
Least-Squares Fitting of Data with Polynomials

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: October 17, 2005
Last Modified: February 9, 2008

Contents

1 Fitting with Standard Polynomials 2

2 Fitting with Orthogonal Polynomials 3

1

http://www.geometrictools.com/

1 Fitting with Standard Polynomials

Given a set of n points {(xk, yk)}n−1
k=0 with xk+1 > xk for all k, the goal is to fit the data with a polynomial

of degree d, namely,

y =
d∑

i=0

cix
i

The least-squares method chooses the coefficients ci to minimize the squared error function

E(c0, . . . , cd) =
n∑

k=0

(
d∑

i=0

cix
i
k − yk

)2

This is a nonnegative quadratic function with respect to the coefficients and obtains its global minimum
when the gradient of E is zero; that is, the partial derivatives of E must be zero:

0 =
∂E

∂cj
= 2

n−1∑
k=0

(
d∑

i=0

cix
i
k − yk

)
xj

k

for 0 ≤ j ≤ d. The equation simplifies to
d∑

i=0

(
n−1∑
k=0

xj+i
k

)
ci =

n−1∑
k=0

xj
kyk

This is a linear system of d + 1 equations in d + 1 unknowns and is of the form

ATAc = ATy (1)

where A = [aki] is an n × (d + 1) matrix whose general entry is aki = xi
k, c = [cj] is a (d + 1) × 1 column

vector, and y = [yk] is an n× 1 column vector.

The coefficient matrix of the system is

ATA =



∑n−1
k=0 1

∑n−1
k=0 xk · · ·

∑n−1
k=0 xd

k∑n−1
k=0 xk

∑n−1
k=0 x2

k · · ·
∑n−1

k=0 xd+1
k

...
...

. . .
...∑n−1

k=0 xd
k

∑n−1
k=0 xd+1

k · · ·
∑n−1

k=0 x2d
k


The assumption that the xk are increasing guarantees that ATA is invertible, so the coefficients of the
polynomial are

c =
(
ATA

)−1
ATy

Although this is a concise mathematical formulation, a computer implementation using a fixed-size floating-
point number can suffer from numerical problems when inverting the coefficient matrix. The inversion is
ill-conditioned when |x0| = mink |xk| or |xn−1| = maxk |xk| is large and the degree d is large.

In some cases, a preconditioning of the data points will suffice to give a reasonably accurate set of coefficients.
Map the input points by translating the x-values and then uniformly scale the x- and y-values so that the
translated and scaled x-values lie in the interval [0, 1]. Such a transformation is

(uk, vk) =
(

xk − x0

xn−1 − x0
,

yk

xn−1 − x0

)

2

The transformed data points are fit with a polynomial

v =
d∑

i=0

ciu
i

using the least-squares method. The conditioning of the matrix A is sometimes better by using the trans-
formation approach, but not all the time. The evaluation of the polynomial at an x value is illustrated by
the pseudocode, where the degree, coefficients, and data points are assumed to be globally accessible:

float EvaluatePolynomial (float x)
{

float u = (x - x[0])/(x[n-1] - x[0]);
float v = c[degree];
for (int i = degree-1; i >= 0; i--)
{

v *= u;
v += c[i];

}
y = (x[n-1] - x[0])*v;

}

Another attempt to solve the matrix system uses the Cholesky decomposition. The matrix ATA is factored
into BBT, where B is lower triangular (and BT is upper triangular). The matrix B is then inverted using LU
methods to produce BTc = B−1ATy. The matrix BT is similarly inverted to solve for c = B−TB−1ATy.
Even this method can suffer from numerical problems with fixed-size floating-point numbers.

Alternatively, a computationally expensive method is to use exact rational arithmetic, where the data points
have floating-point components that are exactly represented as rational numbers.

2 Fitting with Orthogonal Polynomials

Another way to view the fitting problem is to use different polynomials than 1, x, x2, . . . , xd, call them pi(x)
for 0 ≤ i ≤ d with Degree(pi) = i. The idea is to obtain a set of equations like Equation (1), but where ATA
is a diagonal matrix. In this case, the problems with numerical round-off errors are eliminated (other than
the potential ones associated with divisions).

The polynomial we want to fit is of the form

y =
d∑

i=0

cipi(x) (2)

The error function to minimize is

E(c0, . . . , cd) =
n∑

k=0

(
d∑

i=0

cipi(xk)− yk

)2

3

Computing the partial derivatives and setting to zero,

0 =
∂E

∂cj
= 2

n−1∑
k=0

(
d∑

i=0

cipi(xk)− yk

)
pj(xk)

for 0 ≤ j ≤ d. The equation simplifies to
d∑

i=0

(
n−1∑
k=0

pi(xk)pj(xk)

)
ci =

n−1∑
k=0

pj(xk)yk

If we can choose the polynomials so that
n−1∑
k=0

pi(xk)pj(xk) = 0, i 6= j (3)

then the set of equations have the easily computed solution

ci =
∑n−1

k=0 pi(xk)yk∑n−1
k=0 p2

i (xk)
(4)

The condition in Equation (3) is an orthogonality condition. A set of polynomials satisfying the condition
are said to be orthogonal polynomials. Notice that the orthogonality condition depends on the data points
themselves. This is different from the standard polynomial fitting where 1, x, . . . , xd are chosen independently
of the input data. Thus, the fitting with orthogonal polynomials may be viewed as a data-driven method.

There are a variety of ways to generate orthogonal polynomials. One method is illustrated next. Choose

p0(x) = 1 (5)

which is a constant polynomial (degree 0) for all x. Also choose

p1(x) = x− a1, a1 =
1
n

n−1∑
k=0

xk (6)

It is easy to verify the orthogonality of the two polynomials:
n−1∑
k=0

p0(xk)p1(xk) =
n−1∑
k=0

(xk − a1) =

(
n−1∑
k=0

xk

)
− na1 = na1 − na1 = 0

The remaining polynomials are generated by a second-order recurrence relationship,

pm+1(x) = (x− am+1)pm(x)− bmpm−1(x), m ≥ 1 (7)

where

am+1 =
∑n−1

k=0 xkp2
m(xk)∑n−1

k=0 p2
m(xk)

, bm =
∑n−1

k=0 p2
m(xk)∑n−1

k=0 p2
m−1(xk)

The expressions for am+1 and bm may be computed from three equations obtained by multiplying Equation
(7) by pm−1(x), by pm(x), and by pm+1(x), and then substituting in xk and summing over k. In the process
of doing so, you must use the orthogonality condition of Equation (3).

The problems of computing the coefficients in Equation (4) and of evaluating the polynomial in Equation (2)
both reduce to having to evaluate the orthogonal polynomials of Equations (5), (6), and (7). The pseudocode
for this is listed next. It is assumed that am+1 and bm are globally accessible.

4

float EvaluateOrthogonal (int power, float x)
{

float p0 = 1;
if (power == 0)
{

return p0;
}

float p1 = x - a[1];
if (power == 1)
{

return p1;
}

float p2;
for (int m = 2; m <= power; m++)
{

p2 = (x - a[m])*p1 - b[m-1]*p0;
p0 = p1;
p1 = p2;

}
return p2;

}

void ComputeAB (int n, float x[])
{

a[1] = 0;
for (k = 0; k < n; k++)
{

a[1] += x[k];
}
a[1] /= n;

for (m = 1; m < degree; m++)
{

float sum0 = 0, sum1 = 0, sum2 = 0;
for (k = 0; k < n; k++)
{

float tmp0 = EvaluateOrthogonal(m-1,x[k]);
float tmp1 = EvaluateOrthogonal(m,x[k]);
sum0 += tmp0*tmp0;
sum1 += tmp1*tmp1;
sum2 += x[k]*tmp1*tmp1;

}
a[m+1] = sum2/sum1;
b[m] = sum1/sum0;

}
}

5

The function ComputeAB should be called first to initialize the am and bm values that are used in general
polynomial evaluations.

6

	1 Fitting with Standard Polynomials
	2 Fitting with Orthogonal Polynomials

