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1 Introduction

Given a convex polygon (2D) or a convex polyhedron (3D), a problem that arises in some applications is to
efficiently determine a point that is extreme in a specified direction. This is referred to as an extremal query.
There must always be an extreme vertex, but it is not necessarily unique. A polygon can have an extreme
edge and a polyhedron can have an extreme edge or extreme face.

A simple algorithm for computing an extreme vertex for a convex polygon or polyhedron with vertices Vi

for 0 ≤ i < n in the direction D is to locate the vertex Vj for which D ·Vj = max0≤i<n{D ·Vi}. This is
clearly an O(n) algorithm. The question is: Can we find an algorithm that is asymptotically more efficient,
say O(log n)? An O(log n) algorithm will output perform an O(n) algorithm in the limit as n approaches
infinity, but it is possible for that an O(n) algorithm outperforms an O(log n) algorithm for small- or
medium-sized n. In practice, it is important to have some measurements of the constant in the asymptotic
order. Moreover, given implementations of the competing O(n) and O(log n) algorithms, it is worthwhile
to determine the break-even value of n–the value at which the O(log n) algorithm outperforms the O(n)
algorithm.

An extremal query for a convex polygon can be performed in O(log n) with no preprocessing of the polygon
other than guaranteeing that its vertices are ordered. The algorithm is effectively a bisection of the dot
products D·Vi. This method does not have a counterpart for convex polyhedra. As it turns out, an extremal
query algorithm of O(log n) does exist for convex polyhedra, but it requires a data structure that takes O(n)
time to build. For applications that have repetitive queries, the preprocessing time is not important. The
idea for the data structure is due to [3] and [4], and it is referred to as the Dobkin-Kirkpatrick hierarchy. The
algorithm itself, both the construction of the data structure and the extremal query, are discussed in detail
in a well-written chapter in [5]. The construction relies on finding maximum independent sets in graphs, a
problem known to be NP-complete. However, [1, 2] provide an approximation that gives sufficiently large
independent sets that leads to an O(n) construction while maintaining O(log n) for the query.

The construction is quite elegant and the details provided in [5] are enough to get you started on implementing
the algorithm. Even so, the algorithm is intricate, requires some high-powered machinery to implement,
including convex hull construction, and makes an implementation a formidable challenge. This document
provides an alternative to the Dobkin-Kirkpatrick hierarchy. It is based on constructing a BSP tree for the
spherical dual of a convex polyhedron. The BSP tree construction is O(n) and the extremal query is O(log n)
as long as you have a reasonably balanced tree. A heuristic for creating balanced trees is provided here.
The implementation of the query is trivial and requires only a few lines of code. The construction of the
tree is more complicated and assumes that a specific graph data structure exists for representing adjacency
information for the vertices, edges, and triangles of the convex polyhedron.

2 Extremal Query for a Convex Polygon

Consider a convex polygon with counterclockwise ordered vertices Vi for 0 ≤ i < n. The edge directions
are Ei = Vi+1 −Vi where it is assumed we are using modular arithmetic on the indices for wrap-around,
Vn = V0 and V−1 = Vn−1. Outward pointing unit-length normals Ni may be constructed for the edges.
The normal vectors may be drawn as points on a unit circle. The arcs connecting the points correspond to
the edges of the polygon. This view of the circle is called the polar dual of the polygon. Figure 2.1 illustrates
for a six-sided polygon.
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Figure 2.1 Left: A convex polygon. Right: The polar dual of the the polygon.

If D = Ni, then all points on the edge Ei are extremal. If D is strictly between N0 and N1, then V1 is
the unique extremal point in that direction. Similar arguments apply for D strictly between any pair of
consecutive normals. The normal points on the circle decompose the circle into arcs, each arc corresponding
to an extremal vertex of the polygon. An end point of an arc corresponds to an entire edge being extremal.
The testing of D to determine the full set of extremals point is listed below, where (x, y)⊥ = (y,−x):

• Vertex Vi is optimal when Ni−1 ·D⊥ > 0 (D is left of Ni−1) and Ni ·D⊥ < 0 (D is right of Ni).

• Edge Ei is optimal when Ni−1 ·D⊥ = 0 and Ni ·D⊥ < 0.

The indexing is computed in the modular sense, where Nn = N0 and N−1 = Nn−1. Assuming we will be
projecting the extremal set onto the query axis, we can collapse the two tests into a single test and just use
one vertex of an extremal edge as the to-be-projected point:

• Vertex Vi is optimal when Ni−1 ·D⊥ ≥ 0 and Ni ·D⊥ < 0.

Generally there are n arcs for an n-sided polygon. We could search the arcs one at a time and test if D is
on that arc, but then we are back to an O(n) search. Instead we can create a BSP tree for the polar dual
that supports an O(log n) search. A simple illustration using the polygon of Figure 2.1 suffices. Figure 2.2
illustrates the construction of the BSP tree.
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Figure 2.2 A BSP tree constructed by recursive subdivision of the unit disk. The left child of node
Nj is marked with a ‘+’ to indicate Nj ·D⊥ ≥ 0. All normal vectors of the nodes in the left subtree
are left of Nj . The right child is marked with a ‘−’ to indicate Nj ·D⊥ < 0. All normal vectors of
the nodes in the right subtree are right of Nj .

Each node Nj represents the normal for which j is the median value of theindices represented by all
nodes in the subtree rooted at Nj .

Given a direction vector D, suppose the sign tests take you down the path from N3 to N5 to N4 and then
to V5. This indicates that D is left of N3, right of N5, and left of N4. This places D on the arc from N4

to N5, in which case V5 is the extremal vertex in the specified direction.

3 Extremal Query for a Convex Polyhedron

A convex polyhedron has vertices Vi for 0 ≤ i < n and a set of edges and a set of faces with outer pointing
normals Nj . The set of extremal points for a specified direction is either a polyhedron vertex, edge, or face.
To illustrate, Figure 3.1 shows a tetrahedron and a unit sphere with vertices that correspond to the face
normals of the tetrahedron, whose great circle arcs connecting the vertices correspond to the edges of the
tetrahedron, and whose spherical polygons correspond to the vertices of the tetrahedron. This view of the
sphere is called the spherical dual of the polyhedron.
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Figure 3.1 Left: A tetrahedron. Right: The spherical dual of the tetrahedron.

The tetrahedron has vertices V0 = (0, 0, 0), V1 = (1, 0, 0), V2 = (0, 1, 0), and V3 = (0, 0, 1). The face
normals are N0 = (1, 1, 1)/

√
3, N1 = (−1, 0, 0), N2 = (0,−1, 0), and N3 = (0, 0,−1). The sphere is

partitioned into four spherical triangles. The interior of the spherical triangle with 〈N0,N1,N2〉 corresponds
to those directions for which V3 is the unique extreme point. Observe that the three normals forming the
spherical triangle are the normals for the faces that share vertex V3.

Generally, the normal and edge directions of a polytope lead to a partitioning of the sphere into spherical
convex polygons. The interior of a single spherical convex polygon corresponds to the set of directions for
which a vertex of the polytope is the unique extreme point. The number of edges of the spherical convex
polygon is the number of polytope faces sharing that vertex. Just as for convex polygons in 2D, we can
construct a BSP tree of the spherical polygons and use it for fast determination of extreme vertices. The
method used for 2D extends to 3D with each node of the BSP tree representing a hemisphere determined
by Ni ×Nj ·D ≥ 0, where Ni and Nj are unit-length normal vectors for two adjacent triangles.

The vector Hij = Ni × Nj is perpendicular to the plane containing the two normals. The hemispheres
corresponding to this vector are Hij · D ≥ 0 and Hij · D < 0. The tetrahedron of Figure 3.1 has six
such vectors, listed as {H12,H13,H23,H01,H02,H03}. Please note that the subscripts correspond to normal
vector indices, not to vertex indices. Each arc of the sphere connecting two normal vectors corresponds to
an edge of the tetrahedron, label the arcs Aij . The root node of the tree claims arc A12 for splitting. The
condition N1 ×N2 ·D ≥ 0 splits the sphere into two hemispheres. Figure 3.2 shows those hemispheres with
viewing direction (0, 0,−1).
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Figure 3.2 The root of the BSP tree and the two hemispheres obtained by splitting. Both children
are displayed with a viewing direction (0, 0,−1). The right child is the top of the sphere viewed
from the outside and the left child is the bottom of the sphere viewed from the inside.

The set of arcs and the set of spherical polygons bounded by the arcs are the inputs to the BSP tree
construction. These sets are shown at the top of the figure. An arc is specified by Aij and connects Ni

and Nj . A spherical polygon is Si1,...,in:` and has vertices Ni1 through Nin
. The vertex V` of the original

polyhedron is the extreme vertex corresponding to the spherical polygon. In our example the spherical
polygons all have three vertices. Figure 3.3 shows the BSP trees for the children of the root.
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Figure 3.3 The BSP trees for the children of the root. The algebraic test is listed next to each
root. The links to the children are labeled with T when the the test is true or labeled with F when
the test is false.

During BSP tree construction, the root node claims the first arc A12 and uses the vector H = N1 ×N2 for
testing other vectors corresponding to arcs Aij . Let di = H ·Ni and dj = H ·Nj . If di ≥ 0 and dj ≥ 0, then
the arc is completely on one side of the hemisphere implied by E. Aij is placed in a set that will be used to
generate the BSP tree for the right child of the root. If di ≤ 0 and dj ≤ 0, then the arc is completely on the
other side of the hemisphere and is placed in a set that will be used to generate the BSP tree for the left
child of the root. If didj < 0, then the arc is partially in each hemisphere and is added to both sets. This is
exactly the algorithm we used in 2D.

In 3D we have some additional work in that the spherical faces must be processed by the tree to propagate
to the leaf nodes the indices of the extreme vertices represented by those nodes. In fact, the processing is
similar to that for arcs. Let Si,j,k:` be a face to be processed at the root node. Let di = E ·Ni, dj = E ·Nj ,
and dk = E · Nk. If di ≥ 0 and dj ≥ 0 and dk ≥ 0, then the spherical face is completely on one side of
the hemisphere implied by E. Si,j,k:` is placed in a set that will be used to generate the BSP tree for the
right child of the root. If di ≤ 0, dj ≤ 0, and dk ≤ 0, then the face is completely on the other side of the
hemisphere and is placed in a set that will be used to generate the BSP tree for the right child of the root.
Otherwise the arc is partially in each hemisphere and is added to both sets. In general for a spherical face
with n vertices, the face is used for construction of the right child if all dot products are nonnegative, for
construction of the left child if all dot products are nonpositive, or for construction of both children if some
dot products are positive and some are negative.

A query for a specified direction D is structured the same as for convex polygons. The signs of the dot
products of D with the H vectors in the BSP tree are computed, and the appropriate path is taken through
the tree. A balanced tree will have depth O(log n) for a polyhedron of n vertices, so the query takes
logarithmic time. However, there is a technical problem. The spherical arcs as described so far might not
lead to a balanced tree. Consider a polyhedron formed by an (n− 2)-sided convex polygon in the xy-plane
with vertices Vi = (xi, yi, 0) for 1 ≤ i ≤ n − 2 and by two vertices V0 = (0, 0, z0), with z0 < 0, and
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Vn−1 = (0, 0, zn−1), with zn−1 > 0. Figure 3.4 shows such a polyhedron.

Figure 3.4 Left: A convex polyhedron for which the point-in-spherical-polygon test, using only the
original arcs, is O(n) (the figure shows n = 8, but imagine a very large n). Right: The inscribed
convex polyhedron whose edges generate the arcs of the spherical convex polygons.

The spherical dual has 2 spherical convex polygons, each with n−2 arcs and n−2 spherical convex polygons,
each with 4 arcs. If D is contained by one of the (n− 2)-sided spherical polygons, the determination of this
using only the given arcs requires n− 2 point-on-which-side-of-arc queries. This is an O(n) algorithm.

4 Obtaining O(log n) Queries

The pathological problem mentioned previously is avoided by appealing to an O(log n) query for point-in-
convex-polygon determination. In fact, this problem uses what you may think of as the Dobkin-Kirkpatrick
hierarchy restricted to two dimensions. However, it is phrased in terms of a binary search using binary
separating lines. Consider the convex polygon of Figure 4.1.
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Figure 4.1 A convex polygon with bisectors used for an O(log n) point-in-polygon query. The
polygon is partitioned into four triangles labeled T0 through T3.

If we use only the polygon edges for containment testing, we would need 6 tests, each showing that the query
point is to the left of the edges. Instead, we use bisectors. The first bisector is segment 〈V0,V3〉 and is drawn
in red in the figure. The query point P is either to the left of the bisector, where (V3−V0) · (P−V0)⊥· ≥ 0,
or to the right of the bisector, where (V3 −V0) · (P −V0)⊥· < 0. The original polygon has 6 edges. The
polygon to the left of the bisector has 4 edges, and the containment test is applied to that left polygon. The
bisector edge has already been tested, so only the 3 remaining edges need to be tested for the containment.

The next bisector to be used is one of the segments drawn in blue, either 〈V3,V5〉 or 〈V0,V2〉. Naturally,
the choice depends on which side of the bisector 〈V0,V3〉 the query point P occurs. If P is to the left of
〈V0,V3〉 and to the left of 〈V3,V5〉, then the only subpolygon that might contain P is a triangle. The
remaining edge to test is 〈V5,V0〉. If instead P is to the right of 〈V3,V5〉, then P is potentially in triangle
T3. There are two remaining edges to test, so we can consider this yet another bisection step.

The binary tree in the right image of Figure 4.1 shows the query tree implied by the bisectors and polygon
edges. A tree link marked with a ‘+’ indicates “to the left of” and a link marked with a ‘−’ indicates “to
the right of”. The query point is tested against each edge, leading to a path from the root of the tree to a
leaf node. The leaves are labeled with the region defined by the path. Four of the leaf nodes represent the
triangles that make up the convex polygon. Six of the leaf nodes represent the exterior of the polygon; that
is, a query point can be “outside” one of the six edges of the polygon.

The choice of the bisectors is based on selecting the medians of the ranges of indices for the subpolygon
of interest. This leads to a balanced tree, so a polygon of n edges. The point-in-polygon query requires
computing vector differences and dot products for a linear path of nodes through the tree. Such a path has
O(log n) nodes.

The same idea may be applied to determining whether a unit-length vector D is contained in a spherical
convex polygon on the unit sphere. In the 2D problem, the dot product whose sign determines which side
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of the bisector the point is on was of the form

d = (Vi −Vj) · (P−Vj)⊥

We cared about d ≥ 0 or d < 0. In the 3D problem, we use the normal vectors as the vertices and the
direction vector as the query point. The dot product of interest is

d = Ni ×Nj ·D

Imagine walking along the spherical arc from Nj to Ni. The vector Ni ×Nj points to your left as you walk
along the arc. The spherical point D is to your left whenever d ≥ 0 and is to your right whenever d < 0.

What this means is that the BSP tree we build for the spherical dual must use the bisectors of the spherical
polygons as well as the arcs which are their boundary edges. Moreover, we do not just have one spherical
polygon to test–we have n such polygons, one for each of the n vertices of the original convex polyhedron.
Given the collection of all bisector arcs and boundary edge arcs, we can build the BSP tree one arc at a time.
Each arc is tested at a node of the BSP tree to see on which side of the node arc it lies. If fully on the left
side, we send the arc to the left subtree of the node for further classification. If fully on the right side, we
send the arc to the right subtree. When the arc arrives at a leaf node, it is similarly tested for sideness and
stored as the appropriate child of the leaf node (which now becomes an interior node). If an arc straddles
the great circle containing the node arc–one arc end point is to the left of the node arc and one arc end point
is to the right of the node arc–we send the arc to both subtrees of the node. That is, no actual splitting of
the arc is performed. This avoids expensive arc-arc intersection finding.

The order of the arcs is important in determining the structure of the BSP tree. We do want a balanced tree.
A heuristic to obtain a balanced tree is to sort the arcs. The bisector arcs occur first, the boundary edge
arcs last. The first bisector arc of an n-sided spherical polygon splits the polygon into two subpolygons, each
with half the number of boundary edge arcs. If we were to do a point-in-spherical-polygon query using such
a bisector edge first, we will eliminate half of that spherical polygon’s bisectors and half of its boundary arcs
from further processing. This suggests that we order the bisector arcs based on how many other arcs they
reject during a sidedness test. In the implementation, I maintain an ordered set of arcs, using a separation
measure. The first bisector arc for an n-sided spherical polygon has a separation of n/2, measuring how many
boundary arcs of that polygon separate the end points. A boundary arc itself has a separation measure of
1. The BSP tree is built using the arcs in decreasing order of separation. My numerical experiments showed
that indeed the BSP trees are balanced.

5 An Implementation and Timing

The Foundation library files Wm3ExtremalQuery3.h and Wm3ExtremalQuery3.cpp are the base class for
extremal queries for convex polyhedra. The straightforward O(n) method for computing the extreme points
just involves projecting the vertices onto the specified direction vector and computing the extreme projection
values. This algorithm is implemented in Wm3ExtremalQuery3PRJ.h and Wm3ExtremalQuery3PRJ.cpp.

The files Wm3ExtremalQuery3BSP.h and Wm3ExtremalQuery3BSP.cpp implement the BSP tree algorithm de-
scribed in this document. The identification of adjacent polyhedron normal vectors Ni and Nj requires build-
ing a vertex-edge-face data structure. The class implemented in Wm3BasicMesh.h and Wm3BasicMesh.cpp
suffices, but the edges adjacent to a vertex are not required for the extremal queries. You could modify
BasicMesh to eliminate this adjacency information.
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The next table shows the results of the experiment to compare the BSP tree approach to a simple project-
all-vertices approach. The column with header n is the number of vertices of the convex polyhedron. Each
polyhedron was used in 107 extremal queries. The execution times are listed in the second and third columns,
and are in seconds. The target machine was an AMD Athlon XP 2800+ (2.08GHz). The next to last column
is the BSP time divided by log n. This ratio is expected to be a constant for large n; that is, we expect
the query to be O(log n). The last column is the project-all-vertices time divided by n, since we expect this
algorithm to be O(n).

n BSP time tb project-all time tp tb/ log n tp/n

4 2.141 0.812 1.0705 0.2030

8 3.922 1.547 1.3073 0.1933

16 5.422 2.563 1.3555 0.1601

32 5.937 4.328 1.1874 0.1352

64 6.922 7.765 1.1536 0.1213

128 7.922 14.391 1.1317 0.1124

256 9.281 27.359 1.1601 0.1068

512 10.250 53.859 1.1388 0.1051

1024 11.532 104.125 1.1532 0.1016

2048 12.797 210.765 1.1633 0.1029

Of interest is the break-even n. It is somewhere between 32 and 64. If the convex polyhedra in your
applications have a small number of vertices, the project-all-vertices approach is clearly the choice. For
larger number of vertices, the BSP approach wins.

A sample application to illustrate the queries is in the SampleMiscellaneous folder, project ExtremalQuery.
A convex polyhedron is displayed using an orthogonal camera. You may rotate it with the mouse. The
extreme vertices in the x-direction are drawn as small spheres. The orthogonal camera is used to make it
clear that the points are extreme.
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