
A Linear Algebraic Approach to Quaternions

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: September 16, 2002
Last Modified: March 1, 2008

Contents

1 Rotation Matrices 2

2 An Alternate View of 3D Rotation 5

3 A Closer Look 8

4 Spherical Linear Interpolation 10

5 The Relationship to Quaternions 12

1

http://www.geometrictools.com/

Unit quaternions are a powerful way to represent rotations within computer graphics and physics applications.
Unfortunately, the mathematical complexity of quaternions seems to discourage some practitioners from any
attempts at understanding them. This document provides an alternate approach to the presentation of
quaternions, one that is based solely on concepts from trigonometry and linear algebra. The algebra and
geometry of quaternions is motivated from a study of certain rotation matrices in four dimensions. This is
in contrast to the classical approach that defines unit quaternions as points on a unit hypersphere in four
dimensions and lists their important algebraic properties to be taken on faith.

1 Rotation Matrices

Let us review a concepts that you are no doubt already familiar with, rotation in the xy-plane. The rotation
of the vector (x, y) the origin by an angle θ > 0 is the vector (x′, y′) specified by

x′ = cos(θ)x− sin(θ)y, y′ = sin(θ)x + cos(θ)y.

The formula is derivable using a standard trigonometric construction. The direction of rotation is counter-
clockwise about the origin. In vector-matrix form the equation is x′

y′

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 x

y


If we now add a third dimension, the rotation of the vector (x, y, z) about the z-axis by an angle θ > 0 is just
a rotation of the (x, y) portion about the origin in the xy-plane. The rotated vector (x′, y′, z′) is specified by

x′

y′

z′

 =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




x

y

z


Setting v = [x y z]T, v′ = [x′ y′ z′]T, and

s = sin(θ) and c = cos(θ), (1)

the rotation is v′ = R0v where R0 is the rotation matrix

R0 =


c −s 0

s c 0

0 0 1

 (2)

The standard coordinate axis directions, represented as 3 × 1 vectors, are ı = [1 0 0]T,  = [0 1 0]T, and
k = [0 0 1]T. Observe that

R0ı = [c s 0]T = cı + s, R0 = [−s c 0]T = −sı + c, R0k = [0 0 1]T = k. (3)

The vectors R0ı, R0, and R0k are the columns of the rotation matrix R0.

2

The equation for rotation of a vector v ∈ IR3 by an angle θ > 0 about an axis with unit-length direction d
is derived next. Let a and b be vectors in the plane that contains the origin and has normal d. Moreover,
choose these vectors so that {a,b,d} is a right-handed orthonormal set: each vector is unit length, the
vectors are mutually perpendicular, and a × b = d, b × d = a, and d × a = b. Figure 1.1 shows a typical
choice.

Figure 1.1 A right-handed orthonormal set of vectors. A rotation is desired about d by the angle
θ > 0.

The orthonormal set of vectors may be used as a basis for IR3, both as domain and range of the rota-
tional transformation, denoted Rot(u). The matrix R0 in equation (2) represents the rotation in this basis:
Rot(a) = ca + sb, Rot(b) = −sa + cb, and Rot(d) = d. The similarity between these equations and
equations (3) is no coincidence. The representation of v in the basis is

v = (a · v)a + (b · v)b + (d · v)d =: αa + βb + δd (4)

where the last equality defines α, β, and δ as the dot products of the basis vectors with v. This renaming is
done for simplicity of notation in the ensuing constructions. A couple of vector quantities that we will use
later are

d× v = d× (αa + βb + δd) = αd× a + βd× b + δd× d = αb− βa (5)

and
d× (d× v) = d× (αb− βa) = αd× b− βd× a = −αa− βb (6)

The rotation applied to v is represented as a matrix R1 with respect to the standard basis via:

R1v = R1 (αa + βb + δd)

= αR1a + βR1b + δR1d

= α(ca + sb) + β(−sa + cb) + δd

= (αa + βb + δd) + α(ca + sb− a) + β(−sa + cb− b)

= (αa + βb + δd) + s(αb− βa) + (1− c)(−αa− βb)

= v + sd× v + (1− c)d× (d× v)

(7)

where the last equality is just an application of the equations (4), (5), and (6). The matrix R1 itself is

3

constructed by observing that the cross product d× u can be written as a matrix times vector:

d× u =


d1

d2

d3

×


u1

u2

u3

 =


d2u3 − d3u2

d3u1 − d1u3

d1u2 − d2u1

 =


0 −d3 d2

d3 0 −d1

−d2 d1 0




u1

u2

u3

 = Du (8)

where the last equality defines the 3 × 3 matrix D. This matrix is skew-symmetric since DT = −D. The
rotation formula (7) becomes

R1v = v + sDv + (1− c)D2v =
(
I + sD + (1− c)D2

)
v

where I is the 3× 3 identity matrix. Since this equation is true for all vectors v, the rotation matrix must
be

R1 = I + sD + (1− c)D2. (9)

We have arrived at our first goal of understanding: The matrix R0 in (2) is the representation of the rotation
with respect to the basis {a,b,d} and the matrix R1 in (9) is the representation of the rotation with respect
to the standard basis {ı, ,k}. In the linear algebra terminology, the two matrices are related by a similarity
transformation: R1 = PR0P

−1 where P is an invertible 3× 3 matrix. P will be constructed here shortly.

First, observe that equation (4) may be manipulated as

Iv = v = (a · v)a + (b · v)b + (d · v)d = a(aTv) + b(bTv) + d(dTv) = (aaT + bbT + ddT)v.

The equation is true for all vectors v, so

I = aaT + bbT + ddT (10)

Keep in mind that uuT is the product of a 3× 1 matrix and a 1× 3 matrix, the result being a 3× 3 matrix.
This is not the same as uTu, a product of a 1× 3 matrix and a 3× 1 matrix, the result being a 1× 1 matrix
(a scalar).

Second, equations (5) and (8) imply the relationship

Dv = d× v = αb− βa = (a · v)b− (b · v)a = b(aTv)− a(bTv) = (baT − abT)v.

This equation is true for all vectors v, so

D = baT − abT. (11)

Third, equations (4) and (6) imply the relationship

D2v = d× (d× v) = −αa− βb = (d · v)d− v = d(dTv)− v = (ddT − I)v.

This equation is true for all vectors v, so
D2 = ddT − I. (12)

Now to construct P . Equation (4) can be factored into a product of a 1× 3 block matrix (each block a 3× 1
vector) and a 3× 1 block matrix (each block a single scalar):

v = αa + βb + δd = aα + bβ + dδ =
[

a b d
] 

α

β

δ

 = Pu (13)

4

where the last equality defines P as the matrix whose columns are a, b, and d and u = [α β δ]T. Since the
columns of P form a right-handed orthonormal set, P is itself a rotation matrix itself, so P−1 = PT.

Let v′ denote the rotated vector corresponding to v. The equation v′ = R1v represents the rotation when
the standard basis {ı, ,k} is used for both the domain and the range. The components of v and v′ are
the coordinates with respect to this basis. Similarly, the u′ = R0u represents the rotation when the basis
{a,b,d} is used for both the domain and range. The components of u and u′ are the coordinates of v and
v′, respectively, with respect to this basis. Substituting u = PTv and u′ = PTv to convert back to the
standard basis, we have

u′ = R0u → PTv′ = R0P
Tv → PTR1v = R0P

Tv.

Since this is true for all vectors v, it must be that PTR1 = R0P
T leading to the claimed similarity relationship

R1 = PR0P
T. Equation (9) may be alternately derived from the similarity transformation using block matrix

calculations:
R1 = PR0P

T

=
[

a b d
] 

c −s 0

s c 0

0 0 1




aT

bT

dT



=
[

a b d
] 

caT − sbT

saT + cbT

d



= a(caT − sbT) + b(saT + cbT) + ddT

= c(aaT + bbT) + s(baT − abT) + ddT

= c(I − ddT) + s(baT − abT) + ddT by equation (10)

= c(I − ddT) + sD + ddT by equation (11)

= I + sD + (1− c)(ddT − I)

= I + sD + (1− c)D2 by equation (12)

(14)

2 An Alternate View of 3D Rotation

Let us return to the standard basis {ı, ,k} and the rotation matrix R0 from equation (2) that represents
rotation about the z-axis by angle θ. Quite clearly the z-axis is an invariant set under the rotation since
R(zk) = zR(k) = zk (vectors on the z-axis are transformed to vectors on the z-axis). The xy-plane is
also an invariant set under the rotation since R(xı + y) = xRı + yR = (cx − sy)ı + (sc + cy) (vectors
in the xy-plane are transformed to vectors in the xy-plane). More precisely, the z-axis and xy-plane are
invariant subspaces of IR3 with respect to the rotation. The precise definition is: Let V be a vector space
with subspace S ⊆ V and let T : V → V be a linear transformation. Define the set T (S) = {T (v) : v ∈ S}.

5

The subspace S is invariant with respect to T whenever T (S) ⊆ S. Note that invariance does not necessarily
imply v = T (v).

Now for an unlikely twist that hints at the essence of quaternions. Instead of viewing the rotation as an
operation on vectors (x, y, z) ∈ IR3, let us look at it as an operation on vectors (x, y, z, w) ∈ IR4. The
inclusion of the w component gives us an additional degree of freedom that allows the creation of a more
efficient representation of rotations than what is possible in three dimensions. By efficient, I mean in the
sense of a computer implementation. The 4D representation requires less memory than its 3D counterpart.
Composition of rotations in 3D involves multiplication of rotation matrices. Composition using the 4D
representation can be computed faster than its 3D counterpart.

A natural choice for representing the rotation in 4D is to choose

R0 =


c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1

 =

 R0 0

0T 1

 =

 Rxy 0

0T I

 (15)

where the first equality defines a 2 × 2 block matrix whose upper-left block is the 3 × 3 rotation matrix,
whose upper-right block is the 3× 1 zero vector, whose lower-left block is the 1× 3 zero vectors, and whose
lower-right block is the scalar 1. The second equality defines a 2×2 block matrix where each block is itself a
2× 2 matrix. The matrix Rxy is just the rotation within the xy-plane, the matrices 0 and 0T have all zeros,
and I is the 2 × 2 identity matrix. The vector (x, y, z, w) is transformed to (cx − sy, sx + cy, z, w). The
xy-plane is still an invariant subspace, but now of its parent space IR4. The zw-plane is also an invariant
subspace of IR4 since both z and w are unchanged by the transformation. The rotation by angle θ within
the xy-plane can be thought of as a composition of two rotations, each by angle θ/2:

Rxy =

 c −s

s c

 =

 γ −σ

σ γ

 γ −σ

σ γ

 = H2

where
σ = sin(θ/2) and γ = cos(θ/2) (16)

and where H is the rotation matrix for the half-angle θ/2 that controls the rotation in the xy-plane. The
matrix (15) may be factored into

R0 =

 H 0

0T I

 H 0

0T I


Now for the surprise. The identity matrix I that keeps z and w fixed during the rotations can be replaced
by nonidentity matrices. That is, we actually can allow z and w to change during each half-angle rotation
in the xy-plane as long as we make sure z returns to its original value after both operations. Generally any
invertible linear tranformation will do, say

R0 =

 H 0

0T M−1

 H 0

0T M



6

where M is an invertible 2× 2 matrix. Why complicate matters? Let us just choose M = HT. This choice
(rather than M = H) will keep us consistent with the standard use of quaternions to represent rotations.
The factorization is

R0 =

 H 0

0T H

 H 0

0T HT

 =: Q0Q0 (17)

where the last equality defines the matrices Q0 and Q0, themselves rotations in 4D. In summary, the half-
angle rotation H is applied twice to (x, y) to obtain the full angle rotation in the xy-plane. The inverse
half-angle rotation HT is applied to (z, w), a rotation within the zw-plane, but that rotation is undone by
H in the second operation, the end result being that (z, w) is unchanged by the composition.

What does this really gain us? For the 3D rotation matrix R0, we have no gain (rather, a loss). The 3D
matrix requires storing two precomputed numbers, s and c. The zeros and one are in known positions and
do not need to be stored in general memory. The application of R to (x, y, z) is computed as Rxy(x, y)
since z is unchanged. This requires a product of a 2× 2 matrix and a 2× 1 vector that uses 6 operations (4
multiplications and 2 additions). The 4D matrix requires storing σ and γ–no change in memory requirements.
However, the blind application of the right-hand-side matrices in (17) leads to computing terms H(x, y),
H(H(x, y)), HT(z, w), and H(HT(z, w)) for a total of 24 operations. We could be clever and realize that
(z, w) will not change, but that still leaves us with computing H(x, y) and H(H(x, y)) for a total of 12
operations. Being even more clever, we realize that H2 = Rxy and just compute Rxy(x, y). This just brings
us full circle with no gain.

The real gain occurs by constructing a 4D rotation matrix R1 that corresponds to the general 3D rotation
matrix R1 of equation (9). The construction in equation (14) is what we use for motivation. We need to
“lift” all our basis vectors into IR4 by appending a zero w-component. These vectors will be written as block
matrices to preserve the notion of the first three components living in IR3. Additional vectors are defined to
allow us to have a standard basis and an alternate basis for IR4. The standard basis is {ı̂, ̂, k̂, ˆ̀} where

ı̂ =

 ı

0

 , ̂ =

 

0

 , k̂ =

 k

0

 , ˆ̀ =

 0

1

 . (18)

The alternate basis is {â, b̂, d̂, ˆ̀} where

â =

 a

0

 , b̂ =

 b

0

 , d̂ =

 d

0

 . (19)

A construction analogous to the one that produces equation (10) may be used to obtain

I = ââT + b̂b̂
T

+ d̂d̂
T

+ ˆ̀ˆ̀T
(20)

where I is the 4× 4 identity matrix. A construction similar to the one that leads to equation (11) may be
used to obtain

D =

 D d

−dT 0

 = b̂âT − âb̂
T

+ d̂ˆ̀T
− ˆ̀d̂

T
. (21)

The matrix Q0 represents a general 4D rotation with respect to the alternate basis. We need a matrix Q1

that represents the same rotation, but with respect to the standard basis. As in equation (9), a similarity

7

relationship exists: Q1 = PQ0PT where P = [â b̂ d̂ ˆ̀], a 4D rotation matrix. Block matrix calculations allow
us to construct Q1:

Q1 = PQ0PT

=
[

â b̂ d̂ ˆ̀
]


γ −σ 0 0

σ γ 0 0

0 0 γ σ

0 0 −σ γ




âT

b̂
T

d̂
T

ˆ̀T



= γ(ââT + b̂b̂
T

+ d̂d̂
T

+ ˆ̀ˆ̀T
+ σ(b̂âT − âb̂

T
+ d̂ˆ̀T

− ˆ̀d̂
T
)

= γI + σD by equations (20) and (21)

(22)

To emphasize that vectors in IR4 are thought of as a IR3 part, the first three components, and a last component
we can write the matrix as

Q1 =

 γI + σD σd

−σdT γ

 . (23)

where I is the 3 × 3 identity and D is the skew-symmetric matrix defined in the last section. A similar
construction leads to

Q1 =

 γI + σD −σd

σdT γ

 . (24)

A quick calculation that uses equation (9) will verify that

R1 = Q1Q1 =

 R1 0

0T 1

 .

3 A Closer Look

We now have an interesting formulation for a 3D rotation by relating it to a pair of 4D rotations. In summary,
if R is a 3D rotation matrix with unit-length axis d = (d1, d2, d3) and angle θ, let σ = sin(θ/2), γ = cos(θ/2),
and

Q =

 γI + σD σd

−σdT γ

 and Q =

 γI + σD −σd

σdT γ

 .

The 4D rotation matrix that represents the 3D rotation is

R = QQ =

 γI + σD −σd

σdT γ

 γI + σD σd

−σdT γ

 =

 R 0

0T 1

 .

8

The application to a vector v ∈ IR3 is  v′

0

 = R

 v

0


and the 3D result is v′ = Rv. The matrix Q has a very special form,

Q =


γ −σd3 σd2 σd1

σd3 γ −σd1 σd2

−σd2 σd1 γ σd3

−σd1 −σd2 −σd3 γ

 =:


w −z y x

z w −x y

−y x w z

−x −y −z w

 (25)

where the last equality defines x = σd1, y = σd2, z = σd3, and w = γ. The names x, y, z, and w of
these quantites are not to be confused with the names of the variable components for vectors in IR4. I use
the names because that is the standard choice for the components of a quaternion which Q happens to be
related to. Although Q has 16 entries, only 4 of them are unique–the last column values. Moreover, Q uses
those same 4 values. The matrix R has 9 entries to be stored in memory, but in our fancy formulation we
only need 4 entries, a significant reduction when an application’s data contains a lot of rotation matrices. If
memory were really at a premium, we could use the fact that

x2 + y2 + z2 + w2 = σ2d2
1 + σ2d2

2 + σ2d3
3 + γ2 = σ2|d|2 + γ2 = σ2 + γ2 = 1,

restrict angles θ ∈ [−π, π) so that w ≥ 0, and store only x, y, and z. The w value is reconstructed as
w =

√
1− (x2 + y2 + z2).

One issue that has not yet been addressed is composition of rotations. Let us do so now. Let R = QQ and
S = PP be two of our 4D rotations that correspond to 3D rotation matrices R and S, respectively. The
composition in the 4D setting is

SR =
(
PP

) (
QQ

)
= P

(
PQ

)
Q = P

(
QP

)
Q =

(
PQ

)
(PQ) . (26)

The astute reader will say “Wait a moment.” and remind me that matrix multiplication is generally not
commutative, so how can I switch the order in PQ = QP? As it turns out, the matrices P and Q do
commute. This can be verified with a moderate amount of symbolic manipulation. (Okay, I was lazy and
used Mathematica to verify this first, then manually checked the symbolic calculations.) What equation
(26) says is that I can store Q to represent R, P to represent S, and compute the product PQ and store
to represent the composition SR. If Q is stored as the 4-tuple (x1, y1, z1, w1) and P is stored as the 4-tuple
(x2, y2, z2, w2), we only need to compute the unique values in PQ, call them (x3, y3, z3, w3). We can do this
by computing P times the last column of Q:

x3

y3

z3

w3

 =


w2 −z2 y2 x2

z2 w2 −x2 y2

−y2 x2 w2 z2

−x2 −y2 −z2 w2




x1

y1

z1

w1

 =


w2x1 − z2y1 + y2z1 + x2w1

z2x1 + w2y1 − x2z1 + y2w1

−y2x1 + x2y1 + w2z1 + z2w1

−x2x1 − y2y1 − z2z1 + w2w1

 . (27)

The product PQ effectively represents the composition of the 3D rotations. Computing the product requires
28 operations (16 multiplications and 12 additions). The product SR of the 3D rotations requires 3 multipli-
cations and 2 additions per entry for a total of 45 operations. Clearly our special representation is cheaper
to compute compositions of rotations.

9

The one deficiency of the special representation is in actually transforming the vectors. In 3D, the product
v′ = Rv requires 15 operations (9 multiplications and 6 additions). The iterated product

u1

u2

u3

0

 =




w −z y −x

z w −x −y

−y x w −z

x y z w






w −z y x

z w −x y

−y x w z

−x −y −z w




v1

v2

v3

0






requires, in worst case, 28 operations for each of two generic multiplies of a 4× 4 matrix and a 4× 1 vector
for a total of 56 operations, a dismal result compared to the 15 operations for the rotation in 3D. However,
a smarter implementation notices that the last component of the input vector is zero, so the corresponding
multiplications and additions do not need to be calculated. The first product of the 4 × 4 matrix and the
input vector therefore needs only 5 operations per each of 4 intermediate terms for a total of 20 operations.
Moreover, the last component of the output vector is zero, so it does not have to be formally computed. The
second product of the 4 × 4 matrix and the intermediate 4 × 1 vector from the last product will require 7
operations per each of 3 output terms for a total of 21 operations. The grand total in the optimized scheme
is 41 operations–still not in the ballpark to compete with the natural 3D product. Yet we can optimize one
last time. The product QQ contains R itself as the upper-left 3× 3 block. In terms of the 4-tuple (x, y, z, w)
that represents Q, we have

R =


1− 2(y2 + z2) 2(xy − zw) 2(xz + yw)

2(xy + zw) 1− 2(x2 + z2) 2(yz − xw)

2(xz − yw) 2(yz + xw) 1− 2(x2 + y2)

 (28)

where we have used the fact that x2 + y2 + z2 +w2 = 1 to reduce some of the matrix entries. The number of
operations required to compute R in this manner is 24 (12 multiplications and 12 additions). The calculations
are: tx = 2x, ty = 2y, tz = 2z, txx = txx, txy = txy, txz = txz, txw = txw, tyy = tyy, tyz = tyz, tyw = tyw,
tzz = tzz, tzw = tzw, R11 = 1−tyy−tzz, R12 = txy−twz, R13 = txz+tyw, R21 = txy+tzw, R22 = 1−txx−tzz,
R23 = tyz − txw, R31 = txz − tyw, R32 = tyz + txw, and R33 = 1− txx− tyy. After computing R, the rotation
is calculated as Rv. The total operation count is 39 (24 to compute R and 15 to transform). This is slightly
better than 41, but still more costly than if we stored R directly instead of (x, y, z, w). The saving factor
here, though, is that in computer graphics and physics applications, large sets of vectors are rotated (model
space to world space conversion of triangle meshes, for example). The conversion to R occurs once followed
by the transformation of a large set of vectors. The reduced memory for storing (x, y, z, w) instead of R and
the increased speed for computing compositions certainly justify the 24 operation fixed cost of conversion to
R for the purposes of vector transformations.

4 Spherical Linear Interpolation

The 4-tuple (x, y, z, w) that represents the matrix Q was already shown to be unit length when viewed as a
vector in IR4. That means it is a point on the hypersphere of radius 1 that is centered at the origin of IR4.
This is just a fancy way of stating the geometry associated with the algebraic equation x2 +y2 +z2 +w2 = 1.

A standard problem in computer graphics and animation is to interpolate two 3D rotation matrices R0 and
R1 for various choices of t ∈ [0, 1]. The interpolant is denoted R(t), a rotation matrix itself, and it is required

10

that R(0) = R0 and R(1) = R1. The 4-tuple representations of the rotation matrices and the corresponding
hypersphere geometry allow for a simple yet elegant interpolation called spherical linear interpolation or slerp
for short. If qi = (xi, yi, zi, wi) are the 4-tuple representations for Ri (i = 0, 1), and if q(t) is the 4-tuple
representing R(t), then a reasonable geometric condition to impose is that q(t) lie on the hyperspherical
arc connecting q0 and q1. Moreover, the angle between q(t) and q0 should be proportional to the angle
φ between q0 and q1 with constant of proportionality t. Figure 4.1 illustrates this by showing the plane
spanned by q0 and q1 and the circular arc connecting them within that plane.

Figure 4.1 Illustration of the slerp of two vectors.

The angle φ between q0 and q1 is indirectly obtained by a dot product, cos(φ) = q0 · q1. The interpolant
is required to be of the form q(t) = c0(t)q0 + c1(t)q1 for some to-be-determined coefficient functions c0(t)
and c1(t). Construction of q(t) uses only trigonometry and solving two equations in two unknowns. As t
uniformly varies between 0 and 1, the values q(t) are required to uniformly vary along the circular arc from
q0 to q1. That is, the angle between q(t) and q0 is tφ and the angle between q(t) and q1 is (1− t)φ. Dotting
the equation for q(t) with q0 yields

cos(tφ) = c0(t) + cos(φ)c1(t)

and dotting the equation with q1 yields

cos((1− t)φ) = cos(φ)c0(t) + c1(t).

These are two equations in the two unknowns c0 and c1. The solution for c0 is

c0(t) =
cos(tφ)− cos(φ) cos((1− t)φ)

1− cos2(φ)
=

sin((1− t)φ)
sin(φ)

.

The last equality is obtained by applying double-angle formulas for sine and cosine. By symmetry, c1(t) =
c0(1− t). Or solve the equations for

c1(t) =
cos((1− t)φ)− cos(φ) cos(tφ)

1− cos2(φ)
=

sin(tφ)
sin(φ)

.

The spherical linear interpolation is

slerp(t;q0,q1) =
sin((1− t)φ)q0 + sin(tφ)q1

sinφ
(29)

for 0 ≤ t ≤ 1.

11

5 The Relationship to Quaternions

There you have it. The previous sections, based only on linear algebraic methods, shows an alternate
system for rotation vectors that has the advantages of reduced memory and increased speed of compositions
compared to the standard 3D rotation system. The 4-tuple (x, y, z, w) that represents the matrix Q is a
disguised version of a quaternion that is formally written as q = xi+yj+zk+w. Equation (27) is a disguised
version of the product of two quaternions. Equation (25) tells you how to calculate a quaternion from a
rotation matrix. Equation (28) tells you how to calculate a rotation matrix from a quaternion.

If you want to find out about the classical approach to defining quaternions and showing how they relate to
rotations, you will have to read other documents. After all, my point was to give you an alternate formulation
without all the mathematical complexity!

12

	1 Rotation Matrices
	2 An Alternate View of 3D Rotation
	3 A Closer Look
	4 Spherical Linear Interpolation
	5 The Relationship to Quaternions

