for all characters C that are to be considered
equivalent to c when comparisons are to be performed without regard to
case, then v.translate(c,true)==v.translate(C,true).

X::char_typev.translate(c, b)

Behaves as follows: if p == q or if *p is not a digit character then returns
-1. Otherwise performs formatted numeric input on the sequence [p,q) and
returns the result as an int. Postcondition: either p == q or *p is a non-digit
character.

An integer type capable of
holding either a charT or
an int.

v.toi(I1, I2, i)

Returns a human readable error string for the error condition i, where i is
one of the values enumerated by type regex_constants::error_type. If the
value I is not recognized then returns the string "Unknown error" or a loc-
alized equivalent.

std::stringv.error_string(I)

Converts c to lower case, used for Perl-style \l and \L formating operations.X::char_typev.tolower(c)

Converts c to upper case, used for Perl-style \u and \U formating operations.X::char_typev.toupper(c)

Iterator Requirements

The regular expression algorithms (and iterators) take all require a Bidirectional-Iterator.

Deprecated Interfaces

regex_format (Deprecated)

The algorithm regex_format is deprecated; new code should use match_results<>::format instead. Existing code will con-
tinue to compile, the following documentation is taken from the previous version of Boost.Regex and will not be further updated:

134

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Algorithm regex_format

#include <boost/regex.hpp>

The algorithm regex_format takes the results of a match and creates a new string based upon a format string, regex_format can
be used for search and replace operations:

template <class OutputIterator, class iterator, class Allocator, class charT>
OutputIterator regex_format(OutputIterator out,

const match_results<iterator, Allocator>& m,
const charT* fmt,

 match_flag_type flags = 0);
template <class OutputIterator, class iterator, class Allocator, class charT>
OutputIterator regex_format(OutputIterator out,

const match_results<iterator, Allocator>& m,
const std::basic_string<charT>& fmt,

 match_flag_type flags = 0);

The library also defines the following convenience variation of regex_format, which returns the result directly as a string, rather
than outputting to an iterator.

Note

This version may not be available, or may be available in a more limited form, depending upon your compilers capab-
ilities

template <class iterator, class Allocator, class charT>
std::basic_string<charT> regex_format

(const match_results<iterator, Allocator>& m,
const charT* fmt,

 match_flag_type flags = 0);

template <class iterator, class Allocator, class charT>
std::basic_string<charT> regex_format

(const match_results<iterator, Allocator>& m,
const std::basic_string<charT>& fmt,

 match_flag_type flags = 0);

Parameters to the main version of the function are passed as follows:

DescriptionParameter

An output iterator type, the output string is sent to this iterator. Typically this would
be a std::ostream_iterator.

OutputIterator out

An instance of match_results obtained from one of the matching algorithms
above, and denoting what matched.

const match_results<iterator, Al-

locator>& m

A format string that determines how the match is transformed into the new string.const charT* fmt

Optional flags which describe how the format string is to be interpreted.unsigned flags

Format flags are described under match_flag_type.

The format string syntax (and available options) is described more fully under format strings.

135

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regex_grep (Deprecated)

The algorithm regex_grep is deprecated in favor of regex_iterator which provides a more convenient and standard library
friendly interface.

The following documentation is taken unchanged from the previous boost release, and will not be updated in future.

#include <boost/regex.hpp>

regex_grep allows you to search through a bidirectional-iterator range and locate all the (non-overlapping) matches with a given
regular expression. The function is declared as:

template <class Predicate, class iterator, class charT, class traits>
unsigned int regex_grep(Predicate foo,
 iterator first,
 iterator last,

const basic_regex<charT, traits>& e,
 boost::match_flag_type flags = match_default)

The library also defines the following convenience versions, which take either a const charT*, or a const std::ba-
sic_string<>& in place of a pair of iterators.

template <class Predicate, class charT, class traits>
unsigned int regex_grep(Predicate foo,

const charT* str,
const basic_regex<charT, traits>& e,

 boost::match_flag_type flags = match_default);

template <class Predicate, class ST, class SA, class charT, class traits>
unsigned int regex_grep(Predicate foo,

const std::basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,

 boost::match_flag_type flags = match_default);

The parameters for the primary version of regex_grep have the following meanings:

foo: A predicate function object or function pointer, see below for more information.

first: The start of the range to search.

last: The end of the range to search.

e: The regular expression to search for.

flags: The flags that determine how matching is carried out, one of the match_flags enumerators.

The algorithm finds all of the non-overlapping matches of the expression e, for each match it fills a match_results<iterator>
structure, which contains information on what matched, and calls the predicate foo, passing the match_results<iterator> as a
single argument. If the predicate returns true, then the grep operation continues, otherwise it terminates without searching for further
matches. The function returns the number of matches found.

The general form of the predicate is:

136

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct grep_predicate
{

bool operator()(const match_results<iterator_type>& m);
};

For example the regular expression "a*b" would find one match in the string "aaaaab" and two in the string "aaabb".

Remember this algorithm can be used for a lot more than implementing a version of grep, the predicate can be and do anything that
you want, grep utilities would output the results to the screen, another program could index a file based on a regular expression and
store a set of bookmarks in a list, or a text file conversion utility would output to file. The results of one regex_grep can even be
chained into another regex_grep to create recursive parsers.

The algorithm may throw std::runtime_error if the complexity of matching the expression against an N character string begins
to exceed O(N2), or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive
mode), or if the matcher exhausts it's permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Example: convert the example from regex_search to use regex_grep instead:

#include <string>
#include <map>
#include <boost/regex.hpp>

// IndexClasses:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's
typedef std::map<std::string, int, std::less<std::string> > map_type;

const char* re =
// possibly leading whitespace:
"^[[:space:]]*"
// possible template declaration:
"(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"
// class or struct:
"(class|struct)[[:space:]]*"
// leading declspec macros etc:
"("

"\\<\\w+\\>"
"("

"[[:blank:]]*\\([^)]*\\)"
")?"
"[[:space:]]*"

")*"
// the class name
"(\\<\\w*\\>)[[:space:]]*"
// template specialisation parameters
"(<[^;:{]+>)?[[:space:]]*"
// terminate in { or :
"(\\{|:[^;\\{()]*\\{)";

boost::regex expression(re);
class IndexClassesPred
{
 map_type& m;
 std::string::const_iterator base;
public:
 IndexClassesPred(map_type& a, std::string::const_iterator b) : m(a), base(b) {}

bool operator()(const smatch& what)
{

// what[0] contains the whole string
// what[5] contains the class name.

137

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// what[6] contains the template specialisation if any.
// add class name and position to map:

 m[std::string(what[5].first, what[5].second) + std::string(what[6].first, what[6].second)] =
 what[5].first - base;

return true;
}

};
void IndexClasses(map_type& m, const std::string& file)
{
 std::string::const_iterator start, end;
 start = file.begin();
 end = file.end();
 regex_grep(IndexClassesPred(m, start), start, end, expression);
}

Example: Use regex_grep to call a global callback function:

#include <string>
#include <map>
#include <boost/regex.hpp>

// purpose:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's
typedef std::map<std::string, int, std::less<std::string> > map_type;

const char* re =
// possibly leading whitespace:
"^[[:space:]]*"
// possible template declaration:
"(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"
// class or struct:
"(class|struct)[[:space:]]*"
// leading declspec macros etc:
"("

"\\<\\w+\\>"
"("

"[[:blank:]]*\\([^)]*\\)"
")?"
"[[:space:]]*"

")*"
// the class name
"(\\<\\w*\\>)[[:space:]]*"
// template specialisation parameters
"(<[^;:{]+>)?[[:space:]]*"
// terminate in { or :
"(\\{|:[^;\\{()]*\\{)";

boost::regex expression(re);
map_type class_index;
std::string::const_iterator base;

bool grep_callback(const boost::smatch& what)
{

// what[0] contains the whole string
// what[5] contains the class name.
// what[6] contains the template specialisation if any.
// add class name and position to map:

 class_in↵
dex[std::string(what[5].first, what[5].second) + std::string(what[6].first, what[6].second)] =
 what[5].first - base;

138

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

return true;
}
void IndexClasses(const std::string& file)
{
 std::string::const_iterator start, end;
 start = file.begin();
 end = file.end();
 base = start;
 regex_grep(grep_callback, start, end, expression, match_default);
}

Example: use regex_grep to call a class member function, use the standard library adapters std::mem_fun and std::bind1st
to convert the member function into a predicate:

#include <string>
#include <map>
#include <boost/regex.hpp>
#include <functional>
// purpose:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's

typedef std::map<std::string, int, std::less<std::string> > map_type;
class class_index
{
 boost::regex expression;
 map_type index;
 std::string::const_iterator base;

bool grep_callback(boost::smatch what);
public:

void IndexClasses(const std::string& file);
 class_index()

: index(),
 expression("^(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"

"(class|struct)[[:space:]]*(\\<\\w+\\>([[:blank:]]*\\([^)]*\\))?"
"[[:space:]]*)*(\\<\\w*\\>)[[:space:]]*(<[^;:{]+>[[:space:]]*)?"
"(\\{|:[^;\\{()]*\\{)"
){}

};
bool class_index::grep_callback(boost::smatch what)
{

// what[0] contains the whole string
// what[5] contains the class name.
// what[6] contains the template specialisation if any.
// add class name and position to map:

 index[std::string(what[5].first, what[5].second) + std::string(what[6].first, what[6].second)] =
 what[5].first - base;

return true;
}

void class_index::IndexClasses(const std::string& file)
{
 std::string::const_iterator start, end;
 start = file.begin();
 end = file.end();

139

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 base = start;
 regex_grep(std::bind1st(std::mem_fun(&class_index::grep_callback), this),
 start,
 end,
 expression);
}

Finally, C++ Builder users can use C++ Builder's closure type as a callback argument:

#include <string>
#include <map>
#include <boost/regex.hpp>
#include <functional>
// purpose:
// takes the contents of a file in the form of a string
// and searches for all the C++ class definitions, storing
// their locations in a map of strings/int's

typedef std::map<std::string, int, std::less<std::string> > map_type;
class class_index
{
 boost::regex expression;
 map_type index;
 std::string::const_iterator base;

typedef boost::smatch arg_type;
bool grep_callback(const arg_type& what);

public:
typedef bool (__closure* grep_callback_type)(const arg_type&);
void IndexClasses(const std::string& file);

 class_index()
: index(),

 expression("^(template[[:space:]]*<[^;:{]+>[[:space:]]*)?"
"(class|struct)[[:space:]]*(\\<\\w+\\>([[:blank:]]*\\([^)]*\\))?"
"[[:space:]]*)*(\\<\\w*\\>)[[:space:]]*(<[^;:{]+>[[:space:]]*)?"
"(\\{|:[^;\\{()]*\\{)"
){}

};

bool class_index::grep_callback(const arg_type& what)
{

// what[0] contains the whole string
// what[5] contains the class name.
// what[6] contains the template specialisation if any.
// add class name and position to map:
index[std::string(what[5].first, what[5].second) + std::string(what[6].first, what[6].second)] =
 what[5].first - base;

return true;
}

void class_index::IndexClasses(const std::string& file)
{
 std::string::const_iterator start, end;
 start = file.begin();
 end = file.end();
 base = start;

140

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 class_index::grep_callback_type cl = &(this->grep_callback);
 regex_grep(cl,
 start,
 end,
 expression);
}

regex_split (deprecated)

The algorithm regex_split has been deprecated in favor of the iterator regex_token_iterator which has a more flexible and
powerful interface, as well as following the more usual standard library "pull" rather than "push" semantics.

Code which uses regex_split will continue to compile, the following documentation is taken from a previous Boost.Regex version:

#include <boost/regex.hpp>

Algorithm regex_split performs a similar operation to the perl split operation, and comes in three overloaded forms:

template <class OutputIterator, class charT, class Traits1, class Alloc1, class Traits2>
std::size_t regex_split(OutputIterator out,
 std::basic_string<charT, Traits1, Alloc1>& s,

const basic_regex<charT, Traits2>& e,
 boost::match_flag_type flags,
 std::size_t max_split);

template <class OutputIterator, class charT, class Traits1, class Alloc1, class Traits2>
std::size_t regex_split(OutputIterator out,
 std::basic_string<charT, Traits1, Alloc1>& s,

const basic_regex<charT, Traits2>& e,
 boost::match_flag_type flags = match_default);

template <class OutputIterator, class charT, class Traits1, class Alloc1>
std::size_t regex_split(OutputIterator out,
 std::basic_string<charT, Traits1, Alloc1>& s);

Effects: Each version of the algorithm takes an output-iterator for output, and a string for input. If the expression contains no marked
sub-expressions, then the algorithm writes one string onto the output-iterator for each section of input that does not match the expression.
If the expression does contain marked sub-expressions, then each time a match is found, one string for each marked sub-expression
will be written to the output-iterator. No more than max_split strings will be written to the output-iterator. Before returning, all the
input processed will be deleted from the string s (if max_split is not reached then all of s will be deleted). Returns the number of
strings written to the output-iterator. If the parameter max_split is not specified then it defaults to UINT_MAX. If no expression is
specified, then it defaults to "\s+", and splitting occurs on whitespace.

Throws: std::runtime_error if the complexity of matching the expression against an N character string begins to exceed O(N2),
or if the program runs out of stack space while matching the expression (if Boost.Regex is configured in recursive mode), or if the
matcher exhausts its permitted memory allocation (if Boost.Regex is configured in non-recursive mode).

Example: the following function will split the input string into a series of tokens, and remove each token from the string s:

unsigned tokenise(std::list<std::string>& l, std::string& s)
{

return boost::regex_split(std::back_inserter(l), s);
}

Example: the following short program will extract all of the URL's from a html file, and print them out to cout:

141

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <list>
#include <fstream>
#include <iostream>
#include <boost/regex.hpp>

boost::regex e("<\\s*A\\s+[^>]*href\\s*=\\s*\"([^\"]*)\"",
 boost::regbase::normal | boost::regbase::icase);

void load_file(std::string& s, std::istream& is)
{
 s.erase();

//
// attempt to grow string buffer to match file size,
// this doesn't always work...

 s.reserve(is.rdbuf()->in_avail());
char c;
while(is.get(c))
{

// use logarithmic growth stategy, in case
// in_avail (above) returned zero:
if(s.capacity() == s.size())

 s.reserve(s.capacity() * 3);
 s.append(1, c);

}
}

int main(int argc, char** argv)
{
 std::string s;
 std::list<std::string> l;

for(int i = 1; i < argc; ++i)
{

 std::cout << "Findings URL's in " << argv[i] << ":" << std::endl;
 s.erase();
 std::ifstream is(argv[i]);
 load_file(s, is);
 boost::regex_split(std::back_inserter(l), s, e);

while(l.size())
{

 s = *(l.begin());
 l.pop_front();
 std::cout << s << std::endl;

}
}
return 0;

}

High Level Class RegEx (Deprecated)

The high level wrapper class RegEx is now deprecated and does not form part of the regular expression standardization proposal.
This type still exists, and existing code will continue to compile, however the following documentation is unlikely to be further updated.

#include <boost/cregex.hpp>

The class RegEx provides a high level simplified interface to the regular expression library, this class only handles narrow character
strings, and regular expressions always follow the "normal" syntax - that is the same as the perl / ECMAScript synatx.

142

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef bool (*GrepCallback)(const RegEx& expression);
typedef bool (*GrepFileCallback)(const char* file, const RegEx& expression);
typedef bool (*FindFilesCallback)(const char* file);

class RegEx
{
public:
 RegEx();
 RegEx(const RegEx& o);

~RegEx();
 RegEx(const char* c, bool icase = false);

explicit RegEx(const std::string& s, bool icase = false);
 RegEx& operator=(const RegEx& o);
 RegEx& operator=(const char* p);
 RegEx& operator=(const std::string& s);

unsigned int SetExpression(const char* p, bool icase = false);
unsigned int SetExpression(const std::string& s, bool icase = false);

 std::string Expression()const;
//
// now matching operators:
//
bool Match(const char* p, boost::match_flag_type flags = match_default);
bool Match(const std::string& s, boost::match_flag_type flags = match_default);
bool Search(const char* p, boost::match_flag_type flags = match_default);
bool Search(const std::string& s, boost::match_flag_type flags = match_default);
unsigned int Grep(GrepCallback cb, const char* p,

 boost::match_flag_type flags = match_default);
unsigned int Grep(GrepCallback cb, const std::string& s,

 boost::match_flag_type flags = match_default);
unsigned int Grep(std::vector<std::string>& v, const char* p,

 boost::match_flag_type flags = match_default);
unsigned int Grep(std::vector<std::string>& v, const std::string& s,

 boost::match_flag_type flags = match_default);
unsigned int Grep(std::vector<unsigned int>& v, const char* p,

 boost::match_flag_type flags = match_default);
unsigned int Grep(std::vector<unsigned int>& v, const std::string& s,

 boost::match_flag_type flags = match_default);
unsigned int GrepFiles(GrepFileCallback cb, const char* files, bool recurse = false,

 boost::match_flag_type flags = match_default);
unsigned int GrepFiles(GrepFileCallback cb, const std::string& files,

bool recurse = false,
 boost::match_flag_type flags = match_default);

unsigned int FindFiles(FindFilesCallback cb, const char* files,
bool recurse = false,

 boost::match_flag_type flags = match_default);
unsigned int FindFiles(FindFilesCallback cb, const std::string& files,

bool recurse = false,
 boost::match_flag_type flags = match_default);
 std::string Merge(const std::string& in, const std::string& fmt,

bool copy = true, boost::match_flag_type flags = match_default);
 std::string Merge(const char* in, const char* fmt, bool copy = true,
 boost::match_flag_type flags = match_default);

unsigned Split(std::vector<std::string>& v, std::string& s,
 boost::match_flag_type flags = match_default,

unsigned max_count = ~0);
//
// now operators for returning what matched in more detail:
//
unsigned int Position(int i = 0)const;
unsigned int Length(int i = 0)const;
bool Matched(int i = 0)const;
unsigned int Line()const;

143

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unsigned int Marks() const;
 std::string What(int i)const;
 std::string operator[](int i)const ;

static const unsigned int npos;
};

Member functions for class RegEx are defined as follows:

144

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMember

Default constructor, constructs an instance of RegEx without any valid expression.RegEx();

Copy constructor, all the properties of parameter o are copied.RegEx(const RegEx& o);

Constructs an instance of RegEx, setting the expression to c, if icase is true then
matching is insensitive to case, otherwise it is sensitive to case. Throws
bad_expression on failure.

RegEx(const char* c, bool icase =

false);

Constructs an instance of RegEx, setting the expression to s, if icase is true then
matching is insensitive to case, otherwise it is sensitive to case. Throws
bad_expression on failure.

RegEx(const std::string& s, bool

icase = false);

Default assignment operator.RegEx& operator=(const RegEx& o);

Assignment operator, equivalent to calling SetExpression(p, false). Throws
bad_expression on failure.

RegEx& operator=(const char* p);

Assignment operator, equivalent to calling SetExpression(s, false). Throws
bad_expression on failure.

RegEx& operator=(const std::string&

s);

Sets the current expression to p, if icase is true then matching is insensitive to
case, otherwise it is sensitive to case. Throws bad_expression on failure.

unsigned int SetExpression(const-

char* p, bool icase = false);

Sets the current expression to s, if icase is true then matching is insensitive to
case, otherwise it is sensitive to case. Throws bad_expression on failure.

unsigned int SetExpression(const

std::string& s, bool icase =

false);

Returns a copy of the current regular expression.std::string Expression()const;

Attempts to match the current expression against the text p using the match flags
flags - see match_flag_type. Returns true if the expression matches the whole
of the input string.

bool Match(const char* p,

boost::match_flag_type flags =

match_default);

Attempts to match the current expression against the text s using the
match_flag_type flags. Returns true if the expression matches the whole of
the input string.

bool Match(const std::string& s,

boost::match_flag_type flags =

match_default);

Attempts to find a match for the current expression somewhere in the text p using
the match_flag_type flags. Returns true if the match succeeds.

bool Search(const char* p,

boost::match_flag_type flags =

match_default);

Attempts to find a match for the current expression somewhere in the text s using
the match_flag_type flags. Returns true if the match succeeds.

bool Search(const std::string& s,

boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the text p using the
match_flag_type flags. For each match found calls the call-back function cb

unsigned int Grep(GrepCallback cb,

c o n s t c h a r * p ,

as: cb(*this); If at any stage the call-back function returns false then the grepboost::match_flag_type flags =

match_default); operation terminates, otherwise continues until no further matches are found.
Returns the number of matches found.

145

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMember

Finds all matches of the current expression in the text s using the
match_flag_type flags. For each match found calls the call-back function cb
as: cb(*this); If at any stage the call-back function returns false then the grep
operation terminates, otherwise continues until no further matches are found.
Returns the number of matches found.

unsigned int Grep(GrepCallback cb,

const std::string& s,

boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the text p using the
match_flag_type flags. For each match pushes a copy of what matched onto
v. Returns the number of matches found.

unsigned int Grep(std::vec-

tor<std::string>& v, const char*

p, boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the text s using the
match_flag_type flags. For each match pushes a copy of what matched onto
v. Returns the number of matches found.

unsigned int Grep(std::vec-

tor<std::string>& v, const

s t d : : s t r i n g & s ,

boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the text p using the
match_flag_type flags. For each match pushes the starting index of what
matched onto v. Returns the number of matches found.

unsigned int Grep(std::vector<un-

signed int>& v, const char* p,

boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the text s using the
match_flag_type flags. For each match pushes the starting index of what
matched onto v. Returns the number of matches found.

unsigned int Grep(std::vector<un-

signed int>& v, const std::string&

s, boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the files files using the
match_flag_type flags. For each match calls the call-back function cb. If the
call-back returns false then the algorithm returns without considering further
matches in the current file, or any further files.

The parameter files can include wild card characters '*' and '?', if the parameter
recurse is true then searches sub-directories for matching file names.

Returns the total number of matches found.

May throw an exception derived from std::runtime_error if file io fails.

unsigned int GrepFiles(GrepFileCall-

back cb, const char* files, bool

r e c u r s e = f a l s e ,

boost::match_flag_type flags =

match_default);

Finds all matches of the current expression in the files files using the
match_flag_type flags. For each match calls the call-back function cb.

If the call-back returns false then the algorithm returns without considering further
matches in the current file, or any further files.

The parameter files can include wild card characters '*' and '?', if the parameter
recurse is true then searches sub-directories for matching file names.

Returns the total number of matches found.

May throw an exception derived from std::runtime_error if file io fails.

unsigned int GrepFiles(GrepFileCall-

back cb, const std::string& files,

bool recurse = false,

boost::match_flag_type flags =

match_default);

146

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMember

Searches files to find all those which contain at least one match of the current
expression using the match_flag_type flags. For each matching file calls the
call-back function cb. If the call-back returns false then the algorithm returns
without considering any further files.

The parameter files can include wild card characters '*' and '?', if the parameter
recurse is true then searches sub-directories for matching file names.

Returns the total number of files found.

May throw an exception derived from std::runtime_error if file io fails.

unsigned int FindFiles(FindFiles-

Callback cb, const char* files,

bool recurse = false,

boost::match_flag_type flags =

match_default);

Searches files to find all those which contain at least one match of the current
expression using the match_flag_type flags. For each matching file calls the
call-back function cb.

If the call-back returns false then the algorithm returns without considering any
further files.

The parameter files can include wild card characters '*' and '?', if the parameter
recurse is true then searches sub-directories for matching file names.

Returns the total number of files found.

May throw an exception derived from std::runtime_error if file io fails.

unsigned int FindFiles(FindFiles-

Callback cb, const std::string&

files, bool recurse = false,

boost::match_flag_type flags =

match_default);

Performs a search and replace operation: searches through the string in for all
occurrences of the current expression, for each occurrence replaces the match
with the format string fmt. Uses flags to determine what gets matched, and how
the format string should be treated. If copy is true then all unmatched sections of
input are copied unchanged to output, if the flag format_first_only is set then only
the first occurance of the pattern found is replaced. Returns the new string. See
also format string syntax, and match_flag_type.

std::string Merge(const

std::string& in, const std::string&

fmt, bool copy = true,

boost::match_flag_type flags =

match_default);

Performs a search and replace operation: searches through the string in for all
occurrences of the current expression, for each occurrence replaces the match
with the format string fmt. Uses flags to determine what gets matched, and how
the format string should be treated. If copy is true then all unmatched sections of
input are copied unchanged to output, if the flag format_first_only is set then only
the first occurance of the pattern found is replaced. Returns the new string. See
also format string syntax, and match_flag_type.

std::string Merge(const char* in,

const char* fmt, bool copy = true,

boost::match_flag_type flags =

match_default);

Splits the input string and pushes each one onto the vector. If the expression
contains no marked sub-expressions, then one string is outputted for each section
of the input that does not match the expression. If the expression does contain
marked sub-expressions, then outputs one string for each marked sub-expression
each time a match occurs. Outputs no more than max_count strings. Before return-
ing, deletes from the input string s all of the input that has been processed (all of
the string if max_count was not reached). Returns the number of strings pushed
onto the vector.

unsigned Split(std::vec-

tor<std::string>& v, std::string&

s, boost::match_flag_type flags =

match_default, unsigned max_count

= ~0);

Returns the position of what matched sub-expression i. If i = 0 then returns the
position of the whole match. Returns RegEx::npos if the supplied index is inval-
id, or if the specified sub-expression did not participate in the match.

unsigned int Position(int i =

0)const;

147

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMember

Returns the length of what matched sub-expression i. If i = 0 then returns the
length of the whole match. Returns RegEx::npos if the supplied index is invalid,
or if the specified sub-expression did not participate in the match.

unsigned int Length(int i =

0)const;

Returns true if sub-expression i was matched, false otherwise.bool Matched(int i = 0)const;

Returns the line on which the match occurred, indexes start from 1 not zero, if
no match occurred then returns RegEx::npos.

unsigned int Line()const;

Returns the number of marked sub-expressions contained in the expression. Note
that this includes the whole match (sub-expression zero), so the value returned is
always >= 1.

unsigned int Marks() const;

Returns a copy of what matched sub-expression i. If i = 0 then returns a copy
of the whole match. Returns a null string if the index is invalid or if the specified
sub-expression did not participate in a match.

std::string What(int i)const;

Returns what(i); Can be used to simplify access to sub-expression matches,
and make usage more perl-like.

std::string operator[](int i)const

;

Background Information

Headers
There are two main headers used by this library: <boost/regex.hpp> provides full access to the main template library, while
<boost/cregex.hpp> provides access to the (deprecated) high level class RegEx, and the POSIX API functions.

There is also a header containing only forward declarations <boost/regex_fwd.hpp> for use when an interface is dependent upon
basic_regex, but otherwise does not need the full definitions.

Localization
Boost.Regex provides extensive support for run-time localization, the localization model used can be split into two parts: front-end
and back-end.

Front-end localization deals with everything which the user sees - error messages, and the regular expression syntax itself. For example
a French application could change [[:word:]] to [[:mot:]] and \w to \m. Modifying the front end locale requires active support from
the developer, by providing the library with a message catalogue to load, containing the localized strings. Front-end locale is affected
by the LC_MESSAGES category only.

Back-end localization deals with everything that occurs after the expression has been parsed - in other words everything that the user
does not see or interact with directly. It deals with case conversion, collation, and character class membership. The back-end locale
does not require any intervention from the developer - the library will acquire all the information it requires for the current locale
from the underlying operating system / run time library. This means that if the program user does not interact with regular expressions
directly - for example if the expressions are embedded in your C++ code - then no explicit localization is required, as the library will
take care of everything for you. For example embedding the expression [[:word:]]+ in your code will always match a whole word,
if the program is run on a machine with, for example, a Greek locale, then it will still match a whole word, but in Greek characters
rather than Latin ones. The back-end locale is affected by the LC_TYPE and LC_COLLATE categories.

There are three separate localization mechanisms supported by Boost.Regex:

148

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Win32 localization model.

This is the default model when the library is compiled under Win32, and is encapsulated by the traits class w32_regex_traits.
When this model is in effect each basic_regex object gets it's own LCID, by default this is the users default setting as returned
by GetUserDefaultLCID, but you can call imbue on the basic_regex object to set it's locale to some other LCID if you wish. All
the settings used by Boost.Regex are acquired directly from the operating system bypassing the C run time library. Front-end local-
ization requires a resource dll, containing a string table with the user-defined strings. The traits class exports the function:

static std::string set_message_catalogue(const std::string& s);

which needs to be called with a string identifying the name of the resource dll, before your code compiles any regular expressions
(but not necessarily before you construct any basic_regex instances):

boost::w32_regex_traits<char>::set_message_catalogue("mydll.dll");

The library provides full Unicode support under NT, under Windows 9x the library degrades gracefully - characters 0 to 255 are
supported, the remainder are treated as "unknown" graphic characters.

C localization model.

This model has been deprecated in favor of the C++ locale for all non-Windows compilers that support it. This locale is encapsulated
by the traits class c_regex_traits, Win32 users can force this model to take effect by defining the pre-processor symbol
BOOST_REGEX_USE_C_LOCALE. When this model is in effect there is a single global locale, as set by setlocale. All settings
are acquired from your run time library, consequently Unicode support is dependent upon your run time library implementation.

Front end localization is not supported.

Note that calling setlocale invalidates all compiled regular expressions, calling setlocale(LC_ALL, "C") will make this library
behave equivalent to most traditional regular expression libraries including version 1 of this library.

C++ localization model.

This model is the default for non-Windows compilers.

When this model is in effect each instance of basic_regex has its own instance of std::locale, class basic_regex also has a
member function imbue which allows the locale for the expression to be set on a per-instance basis. Front end localization requires
a POSIX message catalogue, which will be loaded via the std::messages facet of the expression's locale, the traits class exports
the symbol:

static std::string set_message_catalogue(const std::string& s);

which needs to be called with a string identifying the name of the message catalogue, before your code compiles any regular expressions
(but not necessarily before you construct any basic_regex instances):

boost::cpp_regex_traits<char>::set_message_catalogue("mycatalogue");

Note that calling basic_regex<>::imbue will invalidate any expression currently compiled in that instance of basic_regex.

Finally note that if you build the library with a non-default localization model, then the appropriate pre-processor symbol
(BOOST_REGEX_USE_C_LOCALE or BOOST_REGEX_USE_CPP_LOCALE) must be defined both when you build the support
library, and when you include <boost/regex.hpp> or <boost/cregex.hpp> in your code. The best way to ensure this is to add
the #define to <boost/regex/user.hpp>.

149

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Providing a message catalogue

In order to localize the front end of the library, you need to provide the library with the appropriate message strings contained either
in a resource dll's string table (Win32 model), or a POSIX message catalogue (C++ models). In the latter case the messages must
appear in message set zero of the catalogue. The messages and their id's are as follows:

150

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

D e -
fault
value

MeaningidMessage

"("The character used to start a sub-expression.101

")"The character used to end a sub-expression declaration.102

"$"The character used to denote an end of line assertion.103

"^"The character used to denote the start of line assertion.104

"."The character used to denote the "match any character expression".105

"*"The match zero or more times repetition operator.106

"+"The match one or more repetition operator.107

"?"The match zero or one repetition operator.108

"["The character set opening character.109

"]"The character set closing character.110

"|"The alternation operator.111

"\"The escape character.112

"#"The hash character (not currently used).113

"-"The range operator.114

"{"The repetition operator opening character.115

"}"The repetition operator closing character.116

"0123456789"The digit characters.117

"b"The character which when preceded by an escape character represents the word boundary
assertion.

118

"B"The character which when preceded by an escape character represents the non-word
boundary assertion.

119

"<"The character which when preceded by an escape character represents the word-start
boundary assertion.

120

">"The character which when preceded by an escape character represents the word-end
boundary assertion.

121

"w"The character which when preceded by an escape character represents any word character.122

"W"The character which when preceded by an escape character represents a non-word char-
acter.

123

"`A"The character which when preceded by an escape character represents a start of buffer
assertion.

124

151

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

D e -
fault
value

MeaningidMessage

"'z"The character which when preceded by an escape character represents an end of buffer
assertion.

125

"\n"The newline character.126

","The comma separator.127

"a"The character which when preceded by an escape character represents the bell character.128

"f"The character which when preceded by an escape character represents the form feed
character.

129

"n"The character which when preceded by an escape character represents the newline char-
acter.

130

"r"The character which when preceded by an escape character represents the carriage return
character.

131

"t"The character which when preceded by an escape character represents the tab character.132

"v"The character which when preceded by an escape character represents the vertical tab
character.

133

"x"The character which when preceded by an escape character represents the start of a
hexadecimal character constant.

134

"c"The character which when preceded by an escape character represents the start of an
ASCII escape character.

135

":"The colon character.136

"="The equals character.137

"e"The character which when preceded by an escape character represents the ASCII escape
character.

138

"l"The character which when preceded by an escape character represents any lower case
character.

139

"L"The character which when preceded by an escape character represents any non-lower
case character.

140

"u"The character which when preceded by an escape character represents any upper case
character.

141

"U"The character which when preceded by an escape character represents any non-upper
case character.

142

"s"The character which when preceded by an escape character represents any space character.143

"S"The character which when preceded by an escape character represents any non-space
character.

144

152

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

D e -
fault
value

MeaningidMessage

"d"The character which when preceded by an escape character represents any digit character.145

"D"The character which when preceded by an escape character represents any non-digit
character.

146

"E"The character which when preceded by an escape character represents the end quote op-
erator.

147

"Q"The character which when preceded by an escape character represents the start quote
operator.

148

"X"The character which when preceded by an escape character represents a Unicode combin-
ing character sequence.

149

"C"The character which when preceded by an escape character represents any single character.150

"Z"The character which when preceded by an escape character represents end of buffer op-
erator.

151

"G"The character which when preceded by an escape character represents the continuation
assertion.

152

!The character which when preceeded by (? indicates a zero width negated forward
lookahead assert.

153

Custom error messages are loaded as follows:

153

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Default stringError message IDMessage ID

"No match"REG_NOMATCH201

"Invalid regular expression"REG_BADPAT202

"Invalid collation character"REG_ECOLLATE203

"Invalid character class name"REG_ECTYPE204

"Trailing backslash"REG_EESCAPE205

"Invalid back reference"REG_ESUBREG206

" U n -
matched
(or \("

REG_EPAR-
EN

[208"Unmatched [or "REG_EBRACK207

"Unmatched \{"REG_EBRACE209

"Invalid content of \{\}"REG_BADBR210

"Invalid range end"REG_ERANGE211

"Memory exhausted"REG_ESPACE212

"Invalid preceding regular expression"REG_BADRPT213

"Premature end of regular expression"REG_EEND214

"Regular expression too big"REG_ESIZE215

"Unmatched) or \)"REG_ERPAREN216

"Empty expression"REG_EMPTY217

"Unknown error"REG_E_UNKNOWN218

Custom character class names are loaded as followed:

154

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalent default class nameDescriptionMessage ID

"alnum"The character class name for alphanumeric characters.300

"alpha"The character class name for alphabetic characters.301

"cntrl"The character class name for control characters.302

"digit"The character class name for digit characters.303

"graph"The character class name for graphics characters.304

"lower"The character class name for lower case characters.305

"print"The character class name for printable characters.306

"punct"The character class name for punctuation characters.307

"space"The character class name for space characters.308

"upper"The character class name for upper case characters.309

"xdigit"The character class name for hexadecimal characters.310

"blank"The character class name for blank characters.311

"word"The character class name for word characters.312

"unicode"The character class name for Unicode characters.313

Finally, custom collating element names are loaded starting from message id 400, and terminating when the first load thereafter fails.
Each message looks something like: "tagname string" where tagname is the name used inside [[.tagname.]] and string is the actual
text of the collating element. Note that the value of collating element [[.zero.]] is used for the conversion of strings to numbers - if
you replace this with another value then that will be used for string parsing - for example use the Unicode character 0x0660 for
[[.zero.]] if you want to use Unicode Arabic-Indic digits in your regular expressions in place of Latin digits.

Note that the POSIX defined names for character classes and collating elements are always available - even if custom names are
defined, in contrast, custom error messages, and custom syntax messages replace the default ones.

Thread Safety
The Boost.Regex library is thread safe when Boost is: you can verify that Boost is in thread safe mode by checking to see if
BOOST_HAS_THREADS is defined: this macro is set automatically by the config system when threading support is turned on in your
compiler.

Class basic_regex and its typedefs regex and wregex are thread safe, in that compiled regular expressions can safely be shared
between threads. The matching algorithms regex_match, regex_search, and regex_replace are all re-entrant and thread safe.
Class match_results is now thread safe, in that the results of a match can be safely copied from one thread to another (for example
one thread may find matches and push match_results instances onto a queue, while another thread pops them off the other end),
otherwise use a separate instance of match_results per thread.

The POSIX API functions are all re-entrant and thread safe, regular expressions compiled with regcomp can also be shared between
threads.

The class RegEx is only thread safe if each thread gets its own RegEx instance (apartment threading) - this is a consequence of
RegEx handling both compiling and matching regular expressions.

155

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Finally note that changing the global locale invalidates all compiled regular expressions, therefore calling set_locale from one
thread while another uses regular expressions will produce unpredictable results.

There is also a requirement that there is only one thread executing prior to the start of main().

Test and Example Programs

Test Programs

regress:

A regression test application that gives the matching/searching algorithms a full workout. The presence of this program is your
guarantee that the library will behave as claimed - at least as far as those items tested are concerned - if anyone spots anything that
isn't being tested I'd be glad to hear about it.

Files:

• main.cpp

• basic_tests.cpp

• test_alt.cpp

• test_anchors.cpp

• test_asserts.cpp

• test_backrefs.cpp

• test_deprecated.cpp

• test_emacs.cpp

• test_escapes.cpp

• test_grep.cpp

• test_icu.cpp

• test_locale.cpp

• test_mfc.cpp

• test_non_greedy_repeats.cpp

• test_operators.cpp

• test_overloads.cpp

• test_perl_ex.cpp

• test_replace.cpp

• test_sets.cpp

• test_simple_repeats.cpp

• test_tricky_cases.cpp

• test_unicode.cpp

bad_expression_test:

156

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/main.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/basic_tests.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_alt.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_anchors.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_asserts.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_backrefs.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_deprecated.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_emacs.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_escapes.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_grep.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_icu.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_locale.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_mfc.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_non_greedy_repeats.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_operators.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_overloads.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_perl_ex.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_replace.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_sets.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_simple_repeats.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_tricky_cases.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/regress/test_unicode.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Verifies that "bad" regular expressions don't cause the matcher to go into infinite loops, but to throw an exception instead.

Files: bad_expression_test.cpp.

recursion_test:

Verifies that the matcher can't overrun the stack (no matter what the expression).

Files: recursion_test.cpp.

concepts:

Verifies that the library meets all documented concepts (a compile only test).

Files: concept_check.cpp.

captures_test:

Test code for captures.

Files: captures_test.cpp.

Example programs

grep

A simple grep implementation, run with the -h command line option to find out its usage.

Files: grep.cpp

timer.exe

A simple interactive expression matching application, the results of all matches are timed, allowing the programmer to optimize
their regular expressions where performance is critical.

Files: regex_timer.cpp.

Code snippets

The snippets examples contain the code examples used in the documentation:

captures_example.cpp: Demonstrates the use of captures.

credit_card_example.cpp: Credit card number formatting code.

partial_regex_grep.cpp: Search example using partial matches.

partial_regex_match.cpp: regex_match example using partial matches.

regex_iterator_example.cpp: Iterating through a series of matches.

regex_match_example.cpp: ftp based regex_match example.

regex_merge_example.cpp: regex_merge example: converts a C++ file to syntax highlighted HTML.

regex_replace_example.cpp: regex_replace example: converts a C++ file to syntax highlighted HTML

regex_search_example.cpp: regex_search example: searches a cpp file for class definitions.

regex_token_iterator_eg_1.cpp: split a string into a series of tokens.

regex_token_iterator_eg_2.cpp: enumerate the linked URL's in a HTML file.

157

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/pathology/bad_expression_test.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/pathology/recursion_test.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/concepts/concept_check.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/captures/captures_test.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/grep/grep.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/timer/regex_timer.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/captures_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/credit_card_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/partial_regex_grep.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/partial_regex_match.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_iterator_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_match_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_merge_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_replace_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_search_example.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_token_iterator_eg_1.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_token_iterator_eg_2.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The following are deprecated:

regex_grep_example_1.cpp: regex_grep example 1: searches a cpp file for class definitions.

regex_grep_example_2.cpp: regex_grep example 2: searches a cpp file for class definitions, using a global callback function.

regex_grep_example_3.cpp: regex_grep example 2: searches a cpp file for class definitions, using a bound member function callback.

regex_grep_example_4.cpp: regex_grep example 2: searches a cpp file for class definitions, using a C++ Builder closure as a callback.

regex_split_example_1.cpp: regex_split example: split a string into tokens.

regex_split_example_2.cpp : regex_split example: spit out linked URL's.

References and Further Information
Short tutorials on regular expressions can be found here and here.

The main book on regular expressions is Mastering Regular Expressions, published by O'Reilly.

Boost.Regex forms the basis for the regular expression chapter of the Technical Report on C++ Library Extensions.

The Open Unix Specification contains a wealth of useful material, including the POSIX regular expression syntax.

The Pattern Matching Pointers site is a "must visit" resource for anyone interested in pattern matching.

Glimpse and Agrep, use a simplified regular expression syntax to achieve faster search times.

Udi Manber and Ricardo Baeza-Yates both have a selection of useful pattern matching papers available from their respective web
sites.

FAQ
Q. I can't get regex++ to work with escape characters, what's going on?

A. If you embed regular expressions in C++ code, then remember that escape characters are processed twice: once by the C++
compiler, and once by the Boost.Regex expression compiler, so to pass the regular expression \d+ to Boost.Regex, you need to embed
"\d+" in your code. Likewise to match a literal backslash you will need to embed "\\" in your code.

Q. No matter what I do regex_match always returns false, what's going on?

A. The algorithm regex_match only succeeds if the expression matches all of the text, if you want to find a sub-string within the
text that matches the expression then use regex_search instead.

Q. Why does using parenthesis in a POSIX regular expression change the result of a match?

A. For POSIX (extended and basic) regular expressions, but not for perl regexes, parentheses don't only mark; they determine what
the best match is as well. When the expression is compiled as a POSIX basic or extended regex then Boost.Regex follows the POSIX
standard leftmost longest rule for determining what matched. So if there is more than one possible match after considering the whole
expression, it looks next at the first sub-expression and then the second sub-expression and so on. So...

"(0*)([0-9]*)" against "00123" would produce $1 = "00" $2 = "123"

where as

"0*([0-9])*" against "00123" would produce $1 = "00123"

If you think about it, had $1 only matched the "123", this would be "less good" than the match "00123" which is both further to the
left and longer. If you want $1 to match only the "123" part, then you need to use something like:

"0*([1-9][0-9]*)"

158

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_grep_example_1.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_grep_example_2.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_grep_example_3.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_grep_example_4.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_split_example_1.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../example/snippets/regex_split_example_2.cpp
http://etext.lib.virginia.edu/helpsheets/regex.html
http://www.linuxpcug.org/lessons/regexp.html
http://www.oreilly.com/catalog/regex/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.opengroup.org/onlinepubs/7908799/toc.htm
http://www.cs.ucr.edu/~stelo/pattern.html
http://glimpse.cs.arizona.edu/
http://glimpse.cs.arizona.edu/udi.html
http://www.dcc.uchile.cl/~rbaeza/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

as the expression.

Q. Why don't character ranges work properly (POSIX mode only)?

A. The POSIX standard specifies that character range expressions are locale sensitive - so for example the expression [A-Z] will
match any collating element that collates between 'A' and 'Z'. That means that for most locales other than "C" or "POSIX", [A-Z]
would match the single character 't' for example, which is not what most people expect - or at least not what most people have come
to expect from regular expression engines. For this reason, the default behaviour of Boost.Regex (perl mode) is to turn locale sensitive
collation off by not setting the regex_constants::collate compile time flag. However if you set a non-default compile time
flag - for example regex_constants::extended or regex_constants::basic, then locale dependent collation will be enabled,
this also applies to the POSIX API functions which use either regex_constants::extended or regex_constants::basic
internally. [Note - when regex_constants::nocollate in effect, the library behaves "as if" the LC_COLLATE locale category
were always "C", regardless of what its actually set to - end note].

Q. Why are there no throw specifications on any of the functions? What exceptions can the library throw?

A. Not all compilers support (or honor) throw specifications, others support them but with reduced efficiency. Throw specifications
may be added at a later date as compilers begin to handle this better. The library should throw only three types of exception:
[boost::regex_error] can be thrown by basic_regex when compiling a regular expression, std::runtime_error can be thrown
when a call to basic_regex::imbue tries to open a message catalogue that doesn't exist, or when a call to regex_search or
regex_match results in an "everlasting" search, or when a call to RegEx::GrepFiles or RegEx::FindFiles tries to open a file
that cannot be opened, finally std::bad_alloc can be thrown by just about any of the functions in this library.

Q. Why can't I use the "convenience" versions of regex_match / regex_search / regex_grep / regex_format / regex_merge?

A. These versions may or may not be available depending upon the capabilities of your compiler, the rules determining the format
of these functions are quite complex - and only the versions visible to a standard compliant compiler are given in the help. To find
out what your compiler supports, run <boost/regex.hpp> through your C++ pre-processor, and search the output file for the function
that you are interested in. Note however, that very few current compilers still have problems with these overloaded functions.

Performance
The performance of Boost.Regex in both recursive and non-recursive modes should be broadly comparable to other regular expression
libraries: recursive mode is slightly faster (especially where memory allocation requires thread synchronisation), but not by much.
The following pages compare Boost.Regex with various other regular expression libraries for the following compilers:

• Visual Studio.Net 2003 (recursive Boost.Regex implementation).

• Gcc 3.2 (cygwin) (non-recursive Boost.Regex implementation).

Standards Conformance

C++

Boost.Regex is intended to conform to the Technical Report on C++ Library Extensions.

ECMAScript / JavaScript

All of the ECMAScript regular expression syntax features are supported, except that:

The escape sequence \u matches any upper case character (the same as [[:upper:]]) rather than a Unicode escape sequence; use
\x{DDDD} for Unicode escape sequences.

Perl

Almost all Perl features are supported, except for:

(?{code}) Not implementable in a compiled strongly typed language.

159

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../vc71-performance.html
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../gcc-performance.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

(??{code}) Not implementable in a compiled strongly typed language.

POSIX

All the POSIX basic and extended regular expression features are supported, except that:

No character collating names are recognized except those specified in the POSIX standard for the C locale, unless they are explicitly
registered with the traits class.

Character equivalence classes ([[=a=]] etc) are probably buggy except on Win32. Implementing this feature requires knowledge of
the format of the string sort keys produced by the system; if you need this, and the default implementation doesn't work on your
platform, then you will need to supply a custom traits class.

Unicode

The following comments refer to Unicode Technical Standard #18: Unicode Regular Expressions version 11.

160

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://unicode.org/reports/tr18/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SupportFeatureItem

Yes: use \x{DDDD} to refer to code point UDDDD.Hex Notation1.1

All the names listed under the General Category Property are supported.
Script names and Other Names are not currently supported.

Character Properties1.2

Indirectly support by forward-lookahead:Subtraction and Intersection1.3

(?=[[:X:]])[[:Y:]]

Gives the intersection of character properties X and Y.

(?![[:X:]])[[:Y:]]

Gives everything in Y that is not in X (subtraction).

Conforming: non-spacing marks are included in the set of word characters.Simple Word Boundaries1.4

Supported, note that at this level, case transformations are 1:1, many to
many case folding operations are not supported (for example "ß" to "SS").

Caseless Matching1.5

Supported, except that "." matches only one character of "\r\n". Other
than that word boundaries match correctly; including not matching in
the middle of a "\r\n" sequence.

Line Boundaries1.6

Supported: provided you use the u32* algorithms, then UTF-8, UTF-16
and UTF-32 are all treated as sequences of 32-bit code points.

Code Points1.7

Not supported: it is up to the user of the library to convert all text into
the same canonical form as the regular expression.

Canonical Equivalence2.1

Not supported.Default Grapheme Clusters2.2

Not supported.2.3Default Word
Boundaries

Not Supported.Default Loose Matches2.4

Supported: the expression "[[:name:]]" or \N{name} matches the named
character "name".

Named Properties2.5

Not Supported.Wildcard properties2.6

Not Supported.Tailored Punctuation.3.1

Not Supported.Tailored Grapheme Clusters3.2

Not Supported.Tailored Word Boundaries.3.3

Partial support: [[=c=]] matches characters with the same primary equi-
valence class as "c".

Tailored Loose Matches3.4

Supported: [a-b] matches any character that collates in the range a to b,
when the expression is constructed with the collate flag set.

Tailored Ranges3.5

Not Supported.Context Matches3.6

161

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SupportFeatureItem

Supported: pass the flag match_partial to the regex algorithms.Incremental Matches3.7

Not Supported.Unicode Set Sharing3.8

Not supported, however this information is used internally to optimise
the matching of regular expressions, and return quickly if no match is
possible.

Possible Match Sets3.9

Partial Support: It is possible to achieve a similar effect by using a custom
regular expression traits class.

Folded Matching3.10

Not Supported.Custom Submatch Evaluation3.11

Redistributables
If you are using Microsoft or Borland C++ and link to a dll version of the run time library, then you can choose to also link to a dll
version of Boost.Regex by defining the symbol BOOST_REGEX_DYN_LINK when you compile your code. While these dll's are
redistributable, there are no "standard" versions, so when installing on the users PC, you should place these in a directory private to
your application, and not in the PC's directory path. Note that if you link to a static version of your run time library, then you will
also link to a static version of Boost.Regex and no dll's will need to be distributed. The possible Boost.Regex dll and library names
are computed according to the formula given in the getting started guide.

Note: you can disable automatic library selection by defining the symbol BOOST_REGEX_NO_LIB when compiling, this is useful
if you want to build Boost.Regex yourself in your IDE, or if you need to debug Boost.Regex.

Acknowledgements
The author can be contacted at john - at - johnmaddock.co.uk; the home page for this library is at www.boost.org.

I am indebted to Robert Sedgewick's "Algorithms in C++" for forcing me to think about algorithms and their performance, and to
the folks at boost for forcing me to think, period.

Eric Niebler, author of Boost.Expressive and the GRETA regular expression component, has shared several important ideas, in a
series of long discussions.

Pete Becker, of Roundhouse Consulting, Ltd., has helped enormously with the standardisation proposal language.

The following people have all contributed useful comments or fixes: Dave Abrahams, Mike Allison, Edan Ayal, Jayashree Balasub-
ramanian, Jan Bölsche, Beman Dawes, Paul Baxter, David Bergman, David Dennerline, Edward Diener, Peter Dimov, Robert Dunn,
Fabio Forno, Tobias Gabrielsson, Rob Gillen, Marc Gregoire, Chris Hecker, Nick Hodapp, Jesse Jones, Martin Jost, Boris Krasnovskiy,
Jan Hermelink, Max Leung, Wei-hao Lin, Jens Maurer, Richard Peters, Heiko Schmidt, Jason Shirk, Gerald Slacik, Scobie Smith,
Mike Smyth, Alexander Sokolovsky, Hervé Poirier, Michael Raykh, Marc Recht, Scott VanCamp, Bruno Voigt, Alexey Voinov,
Jerry Waldorf, Rob Ward, Lealon Watts, John Wismar, Thomas Witt and Yuval Yosef.

If I've missed your name off (I'm sure there are a few, just not who they are...) then please do get in touch.

I am also grateful to the manuals supplied with the Henry Spencer, PCRE, Perl and GNU regular expression libraries - wherever
possible I have tried to maintain compatibility with these libraries and with the POSIX standard - the code however is entirely my
own, including any bugs! I can absolutely guarantee that I will not fix any bugs I don't know about, so if you have any comments
or spot any bugs, please get in touch.

162

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../more/getting_started.html
http://www.boost.org
http://www.cs.princeton.edu/~rs/
http://www.boost-consulting.com/
http://research.microsoft.com/projects/greta
http://www.versatilecoding.com
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

History

Boost 1.38

• Breaking change: empty expressions, and empty alternatives are now allowed when using the Perl regular expression syntax.
This change has been added for Perl compatibility, when the new syntax_option_typeno_empty_expressions is set then the
old behaviour is preserved and empty expressions are prohibited. This is issue #1081.

• Added support for Perl style ${n} expressions in format strings (issue #2556).

• Added support for accessing the location of sub-expressions within the regular expression string (issue #2269).

• Fixed compiler compatibility issues #2244, #2514, and #2458.

Boost 1.34

• Fix for non-greedy repeats and partial matches not working correctly in some cases.

• Fix for non-greedy repeats on VC++ not working in some cases (bug report 1515830).

• Changed match_results::position() to return a valid result when *this represents a partial match.

• Fixed the grep and egrep options so that the newline character gets treated the same as |.

Boost 1.33.1

• Fixed broken makefiles.

• Fixed configuration setup to allow building with VC7.1 - STLport-4.6.2 when using /Zc:wchar_t.

• Moved declarations class-inline in static_mutex.hpp so that SGI Irix compiler can cope.

• Added needed standard library #includes to fileiter.hpp, regex_workaround.hpp and cpp_regex_traits.hpp.

• Fixed a bug where non-greedy repeats could in certain strange curcumstances repeat more times than their maximum value.

• Fixed the value returned by basic_regex<>::empty() from a default constructed object.

• Changed the deffinition of regex_error to make it backwards compatible with Boost-1.32.0.

• Disabled external templates for Intel C++ 8.0 and earlier - otherwise unresolved references can occur.

• Rewritten extern template code for gcc so that only specific member functions are exported: otherwise strange unresolved references
can occur when linking and mixing debug and non-debug code.

• Initialise all the data members of the unicode_iterators: this keeps gcc from issuing needless warnings.

• Ported the ICU integration code to VC6 and VC7.

• Ensured code is STLport debug mode clean.

• Fixed lookbehind assertions so that fixed length repeats are permitted, and so that regex iteration allows lookbehind to look back
before the current search range (into the last match).

• Fixed strange bug with non-greedy repeats inside forward lookahead assertions.

• Enabled negated character classes inside character sets.

• Fixed regression so that [a-z-] is a valid expression again.

• Fixed bug that allowed some invalid expressions to be accepted.

163

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/1081
https://svn.boost.org/trac/boost/ticket/2556
https://svn.boost.org/trac/boost/ticket/2269
https://svn.boost.org/trac/boost/ticket/2244
https://svn.boost.org/trac/boost/ticket/2514
https://svn.boost.org/trac/boost/ticket/2244
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost 1.33.0

• Completely rewritten expression parsing code, and traits class support; now conforms to the standardization proposal.

• Breaking Change: The syntax options that can be passed to basic_regex constructors have been rationalized. The default option
(perl) now has a value of zero, and it is now clearly documented which options apply to which regular expression syntax styles
(perl, POSIX-extended, POSIX-basic etc). Some of the more esoteric options have now been removed, so there is the possibility
that existing code may fail to compile: however equivalent functionality should still be available.

• Breaking Change: POSIX-extended and POSIX-basic regular expressions now enforce the letter of the POSIX standard much
more closely than before.

• Added support for (?imsx-imsx) constructs.

• Added support for lookbehind expressions (?<=positive-lookbehind) and (?<!negative-lookbehind).

• Added support for conditional expressions (?(assertion)true-expresion|false-expression).

• Added MFC/ATL string wrappers.

• Added Unicode support; based on ICU.

• Changed newline support to recognise \f as a line separator (all character types), and \x85 as a line separator for wide characters
/ Unicode only.

• Added a new format flag format_literal that treats the replace string as a literal, rather than a Perl or Sed style format string.

• Errors are now reported by throwing exceptions of type regex_error. The types used previously - bad_expression and bad_pattern
- are now just typedefs for regex_error. Type regex_error has a couple of new members: code() to report an error code rather than
a string, and position() to report where in the expression the error occured.

Boost 1.32.1

• Fixed bug in partial matches of bounded repeats of '.'.

Boost 1.31.0

• Completely rewritten pattern matching code - it is now up to 10 times faster than before.

• Reorganized documentation.

• Deprecated all interfaces that are not part of the regular expression standardization proposal.

• Added regex_iterator and regex_token_iterator .

• Added support for Perl style independent sub-expressions.

• Added non-member operators to the sub_match class, so that you can compare sub_match's with strings, or add them to a string
to produce a new string.

• Added experimental support for extended capture information.

• Changed the match flags so that they are a distinct type (not an integer), if you try to pass the match flags as an integer rather than
match_flag_type to the regex algorithms then you will now get a compiler error.

164

Boost.Regex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Regex
	Table of Contents
	Configuration
	Compiler Setup
	Locale and traits class selection
	Linkage Options
	Algorithm Selection
	Algorithm Tuning

	Building and Installing the Library
	Introduction and Overview
	Unicode and Boost.Regex
	Understanding Marked Sub-Expressions and Captures
	Partial Matches
	Regular Expression Syntax
	Perl Regular Expression Syntax
	POSIX Extended Regular Expression Syntax
	POSIX Basic Regular Expression Syntax
	Character Class Names
	Character Classes that are Always Supported
	Character classes that are supported by Unicode Regular Expressions

	Collating Names
	Digraphs
	POSIX Symbolic Names
	Named Unicode Characters

	The Leftmost Longest Rule

	Search and Replace Format String Syntax
	Sed Format String Syntax
	Perl Format String Syntax
	Boost-Extended Format String Syntax

	Reference
	basic_regex
	match_results
	sub_match
	regex_match
	regex_search
	regex_replace
	regex_iterator
	regex_token_iterator
	bad_expression
	syntax_option_type
	syntax_option_type Synopsis
	Overview of syntax_option_type
	Options for Perl Regular Expressions
	Options for POSIX Extended Regular Expressions
	Options for POSIX Basic Regular Expressions
	Options for Literal Strings

	match_flag_type
	error_type
	regex_traits
	Interfacing With Non-Standard String Types
	Working With Unicode and ICU String Types
	Introduction to using Regex with ICU
	Unicode regular expression types
	Unicode Regular Expression Algorithms
	Unicode Aware Regex Iterators

	Using Boost Regex With MFC Strings
	Introduction to Boost.Regex and MFC Strings
	Regex Types Used With MFC Strings
	Regular Expression Creation From an MFC String
	Overloaded Algorithms For MFC String Types
	Iterating Over the Matches Within An MFC String

	POSIX Compatible C API's
	Concepts
	charT Requirements
	Traits Class Requirements
	Iterator Requirements

	Deprecated Interfaces
	regex_format (Deprecated)
	regex_grep (Deprecated)
	regex_split (deprecated)
	High Level Class RegEx (Deprecated)

	Background Information
	Headers
	Localization
	Thread Safety
	Test and Example Programs
	References and Further Information
	FAQ
	Performance
	Standards Conformance
	Redistributables
	Acknowledgements
	History

