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1 Introduction

Rotations about the coordinate axes are easy to define and work with. Rotation about the x-axis by angle
θ is

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


where θ > 0 indicates a counterclockwise rotation in the plane x = 0. The observer is assumed to be
positioned on the side of the plane with x > 0 and looking at the origin. Rotation about the y-axis by angle
θ is

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


where θ > 0 indicates a counterclockwise rotation in the plane y = 0. The observer is assumed to be
positioned on the side of the plane with y > 0 and looking at the origin. Rotation about the z-axis by angle
θ is

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


where θ > 0 indicates a counterclockwise rotation in the plane z = 0. The observer is assumed to be
positioned on the side of the plane with z > 0 and looking at the origin. Rotation by an angle θ about an
arbitrary axis containing the origin and having unit length direction U = (Ux, Uy, Uz) is given by

RU(θ) = I + (sin θ)S + (1− cos θ)S2

where I is the identity matrix,

S =


0 −Uz Uy

Uz 0 −Ux

−Uy Ux 0


and θ > 0 indicates a counterclockwise rotation in the plane U · (x, y, z) = 0. The observer is assumed to be
positioned on the side of the plane to which U points and is looking at the origin.

2 Factor as a Product of Three Rotation Matrices

A common problem is to factor a rotation matrix as a product of rotations about the coordinate axes.
The form of the factorization depends on the needs of the application and what ordering is specified. For
example, one might want to factor a rotation as R = Rx(θx)Ry(θy)Rz(θz) for some angles θx, θy, and θz.
The ordering is xyz. Five other possibilities are xzy, yxz, yzx, zxy, and zyx. It is also possible to factor
as R = Rx(θx0

)Ry(θy)Rx(θx1
), the ordering referred to as xyx. Five other possibilites are xzx, yxy, yzy,

zxz, and zyz. These are also discussed here. The following discussion uses the notation ca = cos(θa) and
sa = sin(θa) for a = x, y, z.
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2.1 Factor as RxRyRz

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rx(θx)Ry(θy)Rz(θz), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx
−cxczsy + sxsz czsx + cxsysz cxcy


The simplest term to work with is sy = r02, so θy = asin(r02). There are three cases to consider.

Case 1: If θy ∈ (−π/2, π/2), then cy 6= 0 and cy(sx, cx) = (−r12, r22), in which case θx = atan2(−r12, r22),
and cy(sz, cz) = (−r01, r00), in which case θz = atan2(−r01, r00). In summary,

θy = asin(r02), θx = atan2(−r12, r22). θz = atan2(−r01, r00) (1)

Case 2: If θy = π/2, then sy = 1 and cy = 0. In this case r10 r11

r20 r21

 =

 czsx + cxsz cxcz − sxsz
−cxcz + sxsz czsx + cxsz

 =

 sin(θz + θx) cos(θz + θx)

− cos(θz + θx) sin(θz + θx)

 .
Therefore, θz + θx = atan2(r10, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = π/2, θz + θx = atan2(r10, r11) (2)

Case 3: If θy = −π/2, then sy = −1 and cy = 0. In this case r10 r11

r20 r21

 =

 −czsx + cxsz cxcz + sxsz

cxcz + sxsz czsx − cxsz

 =

 sin(θz − θx) cos(θz − θx)

cos(θz − θx) − sin(θz − θx)

 .
Therefore, θz − θx = atan2(r10, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = −π/2, θz − θx = atan2(r10, r11) (3)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r02
is tested for the three cases.

if (r02 < +1)

{

if (r02 > -1)

{

thetaY = asin(r02);

thetaX = atan2(-r12,r22);

thetaZ = atan2(-r01,r00);

}

else // r02 = -1
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{

// Not a unique solution: thetaZ - thetaX = atan2(r10,r11)

thetaY = -PI/2;

thetaX = -atan2(r10,r11);

thetaZ = 0;

}

}

else // r02 = +1

{

// Not a unique solution: thetaZ + thetaX = atan2(r10,r11)

thetaY = +PI/2;

thetaX = atan2(r10,r11);

thetaZ = 0;

}

2.2 Factor as RxRzRy

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rx(θx)Rz(θz)Ry(θy), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz −sz czsy

sxsy + cxcysz cxcz −cysx + cxsysz

−cxsy + cysxsz czsx cxcy + sxsysz


The simplest term to work with is −sz = r01, so θz = asin(−r01). There are three cases to consider.

Case 1: If θz ∈ (−π/2, π/2), then cz 6= 0 and cz(sy, cy) = (r02, r00), in which case θy = atan2(r02, r00), and
cz(sx, cx) = (r21, r11), in which case θx = atan2(r21, r11). In summary,

θz = asin(−r01), θx = atan2(r21, r11), θy = atan2(r02, r00) (4)

Case 2: If θz = π/2, then sz = 1 and cz = 0. In this case r10 r12

r20 r22

 =

 sxsy + cxcy −cysx + cxsy

−cxsy + cysx cxcy + sxsy

 =

 cos(θy − θx) sin(θy − θx)

− sin(θy − θx) cos(θy − θx)


Therefore, θy − θx = atan2(−r20, r22). There is one degree of freedom, so the factorization is not unique. In
summary,

θz = +π/2, θy − θx = atan2(−r20, r22) (5)

Case 3: If θz = −π/2, then sz = −1 and cz = 0. In this case r10 r12

r20 r22

 =

 sxsy − cxcy −cysx − cxsy
−cxsy − cysx cxcy − sxsy

 =

 − cos(θy + θx) − sin(θy + θx)

− sin(θy + θx) cos(θy + θx)


Therefore, θy + θx = atan2(−r20, r22). There is one degree of freedom, so the factorization is not unique. In
summary,

θz = −π/2, θy + θx = atan2(−r20, r22) (6)
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Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r01
is tested for the three cases.

if (r01 < +1)

{

if (r01 > -1)

{

thetaZ = asin(-r01);

thetaX = atan2(r21,r11);

thetaY = atan2(r02,r00);

}

else // r01 = -1

{

// Not a unique solution: thetaY - thetaX = atan2(-r20,r22)

theta_z = +pi/2;

theta_x = atan2(-r20,r22);

theta_y = 0;

}

}

else // r01 = +1

{

// Not a unique solution: thetaY + thetaX = atan2(-r20,r22)

theta_z = -pi/2;

theta_x = atan2(-r20,r22);

theta_y = 0;

}

2.3 Factor as RyRxRz

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Ry(θy)Rx(θx)Rz(θz), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz + sxsysz czsxsy − cysz cxsy

cxsz cxcz −sx
−czsy + cysxsz cyczsx + sysz cxcy


The simplest term to work with is −sx = r12, so θx = asin(−r12). There are three cases to consider.

Case 1: If θx ∈ (−π/2, π/2), then cx 6= 0 and cx(sy, cy) = (r02, r22), in which case θy = atan2(r02, r22), and
cx(sz, cz) = (r10, r11), in which case θz = atan2(r10, r11). In summary,

θx = asin(−r12), θy = atan2(r02, r22), θz = atan2(r10, r11) (7)

Case 2: If θx = π/2, then sx = 1 and cx = 0. In this case, r00 r01

r20 r21

 =

 cycz + sysz czsy − cysz
−czsy + cysz cycz + sysz

 =

 cos(θz − θy) − sin(θz − θy)

sin(θz − θy) cos(θz − θy)
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Therefore, θz − θy = atan2(−r01, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = +π/2, θz − θy = atan2(−r01, r00) (8)

Case 3: If θx = −π/2, then sx = −1 and cx = 0. In this case, r00 r01

r20 r21

 =

 cycz − sysz −czsy − cysz
−czsy − cysz −cycz + sysz

 =

 cos(θz + θy) − sin(θz + θy)

− sin(θz + θy) − cos(θz + θy)


Therefore, θz + θy = atan2(−r01, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = −π/2, θz + θy = atan2(−r01, r00) (9)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r12
is tested for the three cases.

if (r12 < +1)

{

if (r12 > -1)

{

thetaX = asin(-r12);

thetaY = atan2(r02,r22);

thetaZ = atan2(r10,r11);

}

else // r12 = -1

{

// Not a unique solution: thetaZ - thetaY = atan2(-r01,r00)

thetaX = +pi/2;

thetaY = -atan2(-r01,r00);

thetaZ = 0;

}

}

else // r12 = +1

{

// Not a unique solution: thetaZ + thetaY = atan2(-r01,r00)

thetaX = -pi/2;

thetaY = atan2(-r01,r00);

thetaZ = 0;

}

2.4 Factor as RyRzRx

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Ry(θy)Rz(θz)Rx(θx), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz sxsy − cxcysz cxsy + cysxsz

sz cxcz −czsx
−czsy cysx + cxsysz cxcy − sxsysz
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The simplest term to work with is sz = r10, so θz = asin(r10). There are three cases to consider.

Case 1: If θz ∈ (−π/2, π/2), then cz 6= 0 and cz(sx, cx) = (−r12, r11), in which case θx = atan2(−r12, r11),
and cz(sy, cy) = (−r20, r00), in which case θy = atan2(−r20, r00). In summary,

θz = asin(r10), θy = atan2(−r20, r00), θx = atan2(−r12, r11) (10)

Case 2: If θz = π/2, then sz = 1 and cz = 0. In this case, r01 r02

r21 r22

 =

 sxsy − cxcy cxsy + cysx

cysx + cxsy cxcy − sxsy

 =

 − cos(θx + θy) sin(θx + θy)

sin(θx + θy) cos(θx + θy)


Therefore, θx + θy = atan2(r21, r22). There is one degree of freedom, so the factorization is not unique. In
summary,

θz = +π/2, θx + θy = atan2(r21, r22) (11)

Case 3: If θz = −π/2, then sz = −1 and cz = 0. In this case, r01 r02

r21 r22

 =

 sxsy + cxcy cxsy − cysx
cysx − cxsy cxcy + sxsy

 =

 cos(θx − θy) − sin(θx − θy)

sin(θx − θy) cos(θx − θy)


Therefore, θx − θy = atan2(r21, r22). There is one degree of freedom, so the factorization is not unique. In
summary,

θz = −π/2, θx − θy = atan2(r21, r22) (12)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r10
is tested for the three cases.

if (r10 < +1)

{

if (r10 > -1)

{

thetaZ = asin(r10);

thetaY = atan2(-r20,r00);

thetaX = atan2(-r12,r11);

}

else // r10 = -1

{

// Not a unique solution: thetaX - thetaY = atan2(r21,r22)

thetaZ = -pi/2;

thetaY = -atan2(r21,r22);

thetaX = 0;

}

}

else

{

// Not a unique solution: thetaX + thetaY = atan2(r21,r22)
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thetaZ = +pi/2;

thetaY = atan2(r21,r22);

thetaX = 0;

}

2.5 Factor as RzRxRy

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rz(θz)Rx(θx)Ry(θy), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz − sxsysz −cxsz czsy + cysxsz

czsxsy + cysz cxcz −cyczsx + sysz

−cxsy sx cxcy


The simplest term to work with is sx = r21, so θx = asin(r21). There are three cases to consider.

Case 1: If θx ∈ (−π/2, π/2), then cx 6= 0 and cx(sy, cy) = (−r20, r22), in which case θy = atan2(−r20, r22),
and cx(sz, cz) = (−r01, r11), in which case θz = atan2(−r01, r11). In summary,

θx = asin(r21), θz = atan2(−r01, r11), θy = atan2(−r20, r22) (13)

Case 2: If θx = π/2, then sx = 1 and cz = 0. In this case, r00 r02

r10 r12

 =

 cysz − sycz czsy + cysz

czsy + cysz −cycz + sysz

 =

 cos(θy + θz) sin(θy + θz)

sin(θy + θz) − cos(θy + θz)


Therefore, θy + θz = atan2(r02, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = +π/2, θy + θz = atan2(r02, r00) (14)

Case 3: If θx = −π/2, then sx = −1 and cx = 0. In this case, r00 r02

r10 r12

 =

 cysz + sycz czsy − cysz
−czsy + cysz cycz + sysz

 =

 cos(θy − θz) sin(θy − θz)

− sin(θy − θz) cos(θy − θz)


Therefore, θy − θz = atan2(r02, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = −π/2, θy − θz = atan2(r02, r00) (15)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r21
is tested for the three cases.

if (r21 < +1)

{

if (r21 > -1)

{
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thetaX = asin(r21);

thetaZ = atan2(-r01,r11);

thetaY = atan2(-r20,r22);

}

else // r21 = -1

{

// Not a unique solution: thetaY - thetaZ = atan2(r02,r00)

thetaX = -pi/2;

thetaZ = -atan2(r02,r00);

thetaY = 0;

}

}

else // r21 = +1

{

// Not a unique solution: thetaY + thetaZ = atan2(r02,r00)

thetaX = +pi/2;

thetaZ = atan2(r02,r00);

thetaY = 0;

}

2.6 Factor as RzRyRx

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rz(θz)Ry(θy)Rx(θx), and equating yields
r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz czsxsy − cxsz cxczsy + sxsz

cysz cxcz + sxsysz −czsx + cxsysz

−sy cysx cxcy


The simplest term to work with is sy = −r20, so θy = asin(−r20). There are three cases to consider.

Case 1: If θy ∈ (−π/2, π/2), then cy 6= 0 and cy(sx, cx) = (r21, r22), in which case θx = atan2(r21, r22), and
cy(sz, cz) = (r10, r00), in which case θz = atan2(r10, r00). In summary,

θy = asin(−r20), θz = atan2(r10, r00), θx = atan2(r21, r22) (16)

Case 2: If θy = π/2, then sy = 1 and cy = 0. In this case, r01 r02

r11 r12

 =

 czsx − cxsz cxcz + sxsz

cxcz + sxsz −czsx + cxsz

 =

 sin(θx − θz) cos(θx − θz)

cos(θx − θz) − sin(θx − θz)


Therefore, θx − θz = atan2(−r12, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = +π/2, θx − θz = atan2(−r12, r11) (17)
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Case 3: If θy = −π/2, then sy = −1 and cy = 0. In this case, r01 r02

r11 r12

 =

 −czsx − cxsz −cxcz + sxsz

cxcz − sxsz −czsx − cxsz

 =

 − sin(θx + θz) − cos(θx + θz)

cos(θx + θz) − sin(θx + θz)


Therefore, θx + θz = atan2(−r12, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = −π/2, θx + θz = atan2(−r12, r11) (18)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r20
is tested for the three cases.

if (r20 < +1)

{

if (r20 > -1)

{

thetaY = asin(-r20);

thetaZ = atan2(r10,r00);

thetaX = atan2(r21,r22);

}

else // r20 = -1

{

// Not a unique solution: thetaX - thetaZ = atan2(-r12,r11)

thetaY = +pi/2;

thetaZ = -atan2(-r12,r11);

thetaX = 0;

}

}

else // r20 = +1

{

// Not a unique solution: thetaX + thetaZ = atan2(-r12,r11)

thetaY = -pi/2;

thetaZ = atan2(-r12,r11);

thetaX = 0;

}

2.7 Factor as Rx0RyRx1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rx(θx0
)Ry(θy)Rx(θx1

), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cy sysx1

sycx1

sysx0 cx0cx1 − cysx0sx1 −cycx1sx0 − cx0sx1

−sycx0 cx1sx0 + cycx0sx1 cycx0cx1 − sx0sx1


The simplest term to work with is cy = r00, so θy = acos(r00). There are three cases to consider.
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Case 1: If θy ∈ (0, π), then sy 6= 0 and sy(sx0
, cx0

) = (r10,−r20), in which case θx0
= atan2(r10,−r20), and

sy(sx1 , cx1) = (r01, r02), in which case θx1 = atan2(r01, r02). In summary,

θy = acos(r00), θx0
= atan2(r10,−r20), θx1

= atan2(r01, r02) (19)

Case 2: If θy = 0, then cy = 1 and sy = 0. In this case, r11 r12

r21 r22

 =

 cx0
cx1
− sx0

sx1
−cx1

sx0
− cx0

sx1

cx1
sx0

+ cx0
sx1

cx0
cx1
− sx0

sx1

 =

 cos(θx1 + θx0) − sin(θx1 + θx0)

sin(θx1
+ θx0

) cos(θx1
+ θx0

)


Therefore, θx1

+ θx0
= atan2(−r12, r11). There is one degree of freedom, so the factorization is not unique.

In summary,
θy = 0, θx1

+ θx0
= atan2(−r12, r11) (20)

Case 3: If θy = π, then cy = −1 and sy = 0. In this case, r11 r12

r21 r22

 =

 cx0
cx1

+ sx0
sx1

cx1
sx0
− cx0

sx1

cx1
sx0
− cx0

sx1
−cx0

cx1
− sx0

sx1

 =

 cos(θx1
− θx0

) − sin(θx1
− θx0

)

− sin(θx1
− θx0

) − cos(θx1
− θx0

)


Therefore, θx1

− θx0
= atan2(−r12, r11). There is one degree of freedom, so the factorization is not unique.

In summary,
θy = π, θx1

− θx0
= atan2(−r12, r11) (21)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r00
is tested for the three cases.

if (r00 < +1)

{

if (r00 > -1)

{

thetaY = acos(r00);

thetaX0 = atan2(r10,-r20);

thetaX1 = atan2(r01,r02);

}

else // r00 = -1

{

// Not a unique solution: thetaX1 - thetaX0 = atan2(-r12,r11)

thetaY = pi;

thetaX0 = -atan2(-r12,r11);

thetaX1 = 0;

}

}

else // r00 = +1

{

// Not a unique solution: thetaX1 + thetaX0 = atan2(-r12,r11)

thetaY = 0;

thetaX0 = atan2(-r12,r11);

thetaX1 = 0;

}
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2.8 Factor as Rx0RzRx1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rx(θx0
)Ry(θy)Rz(θx1

), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cz −szcx1

szsx1

szcx0 czcx0cx1 − sx0sx1 −cx1sx0 − czcx0sx1

szsx0
czcx1

sx0
+ cx0

sx1
cx0

cx1
− czsx0

sx1


The simplest term to work with is cz = r00, so θz = acos(r00). There are three cases to consider.

Case 1: If θz ∈ (0, π), then sz 6= 0 and sz(sx0
, cx0

) = (r20, r10), in which case θx0
= atan2(r20, r10), and

sz(sx1
, cx1

) = (r02,−r01), in which case θx1
= atan2(r02,−r01). In summary,

θz = acos(r00), θx0
= atan2(r20, r10), θx1

= atan2(r02,−r01) (22)

Case 2: If θz = 0, then cz = 1 and sz = 0. In this case, r11 r12

r21 r22

 =

 cx0
cx1
− sx0

sx1
−cx1

sx0
− cx0

sx1

cx1
sx0

+ cx0
sx1

cx0
cx1
− sx0

sx1

 =

 cos(θx1 + θx0) − sin(θx1 + θx0)

sin(θx1
+ θx0

) cos(θx1
+ θx0

)


Therefore, θx1

+ θx0
= atan2(r21, r22). There is one degree of freedom, so the factorization is not unique. In

summary,
θz = 0, θx1 + θx0 = atan2(r21, r22) (23)

Case 3: If θz = π, then cz = −1 and sz = 0. In this case, r11 r12

r21 r22

 =

 −cx0
cx1
− sx0

sx1
−cx1

sx0
+ cx0

sx1

−cx1sx0 + cx0sx1 cx0cx1 + sx0sx1

 =

 − cos(θx1
− θx0

) sin(θx1
− θx0

)

sin(θx1 − θx0) cos(θx1 − θx0)


Therefore, θx1 − θx0 = atan2(r21, r22). There is one degree of freedom, so the factorization is not unique. In
summary,

θz = π, θx1
− θx0

= atan2(r21, r22) (24)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r00
is tested for the three cases.

if (r00 < +1)

{

if (r00 > -1)

{

thetaZ = acos(r00);

thetaX0 = atan2(r20,r10);

thetaX1 = atan2(r02,-r01);

}

else // r00 = -1

{
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// Not a unique solution: thetaX1 - thetaX0 = atan2(r21,r22)

thetaZ = pi;

thetaX0 = -atan2(r21,r22);

thetaX1 = 0;

}

}

else // r00 = +1

{

// Not a unique solution: thetaX1 + thetaX0 = atan2(r21,r22)

thetaZ = 0;

thetaX0 = atan2(r21,r22);

thetaX1 = 0;

}

2.9 Factor as Ry0RxRy1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Ry(θy0)Rx(θx)Ry(θy1), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cy0cy1 − cxsy0sy1 sxsy0 cxcy1sy0 + cy0sy1

sxsy1
cx −sxcy1

−cy1
sy0
− cxcy0

sy1
sxcy0

cxcy0
cy1
− sy0

sy1


The simplest term to work with is cx = r11, so θx = acos(r11). There are three cases to consider.

Case 1: If θx ∈ (0, π), then sx 6= 0 and sx(sy0
, cy0

) = (r01, r21), in which case θy0
= atan2(r01, r21), and

sx(sy1
, cy1

) = (r10,−r12), in which case θy1
= atan2(r10,−r12). In summary,

θx = acos(r11), θy0 = atan2(r01, r21), θy1 = atan2(r10,−r12) (25)

Case 2: If θx = 0, then cx = 1 and sx = 0. In this case, r00 r02

r20 r22

 =

 cy0
cy1
− sy0

sy1
cy1
sy0

+ cy0
sy1

−cy1
sy0
− cy0

sy1
cy0
cy1
− sy0

sy1

 =

 cos(θy1
+ θy0

) sin(θy1
+ θy0

)

− sin(θy1
+ θy0

) cos(θy1
+ θy0

)


Therefore, θy1 + θy0 = atan2(r02, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = 0, θy1
+ θy0

= atan2(r02, r00) (26)

Case 3: If θx = π, then cx = −1 and sx = 0. In this case, r00 r02

r20 r22

 =

 cy0
cy1

+ sy0
sy1

−cy1
sy0

+ cy0
sy1

−cy1
sy0

+ cy0
sy1

−cy0
cy1
− sy0

sy1

 =

 cos(θy1
− θy0

) sin(θy1
− θy0

)

sin(θy1
− θy0

) − cos(θy1
− θy0

)


Therefore, θy1 − θy0 = atan2(r02, r00). There is one degree of freedom, so the factorization is not unique. In
summary,

θx = π, θy1
− θy0

= atan2(r02, r00) (27)

14



Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r11
is tested for the three cases.

if (r11 < +1)

{

if (r11 > -1)

{

thetaX = acos(r11);

thetaY0 = atan2(r01,r21);

thetaY1 = atan2(r10,-r12);

}

else // r11 = -1

{

// Not a unique solution: thetaY1 - thetaY0 = atan2(r02,r00)

thetaX = pi;

thetaY0 = -atan2(r02,r00);

thetaY1 = 0;

}

}

else // r11 = +1

{

// Not a unique solution: thetaY1 + thetaY0 = atan2(r02,r00)

thetaX = 0;

thetaY0 = atan2(r02,r00);

thetaY1 = 0;

}

2.10 Factor as Ry0RzRy1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Ry(θy0
)Rz(θz)Ry(θy1

), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


czcy0

cy1
− sy0

sy1
−szcy0

cy1
sy0

+ czcy0
sy1

szcy1 cz szsy1

−czcy1sy0 − cy0sy1 szsy0 cy0cy1 − czsy0sy1


The simplest term to work with is cz = r11, so θz = acos(r11). There are three cases to consider.

Case 1: If θz ∈ (0, π), then sz 6= 0 and sz(sy0 , cy0) = (r21,−r01), in which case θy0 = atan2(r21,−r01), and
sz(sy1 , cy1) = (r12, r10), in which case θy1 = atan2(r12, r10). In summary,

θz = acos(r11), θy0 = atan2(r21,−r01), θy1 = atan2(r12, r10) (28)

Case 2: If θz = 0, then cz = 1 and sz = 0. In this case, r00 r02

r20 r22

 =

 cy0cy1 − sy0sy1 cy1sy0 + cy0sy1

−cy1
sy0
− cy0

sy1
cy0
cy1
− sy0

sy1

 =

 cos(θy1 + θy0) sin(θy1 + θy0)

− sin(θy1
+ θy0

) cos(θy1
+ θy0

)
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Therefore, θy1
+ θy0

= atan2(−r20, r22). There is one degree of freedom, so the factorization is not unique.
In summary,

θz = 0, θy1 + θy0 = atan2(−r20, r22) (29)

Case 3: If θz = π, then cz = −1 and sz = 0. In this case, r00 r02

r20 r22

 =

 −cy0
cy1
− sy0

sy1
cy1
sy0
− cy0

sy1

cy1sy0 − cy0sy1 cy0cy1 + sy0sy1

 =

 − cos(θy1
− θy0

) − sin(θy1
− θy0

)

− sin(θy1 − θy0) cos(θy1 − θy0)


Therefore, θy1 − θy0 = atan2(−r20, r22). There is one degree of freedom, so the factorization is not unique.
In summary,

θz = π, θy1
− θy0

= atan2(−r20, r22) (30)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r11
is tested for the three cases.

if (r11 < +1)

{

if (r11 > -1)

{

thetaZ = acos(r11);

thetaY0 = atan2(r21,-r01);

thetaY1 = atan2(r12,r10);

}

else // r11 = -1

{

// Not a unique solution: thetaY1 - thetaY0 = atan2(-r20,r22)

thetaZ = pi;

thetaY0 = -atan2(-r20,r22);

thetaY1 = 0;

}

}

else // r11 = +1

{

// Not a unique solution: thetaY1 + thetaY0 = atan2(-r20,r22)

thetaZ = 0;

thetaY0 = atan2(-r20,r22);

thetaY1 = 0;

}
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2.11 Factor as Rz0RxRz1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rz(θz0)Rx(θx)Rz(θz1), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cz0cz1 − cxsz0sz1 −cxcz1sz0 − cz0sz1 sxsz0

cz1sz0 + cxcz0sz1 cxcz0cz1 − sz0sz1 −sxcz0
sxsz1 sxcz1 cx


The simplest term to work with is cx = r22, so θx = acos(r22). There are three cases to consider.

Case 1: If θx ∈ (0, π), then sx 6= 0 and sx(sz0 , cz0) = (r02,−r12), in which case θz0 = atan2(r02,−r12), and
sx(sz1 , cz1) = (r20, r21), in which case θz1 = atan2(r20, r21). In summary,

θx = acos(r22), θz0 = atan2(r02,−r12), θz1 = atan2(r20, r21) (31)

Case 2: If θx = 0, then cx = 1 and sx = 0. In this case, r00 r01

r10 r11

 =

 cz0cz1 − sz0sz1 −cz1sz0 − cz0sz1
cz1sz0 + cz0sz1 cz0cz1 − sz0sz1

 =

 cos(θz1 + θz0) − sin(θz1 + θz0)

sin(θz1 + θz0) cos(θz1 + θz0)


Therefore, θz1 + θz0 = atan2(−r01, r00). There is one degree of freedom, so the factorization is not unique.
In summary,

θx = 0, θz1 + θz0 = atan2(−r01, r00) (32)

Case 3: If θx = π, then cx = −1 and sx = 0. In this case, r00 r01

r10 r11

 =

 cz0cz1 + sz0sz1 cz1sz0 − cz0sz1
cz1sz0 − cz0sz1 −cz0cz1 − sz0sz1

 =

 cos(θz1 − θz0) − sin(θz1 − θz0)

− sin(θz1 − θz0) − cos(θz1 − θz0)


Therefore, θz1 − θz0 = atan2(−r01, r00). There is one degree of freedom, so the factorization is not unique.
In summary,

θx = π, θz1 − θz0 = atan2(−r01, r00) (33)

Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r22
is tested for the three cases.

if (r22 < +1)

{

if (r22 > -1)

{

thetaX = acos(r22);

thetaZ0 = atan2(r02,-r12);

thetaZ1 = atan2(r20,r21);

}

else // r22 = -1

{
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// Not a unique solution: thetaZ1 - thetaZ0 = atan2(-r01,r00)

thetaX = pi;

thetaZ0 = -atan2(-r01,r00);

thetaZ1 = 0;

}

}

else // r22 = +1

{

// Not a unique solution: thetaZ1 + thetaZ0 = atan2(-r01,r00)

thetaX = 0;

thetaZ0 = atan2(-r01,r00);

thetaZ1 = 0;

}

2.12 Factor as Rz0RyRz1

Setting R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, formally multiplying Rz(θz0)Ry(θy)Rz(θz1), and equating
yields 

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =


cycz0cz1 − sz0sz1 −cz1sz0 − cycz0sz1 sycz0

cycz1sz0 + cz0sz1 cz0cz1 − cysz0sz1 sysz0

−sycz1 sysz1 cy


The simplest term to work with is cy = r22, so θy = acos(r22). There are three cases to consider.

Case 1: If θy ∈ (0, π), then sy 6= 0 and sy(sz0 , cz0) = (r12, r02), in which case θz0 = atan2(r12, r02), and
sy(sz1 , cz1) = (r21,−r20), in which case θz1 = atan2(r20, r21). In summary,

θy = acos(r22), θz0 = atan2(r12, r02), θz1 = atan2(r21,−r−20) (34)

Case 2: If θy = 0, then cy = 1 and sy = 0. In this case, r00 r01

r10 r11

 =

 cz0cz1 − sz0sz1 −cz1sz0 − cz0sz1
cz1sz0 + cz0sz1 cz0cz1 − sz0sz1

 =

 cos(θz1 + θz0) − sin(θz1 + θz0)

sin(θz1 + θz0) cos(θz1 + θz0)


Therefore, θz1 + θz0 = atan2(r10, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = 0, θz1 + θz0 = atan2(r10, r11) (35)

Case 3: If θy = π, then cy = −1 and sy = 0. In this case, r00 r01

r10 r11

 =

 −cz0cz1 − sz0sz1 −cz1sz0 + cz0sz1

−cz1sz0 + cz0sz1 cz0cz1 + sz0sz1

 =

 − cos(θz1 + θz0) − sin(θz1 + θz0)

sin(θz1 + θz0) cos(θz1 + θz0)


Therefore, θz1 − θz0 = atan2(r10, r11). There is one degree of freedom, so the factorization is not unique. In
summary,

θy = π, θz1 − θz0 = atan2(r10, r11) (36)
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Pseudocode for the factorization is listed below. To avoid the arcsin call until needed, the matrix entry r22
is tested for the three cases.

if (r22 < +1)

{

if (r22 > -1)

{

thetaY = acos(r22);

thetaZ0 = atan2(r12,r02);

thetaZ1 = atan2(r21,-r20);

}

else // r22 = -1

{

// Not a unique solution: thetaZ1 - thetaZ0 = atan2(r10,r11)

thetaY = pi;

thetaZ0 = -atan2(r10,r11);

thetaZ1 = 0;

}

}

else // r22 = +1

{

// Not a unique solution: thetaZ1 + thetaZ0 = atan2(r10,r11)

thetaY = 0;

thetaZ0 = atan2(r10,r11);

thetaZ1 = 0;

}

3 Factor as a Product of Two Rotation Matrices

Given a rotation R that is a product of two coordinate axis rotations, the problem is to factor it into
three coordinate axis rotations using the ordering xyz. Derivations for the other orderings are similar. In
the subsections the matrices are Px = Rx(φx), Py = Ry(φy), and Pz = Rz(φz). Define sa = sin(φx),
sb = sin(φy), sc = sin(φz), ca = cos(φx), cb = cos(φy), and cc = cos(φz).

3.1 Factor PxPy

This is a trivial case. The factorization is R = Rx(φx)Ry(φy) = Rx(θx)Ry(θy)Rz(θz). Therefore, θx = φx,
θy = φy, and θz = 0.
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3.2 Factor PyPx

The factorization is R = Ry(φy)Rx(φx) = Rx(θx)Ry(θy)Rz(θz). Formal multiplication of the various terms
leads to the equation

cb sasb casb

0 ca −sa
−sb cbsa cacb

 =


cycz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx
−cxczsy + sxsz czsx + cxsysz cxcy

 .
It is easy to see that sy = casb in which case θy = asin(cos θy sin θx). Adding the 10 and 21 terms yields

0 + cbsa = (czsxsy + cxsz) + (czsx + cxsysz) = (1 + sy)(czsx + cxsz)

which leads to sin(θx + θz) = cbsa/(1 + casb). In the even that casb = −1, this leads to a special case in the
coding that is easy to solve. Subtracting the 10 term from the 21 term yields

cbsa − 0 = (czsxsy + cxsz)− (czsx + cxsysz) = (1− sy)(czsx − cxsz)

which leads to sin(θx − θz) = cbsa/(1− casb). In the event that casb = 1, this also leads to a special case in
the coding that is easy to solve. The sine functions can be inverted and the two resulting equations for θx
and θz can be solved. For the case |casb| < 1,

θx = 1
2

[
asin

(
cbsa

1+cbsa

)
+ asin

(
cbsa

1−cbsa

)]
θy = asin(casb)

θz = 1
2

[
asin

(
cbsa

1+cbsa

)
− asin

(
cbsa

1−cbsa

)]

3.3 Factor PxPz

This is a trivial case. The factorization is R = Rx(φx)Rz(φz) = Rx(θx)Ry(θy)Rz(θz). Therefore, θx = φx,
θy = 0, and θz = φz.

3.4 Factor PzPx

A construction similar to the case PyPx leads to

θx = 1
2

[
asin

(
cacc

1+sasc

)
+ asin

(
cacc

1−sasc

)]
θy = asin(sasc)

θz = 1
2

[
asin

(
cacc

1+sasc

)
− asin

(
cacc

1−sasc

)]

3.5 Factor PyPz

This is a trivial case. The factorization is R = Ry(φy)Rz(φz) = Rx(θx)Ry(θy)Rz(θz). Therefore, θx = 0,
θy = φy, and θz = φz.
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3.6 Factor PzPy

A construction similar to the case PyPx leads to

θx = 1
2

[
asin

(
cbsc

1+sbcc

)
− asin

(
cbsc

1−sbcc

)]
θy = asin(sbcc)

θz = 1
2

[
asin

(
cbsc

1+sbcc

)
+ asin

(
cbsc

1−sbcc

)]
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