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Second-order linear partial differential equations arise naturally in modeling physical phenomena. They are
characterized as parabolic, hyperbolic, or elliptic. Let x ∈ IR, t ≥ 0, and u = u(x, t) ∈ IR in the following
examples.

1. Heat Transfer, Population Dynamics (parabolic).

Diffusion of heat u(x, t) in a rod of length L and with heat source f(x) is modeled by

ut(x, t) = uxx(x, t) + f(x), x ∈ (0, L), t > 0, (from conservation laws)

u(x, 0) = g(x), x ∈ [0, L], (initial heat distribution)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0, (temperature known at boundaries)

or

ux(0, t) = ux(L, t) = 0, t ≥ 0, (insulated boundaries)

2. Wave and Shock Phenomena (hyperbolic).

Displacement u(x, t) of an elastic string is modeled by

utt(x, t) = uxx(x, t), x ∈ (0, L), t > 0, (from conservation laws)

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ [0, L], (initial displacement and speed)

u(0, t) = a(t), u(L, t) = b(t), t ≥ 0, (location of string ends)

3. Steady-State Heat Flow, Potential Theory (elliptic).

Steady-state distribution of heat u(x) in a bar of length L with heat source f(x) is modeled by

uxx(x) = −f(x), x ∈ (0, L), (t→∞ in the heat equation)

u(0) = A, u(L) = B, (boundary conditions)

1 Numerical Solution by Finite Differences

1.1 Heat Equation

Consider the heat equation with no source and constant temperature at the rod ends:

ut(x, t) = uxx(x, t), x ∈ (0, L), t > 0,

u(x, 0) = g(x), x ∈ [0, L],

u(0, t) = u(L, t) = 0, t ≥ 0.

Numerical solution is as follows:

• Select m + 1 spatial locations uniformly sampled as

xi = i∆x, 0 ≤ i ≤ m, ∆x = L/m.
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• Select temporal samples as
tj = j∆t, j ≥ 0, , ∆t > 0.

• The estimates of temperature are

u
(j)
i

.= u(xi, tj), 0 ≤ i ≤ m, j ≥ 0.

• The sampled initial temperature is
gi = g(xi), 0 ≤ i ≤ m.

• Approximate time derivative by forward difference

ut(x, t) .=
u(x, t + ∆t)− u(x, t)

∆t
.

Approximate spatial derivatives by central difference

uxx(x, t) .=
u(x + ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
.

Replace in heat equation to obtain

u
(j+1)
i − u

(j)
i

∆t
=

u
(j)
i+1 − 2u

(j)
i + u

(j)
i−1

(∆x)2
.

• The boundary conditions are
u

(j)
0 = u(j)

m = 0, j ≥ 0.

The numerical algorithm is implemented as

u
(0)
i = gi, 0 ≤ i ≤ m

u
(j)
0 = u

(j)
m = 0, j ≥ 0

u
(j+1)
i = u

(j)
i + ∆t

(∆x)2

(
u

(j)
i+1 − 2u

(j)
i + u

(j)
i−1

)
, 1 ≤ i ≤ m− 1, j ≥ 0.

For this to be stable, you need ∆t < (∆x)2/2.

An alternate scheme is Crank-Nicholson method

u
(j+1)
i = u

(j)
i +

∆t

(∆x)2

(
u

(j)
i+1 − 2u

(j)
i + u

(j)
i−1

2
+

u
(j+1)
i+1 − 2u

(j+1)
i + u

(j+1)
i−1

2

)
.

Method is stable for all ∆t > 0, but is harder to solve since u
(j+1)
i is implicitly defined.
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1.2 Wave Equation

Consider the wave equation where the string ends are clamped (no displacement):

utt(x, t) = uxx(x, t), x ∈ (0, L), t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ [0, L],

u(0, t) = u(L, t) = 0, t ≥ 0.

Using similar notation as in heat equation, and using centralized differences both in space and time, the
numerical method is

u
(0)
i = fi, 0 ≤ i ≤ m

u
(1)
i = u

(0)
i + (∆t)gi, 0 ≤ i ≤ m

u
(j)
0 = u

(j)
m = 0, j ≥ 0

u
(j+1)
i

−2u
(j)
i

+u
(j−1)
i

(∆t)2 =
u

(j)
i+1−2u

(j)
i

+u
(j)
i−1

(∆x)2 , 1 ≤ i ≤ m− 1, j ≥ 1.

The method is stable when ∆t < ∆h. If right-hand side is modified as in Crank-Nicholson, then method is
stable for all ∆t > 0.

1.3 Potential Equation

Consider steady-state heat flow for the constant temperature boundary problem:

uxx(x) = −f(x), x ∈ (0, L),

u(0) = u(L) = 0

The numerical method is
u0 = 0, um = 0,

ui+1−2ui+ui−1
(∆x)2 = −fi, 1 ≤ i ≤ m− 1

Define the (m−1)×1 vectors u = [ui] where 1 ≤ i ≤ m−1 and b = [−(∆x)2fi]. This vector is the unknown
in a linear system

Au = b

where A is tridiagonal with main diagonal −2 and sub- and super-diagonals 1. Such systems are solved
robustly in O(m) time.

2 Extension to Higher Dimensions

Consider u(x, y, t) for two dimensional problem. The heat equation is

ut = uxx + uyy,
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the wave equation is
utt = uxx + uyy,

and the potential equation is
uxx + uyy = f(x, y).

If domain for (x, y) is a rectangle, then discretizations such as in the one dimensional problems extend easily.

If domain is not rectangular, then use finite elements. For example, consider uxx + uyy = 0 where R is
nonrectangular. Let u(x, y) be specified on ∂R (boundary of R). Decompose region R into triangles.

On each triangle approximate the true solution u(x, y) by linear function v(x, y) which interpolates the
triangle vertices. That is, v(x, y) is determined by

N • (x, y, v) = c,

N = [(x2, y2, v2)− (x1, y1, v1)]× [(x3, y3, v3)− (x1, y1, v1)],

c = N • (x1, y1, v1).

The boundary vi are known, but the interior vi must be determined.

Solving the potential equation on R is equivalent to finding function u which minimizes

I =
∫ ∫

R

u2
x + u2

y dxdy

subject to the boundary conditions. Define Ĩ to be the approximate integral where u is replaced by v. For
triangle T , let vT (x, y) = αT x + βT y + γT . Then

Ĩ =
∑
T

(
α2

T + β2
T

)
area(T ).

Since αT and βT are linear in the interior vi, Ĩ is quadratic in vi. Minimizing a quadratic function can be
done by solving a linear system (set derivatives equal to zero) or by conjugate gradient method (equivalent
to solving the linear system, but uses root finding techniques).
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