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Second-order linear partial differential equations arise naturally in modeling physical phenomena. They are
characterized as parabolic, hyperbolic, or elliptic. Let € R, t > 0, and v = u(z,t) € R in the following

examples.

1. Heat Transfer, Population Dynamics (parabolic).
Diffusion of heat u(z,t) in a rod of length L and with heat source f(z) is modeled by

ut(z,t) = ugy(z,6) + f(z), x€(0,L), t>0, (from conservation laws)
u(z,0) = g(z), xz €0, L], (initial heat distribution)
u(0,t) = a(t), u(L,t) =b(t), t>0, (temperature known at boundaries)

or

ug(0,t) = uy(L,t) =0, t >0, (insulated boundaries)

2. Wave and Shock Phenomena (hyperbolic).
Displacement u(z,t) of an elastic string is modeled by

Ut (2, 1) = uge (2, 1), (0,L), t >0, (from conservation laws)

S
u(z,0) = f(z), w(z,0) = g(x), «e[0,L],
u(0,t) = a(t), u(L,t) = b(t), t>0, (location of string ends)

(initial displacement and speed)

3. Steady-State Heat Flow, Potential Theory (elliptic).
Steady-state distribution of heat u(z) in a bar of length L with heat source f(x) is modeled by

Uy () = — f(2), x € (0,L), (t— oo in the heat equation)

u(0) = A, u(L) = B, (boundary conditions)

1 Numerical Solution by Finite Differences

1.1 Heat Equation

Consider the heat equation with no source and constant temperature at the rod ends:

up(z,t) = Ugy(z,t), x€(0,L),t>0,
u(z,0) = g(z), z € [0, 1],
> 0.

u(0,t) = u(L,t) =0, t

Numerical solution is as follows:

e Select m + 1 spatial locations uniformly sampled as
z; =iAx, 0<i<m, Azx=L/m.



e Select temporal samples as
t; =jAt, j>0,, At>0.

e The estimates of temperature are

ugj) =u(x;,tj), 0<i<m, j>0.

e The sampled initial temperature is
gi =g(x;), 0<i<m.

e Approximate time derivative by forward difference

u(z,t + At) — u(x, t)
At

ug(x,t) =

Approximate spatial derivatives by central difference

Cu(z+ Az, t) — 2u(x, t) + u(z — Az, t)
(Az)?
Replace in heat equation to obtain

It uz(.j) “Ei)l - 2u§j) + ufj_)l

At (Ax)?

e The boundary conditions are

The numerical algorithm is implemented as

0)

u; = Gi, 0<i<m
u = ui) =0, i>0
uij'H) :ugj) +(AATt)2 (ugi)l —2u§j) +u§i)1), 1<i<m-—1, 5>0.

For this to be stable, you need At < (Axz)?/2.

An alternate scheme is Crank-Nicholson method
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Method is stable for all At > 0, but is harder to solve since u; is implicitly defined.



1.2 Wave Equation

Consider the wave equation where the string ends are clamped (no displacement):

upe (2, 1) = ugy (T, t), z € (0,L), t >0,
U(Z,O) = f(w)v Ut(xao) = g(x)a T e [OvL]a
u(0,t) = u(L,t) =0, t>0.

Using similar notation as in heat equation, and using centralized differences both in space and time, the
numerical method is

ugo):fi, 0<i<m

ugl) = ugo) + (At)gs, 0<i<m

u§) = u) =0, ji>0
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The method is stable when At < Ah. If right-hand side is modified as in Crank-Nicholson, then method is
stable for all At > 0.

1.3 Potential Equation

Consider steady-state heat flow for the constant temperature boundary problem:

Uge () = —f(x), x € (0,L),
u(0) =u(L) =0

The numerical method is
U = 07 Um = 07

wmRe — —f;, 1<i<m—1
Define the (m — 1) x 1 vectors u = [u;] where 1 < i < m—1 and b = [~(Az)?f;]. This vector is the unknown
in a linear system
Au=1b

where A is tridiagonal with main diagonal —2 and sub- and super-diagonals 1. Such systems are solved
robustly in O(m) time.

2 Extension to Higher Dimensions

Consider u(z,y,t) for two dimensional problem. The heat equation is

Ut = Ugy + Uyy,



the wave equation is
Ut = Ugg + Uyy,

and the potential equation is
Uz + Uyy = f(xay)'

If domain for (z,y) is a rectangle, then discretizations such as in the one dimensional problems extend easily.

If domain is not rectangular, then use finite elements. For example, consider uy; + Uy, = 0 where R is
nonrectangular. Let u(x,y) be specified on R (boundary of R). Decompose region R into triangles.

Region R

On each triangle approximate the true solution u(z,y) by linear function v(z,y) which interpolates the
triangle vertices. That is, v(x,y) is determined by

Ne(z,y,v) =c,

N = [(1'2, Y2, ’02) - (1'1, Y1, Ul)] X [(xffn Ys, ’03) - (1'1, Y1, vl)]v

c=Ne(x1,y1,01).
The boundary v; are known, but the interior v; must be determined.

Solving the potential equation on R is equivalent to finding function v which minimizes

I://Rui—&—u?/dxdy

subject to the boundary conditions. Define I to be the approximate integral where u is replaced by v. For
triangle T', let vr(x,y) = arx + Bry + yr. Then

I= Z (oF + BF) area(T).
T

Since ap and Sr are linear in the interior v;, I is quadratic in v;. Minimizing a quadratic function can be
done by solving a linear system (set derivatives equal to zero) or by conjugate gradient method (equivalent
to solving the linear system, but uses root finding techniques).



	1 Numerical Solution by Finite Differences
	1.1 Heat Equation
	1.2 Wave Equation
	1.3 Potential Equation

	2 Extension to Higher Dimensions

