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1 Discussion

This document shows how to compute the distance between two ellipses in two dimensions. The algorithm
is based on constrained minimization and elimination theory. In this construction it is assumed that the
ellipses are separated (no intersection, one not contained in the other).

An ellipse is represented parametrically by specifying a center C, two unit-length and mutually orthogonal
axes ξ and η, and two lengths a and b. The four extreme points in the directions of the specified axes are
C± aξ and C± bη. Introducing an angle θ ∈ [0, 2π), the parametric form is

X(θ) = C + (a cos θ)ξ + (b sin θ)η.

Some vector algebra shows that

cos θ =
ξ · (X−C)

a
and sin θ =

η · (X−C)
b

.

It follows that
1 = cos2 θ + sin2 θ

=
(

1
aξ · (X−C)

)2 +
(

1
b η · (X−C)

)2

= (X−C)T
(

ξξT

a2 + ηηT

b2

)
(X−C)

= (X−C)TRTD2R(X−C)

where RT = [ξ |η], a rotation matrix, and D = Diag(1/a, 1/b), a diagonal matrix whose diagonal entries are
1/a and 1/b.

The two ellipses are represented algebraically by quadratic equations

Q0(X) = (X−C0)TRT
0 D2

0R0(X−C0)− 1 = 0 (1)

and
Q1(Y) = (Y−C1)TRT

1 D2
1R1(Y−C1)− 1 = 0. (2)

The problem is to compute X and Y, a point on each ellipse, that minimize |X−Y|2 subject to the constraints
Q0(X) = 0 and Q1(Y) = 0. This may be solved by the method of Lagrange multipliers. However, it turns out
that it is convenient to first make a change of variables. Define U = D0R0(X−C0) and V = D1R1(Y−C1).
The constraints become |U| = 1 and |V| = 1. The goal now is to minimize |X −Y|2 = |AU − BV + C|2
subject to U and V being unit length. The quantities on the right-hand side are A = RT

0 D−1
0 , B = RT

1 D−1
1 ,

and ∆ = C0 −C1.

Introduce Lagrange multipliers s and t and define

F (U,V; s, t) = |AU−BV + ∆|2 + s(|U|2 − 1) + t(|V|2 − 1).

The minimum occurs when ∇F = 0 where the gradient is with respect to six variables: the two components
of U, the two components of V, and the two multipliers s and t. The derivative with respect to U leads to
the equation

∂F

∂U
= AT(AU−BV + ∆) + sU = 0. (3)
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The derivative with respect to V leads to the equation

∂F

∂V
= BT(AU−BV + ∆)− tV = 0. (4)

The derivatives with respect to s and t lead to equations that just reproduce the constraints,

∂F

∂s
= |U|2 − 1 = 0 and

∂F

∂t
= |V|2 − 1 = 0.

Multiplying by the inverses of the transposes in equations (3) and (4) leads to

sA−T U + (AU−BV + ∆) = 0

tB−T V− (AU−BV + ∆) = 0

The first equation implies that A−T U and AU − BV + ∆ are parallel. The second equation implies that
B−T V and AU−BV+∆ are parallel. Consequently, the three vectors A−T U, B−T V, and AU−BV+∆
are all parallel.

Define W = (A−T U)⊥ where (x, y)⊥ = (y,−x). The fact that A−T U and AU−BV+∆ are parallel implies

WT(AU−BV + ∆) = 0.

The fact that A−T U and B−T V are parallel implies

WT(B−T V) = 0.

The two equations are rearranged in matrix form as m00 m01

m10 m11

V =

 WTB

WTB−T

V =

 WT(AU + ∆)

0

 =

 n

0


where the 2 × 2 coefficient matrix on the left-hand side is partitioned into two row vectors. Each entry of
the coefficient matrix that multiplies V is a linear polynomial in the components of U. The first row entry
in the 2× 1 column vector on the right-hand side is a quadratic polynomial in the components of U.

The rotation matrices in the ellipses are

R0 =

 c0 s0

−s0 c0

 and R1 =

 c1 s1

−s1 c1


for some angles φ0 and φ1 with ci = cos(φi), si = sin(φi) for i = 0, 1. The diagonal matrices are

D0 = Diag(1/a0, 1/b0) and D1 = Diag(1/a1, 1/b1).

Define U = (u0, u1), V = (v0, v1), and ∆ = (∆0,∆1). The components of the linear system are calculated
to be

m00 = a1 sin(φ0−φ1)
a0

u0 + a1 cos(φ0−φ1)
b0

u1

m01 = −b1 cos(φ0−φ1)
a0

u0 + b1 sin(φ0−φ1)
b0

u1

m10 = sin(φ0−φ1)
a1a0

u0 + cos(φ0−φ1)
a1b0

u1

m11 = − cos(φ0−φ1)
b1a0

u0 + sin(φ0−φ1)
b1b0

u1

n =
(

∆0s0
a0

− ∆1c0
a0

)
u0 +

(
∆0c0

b0
+ ∆1s0

b0

)
u1 +

(
a0
b0
− b0

a0

)
u0u1.

3



The solution to the system for V is

v0 = m11n/(m00m11 −m01m10)

v1 = −m10n/(m00m11 −m01m10).
(5)

Since V is unit length,

1 =
(m11n)2 + (−m10n)2

(m00m11 −m01m10)2

or
P (u0, u1) = (m2

11 + m2
10)n

2 − (m00m11 −m01m10)2 = 0.

The polynomial P is of degree 6 when both ellipses are not circles. If the first ellipse is a circle, then the
coefficient of u0u1 in n is zero, in which case P is of degree 4.

Suppose P has degree 6; then

P (u0, u1) =
6∑

k=0

pk(u0)uk
1 =

(
p0 + p2u

2
1 + p4u

4
1 + p6u

6
1

)
+ u1

(
p1 + p3u

2
1 + p5u

4
1

)
(6)

where pk(u0) are polynomials in u0 whose degree is at most 6− k. We also know that U is unit length, so

u2
1 = 1− u2

0. (7)

replacing this in equation (6) leads to

P (u0, u1) =
(
p0 + p2(1− u2

0) + p4(1− u2
0)

2 + p6(1− u2
0)

3
)

+ u1

(
p1 + p3(1− u2

0) + p5(1− u2
0)

2
)

= α(u0) + u1β(u0)

where α(u0) is a polynomial of degree 6 and β(u0) is a polynomial of degree 5. Setting this to zero and
solving yields

u1 = −α(u0)
β(u0)

.

Squaring, using equation (7), and rearranging terms leads to

S(u0) = α2(u0) + (u2
0 − 1)β2(u0) = 0. (8)

The polynomial S has degree 12.

The following procedure creates pairs U and V, each potentially yielding the minimum distance between
ellipses.

1. Solve equation (8) for its real-valued roots. For each root u0 do:

2. Solve equation (7) for u1 = ±
√

1− u2
0. For each of the two pairs U = (u0, u1) do:

3. Compute V from equation (5) by evaluating mij and n at U and do:

4. Evaluate the squared distance |AU−BV + ∆|2.
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5. For all squared distances obtained by the above steps, the minimum value is the squared distance
between the ellipses.

In the case of a circle and an ellipse that is not a circle, P has degree 4, leading to a polynomial S of degree 8.
It is better to formulate the problem by translating the circle to the origin and translating the ellipse center
by the same amount. The distance between ellipse and circle is now obtained by computing distance from
the ellipse to the origin, a calculation that requires solving a degree 4 polynomial equation, then subtracting
the circle radius from that distance.

Another observation is that you can set up the distance calculator as a numerical minimizer of a function of
two variables. Just use the parametric representations for the ellipses. The two variables are the angles φ0

and φ1. Try your favorite minimizer on the squared distance between ellipses points, a function of the two
angles.

5


	1 Discussion

