
C1 Quadratic Interpolation of Meshes

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: November 19, 2008

Contents

1 Introduction 2

2 Mathematical Preliminaries 3

2.1 Barycentric Coordinates . 3

2.2 Inscribed Centers . 3

2.3 Bezier Triangles . 5

2.4 Derivatives . 5

2.5 Derivative Continuity . 6

3 The Algorithm for Graphs of f(x, y) 7

4 The Algorithm for Graphs of f(x, y, z) 12

5 The Algorithm for Surfaces 14

5.1 Selecting Normal Vectors at Vertices . 15

5.2 Subdividing the Triangles . 16

5.3 Selecting Control Points . 17

6 Implementation Notes 18

7 References 18

1

http://www.geometrictools.com/

1 Introduction

This document describes the algorithm developed by Cendes and Wong in [1] for interpolating arbitrary
point sets whose elements are (xi, yi, f(xi, yi), fx(xi, yi), fy(xi, yi)) where 0 ≤ i < N . The spatial points
(xi, yi) are arbitrarily spaced. At each spatial point the user specifies the function f and its two partial
derivatives fx and fy. The outline of the algorithm is as follows:

1. Triangulation. The spatial points must be triangulated. I use a Delaunay triangulation. The code is
a modification of code written by Watson and uses an algorithm described in [2].

2. Subdivison. Each triangle is subdivided into six triangles. The subdivision requires knowledge of the
inscribed centers of the triangle and its three adjacent triangles.

3. Bezier net construction. Each subtriangle is further partitioned into four triangles. This subdivision is
affine and the partition is used to build a quadratic function via the Bezier triangle method described
in Chapter 18 of Farin’s book [3]. The quadratics are of course C1 functions, but additionally the
interpolation is C1 at any interface with other triangles, whether they are part of the current subdivision
or part of the subdivision of an adjacent triangle.

The implementation takes an arbitrary point set, applies the steps listed above, and has a method which
takes as input a new spatial location (x, y) and produces as output the interpolated function f(x, y) and its
two partial derivatives fx(x, y) and fy(x, y).

This algorithm is attractive in that it involves quadratic functions rather than cubic functions which are used
in many standard schemes, so computation time is reduced. (To be fair in comparing, one should also look
at the costs for initial setup of the data structures.) If continuous second-derivative information is required,
such as in computing surface curvatures, then the quadratic algorithm can not be used.

The interpolation has local control. If the function or derivative values are modified at a single data point,
then the affine subdivision of the triangles sharing the data point does not change, but the function values
at the additional control points must be recalculated. If the spatial component of a single data point is
modified, then the affine subdivisions of the triangles sharing the data point change. These change are
propagated to any immediately adjacent triangles of those which share the data point, but no further.

Finally, note that the Cendes-Wong algorithm essentially is a mesh smoothing algorithm where the mesh is
a triangulation of the graph of the function f(x, y) from which the data points are sampled. The algorithm
does not immediately apply to the case of a general triangulated mesh (unless that mesh is the graph of a
continuous piecewise linear function in some rotated coordinate system). I provide a generalization of the
Cendes-Wong algorithm to general meshes, but where the vertices of the mesh satisfy a regularity condition.
This condition is required to preclude vertices where the topology of the mesh has particularly bad features.
My algorithm simply terminates if such a vertex occurs, but it should not be difficult to modify the code so
that the mesh is subdivided locally at the offending vertex. Any new triangles added to the mesh must be
preprocessed (subdivision, Bezier net construction) and any adjacent old triangles affected by these changes
must be reprocessed.

Consequences of my algorithm need to be investigated. For example, it would be desirable for the interpolated
surface to be convex whenever the underlying mesh is convex. Experiments seem to indicate this is the case,
but I have not proved it. As another example, if the angle between two adjacent triangles is extremely small,
it is possible for the interpolated subsurfaces from the two triangles to intersect. This is also undesirable
behavior, but probably the algorithm is not easily modified to prevent this. A related problem is when two

2

mesh triangles, while separated by a large distance traveled along the mesh, may be extremely close in space
(the mesh has doubled back on itself).

2 Mathematical Preliminaries

2.1 Barycentric Coordinates

Let a triangle have vertices a, b, and c. Any point p can be written as a barycentric combination of the
triangle vertices, p = ua + vb + wc, where u + v + w = 1. The coefficients (u, v, w) are the barycentric
coordinates of p with respect to the triangle. This definition is independent of dimension; the vectors can
be in IR2 or IR3 (or in any higher dimensional space for that matter).

Constructing u, v, and w is a matter of solving a system of linear equations. Subtracting c from the equation
for p, using w = 1− u− v, and grouping terms leads to p− c = u(a− c) + v(b− c). The two vectors a− c
and b − c are linearly independent since they are two edges of the same triangle. The linear independence
also guarantees that there is a unique solution for u and v. Dot these vectors with the equation for p− c to
set up the system  (a− c) · (a− c) (a− c) · (b− c)

(a− c) · (b− c) (b− c) · (b− c)

 u

v

 =

 (a− c) · (p− c)

(b− c) · (p− c)


The two equations are of the form m00u + m01v = r0 and m01u + m11v = r1. The solution is u =
(m11r0 −m01r1)/∆ and v = (m00r1 −m01r0)/∆ where ∆ = m00m11 −m2

01.

The solution may also be stated geometrically as

u =
area(p,b, c)

A
, v =

area(a,p, c)
A

,w =
area(a,b,p)

A
,

where A = area(a,b, c) is the area of the original triangle.

2.2 Inscribed Centers

Let a triangle have vertices a, b, and c. Let the inscribed center of the triangle be p = ua + vb + wc for
barycentric coordinates (u, v, w). The triangle formed by p, b, and c has base length |b−c| and height given
by the radius r of the inscribed circle. Thus, area(p,b, c) = |b− c|r/2. Similarly, area(a,p, c) = |a− c|r/2
and area(a,b,p) = |a−b|r/2. The total area is the sum of these three values, A = (|b−c|+|a−c|+|a−b|)r/2.
The barycentric coordinates of the inscribed center are therefore

u =
|b− c|

|b− c|+ |a− c|+ |a− b|
, v =

|a− c|
|b− c|+ |a− c|+ |a− b|

, w =
|a− b|

|b− c|+ |a− c|+ |a− b|

These are just ratios of the lengths of the triangle sides to the triangle perimeter.

One of the properties of the inscribed center is that each line from a vertex to the center bisects the angle
corresponding to that vertex. This property may be used to prove the following result which is needed in
the subdivision algorithm:

3

The line segment connecting the inscribed centers of two adjacent triangles must intersect the
common edge of the triangles at an interior point.

If two adjacent triangles form a convex quadrilateral, then clearly the line segment connecting the inscribed
centers has the desired property. If the triangles do not form a convex quadrilateral, as is shown in Figure
2.1, some work must be done to prove the result.

Figure 2.1 Adjacent triangles. Does the intersection of the line connecting inscribed centers inter-
sect the interior of the common edge?

The inscribed centers are K0 and K1. Set up the intersection equations as

(1− s)K0 + sK1 = (1− t)c + tb.

Note that K0 and K1 lie on different sides of common edge 〈b, c〉, so the line segment connecting the centers
must intersect the line containing the common edge, implying 0 < s < 1. The geometry of the setting also
implies that the intersection must occur on the c-side of b, which implies t < 1. If we can additionally prove
that t > 0, then the line segment connecting the inscribed centers must intersect the interior of the common
triangle edge.

Subtracting c, rearranging terms, and dotting with b− c yields

t|b− c|2 = (1− s)[(K0 − c) · (b− c)] + s[(K1 − c) · (b− c)]

= (1− s)[|K0 − c||b− c| cos(θ0/2) + s[|K1 − c||b− c| cos(θ1/2)

where θ0 is the angle formed by edges a− c and b− c and θ1 is the angle formed by edges d− c and b− c.
The half-angles in the formula occur because of the bisection property mentioned earlier. Since 0 < θi < π
for interior angles in a triangle, it follows that 0 < θi/2 < π/2 and cos(θi/2) > 0. The convex combination
in the above formula is therefore positive, which implies that t > 0.

4

2.3 Bezier Triangles

Define a multiindex on three indices as I = (i0, i1, i2) where 0 ≤ ij ≤ |I| and |I| = i0 + i1 + i2. Define
E0 = (1, 0, 0), E1 = (0, 1, 0), and E2 = (0, 0, 1). Given a triangular array of points bI ∈ IR3 where |I| = n,
and given a barycentric coordinate u = (u0, u1, u2), recursively define

b0
I(u) = bI

and

br
J(u) =

2∑
k=0

ukbr−1
J+Ek

(u)

where 1 ≤ r ≤ n and |J | = n− r. The point bn(u) := bn
0 (u) is a point on the Bezier triangle determined by

the original array. The iterative algorithm is called the de Casteljau algorithm.

When n = 1, this states that the point on the Bezier triangle is just the barycentric combination of the three
vertices b(n,0,0), b(0,n,0), and b(0,0,n). The interpolation algorithm is concerned with the case n = 2. The
triangle array is organized as

b(0,0,2)

b(1,0,1) b(0,1,1)

b(2,0,0) b(1,1,0) b(0,2,0)

I will use (u, v, w) as the components of the barycentric coordinate. For r = 1,

b1
(1,0,0) = ub(2,0,0) + vb(1,1,0) + wb(1,0,1)

b1
(0,1,0) = ub(1,1,0) + vb(0,2,0) + wb(0,1,1)

b1
(0,0,1) = ub(1,0,1) + vb(0,1,1) + wb(0,0,2)

For r = 2,

b2
(0,0,0) = ub1

(1,0,0) + vb1
(0,1,0) + wb1

(0,0,1)

=
[

u v w
] 

b(2,0,0) b(1,1,0) b(1,0,1)

b(1,1,0) b(0,2,0) b(0,1,1)

b(1,0,1) b(0,1,1) b(0,0,2)




u

v

w


so the triangular Bezier patch is a quadratic function. This formula is a nice generalization of tensor products
for rectangular grids.

2.4 Derivatives

Given a surface vector x(u) where u = (u0, u1, u2) are barycentric coordinates (u0 + u1 + u2 = 1) and a
barycentric direction d = (d0, d1, d2) with d0+d1+d2 = 0, the derivative in the given direction is the tangent
vector

Ddx(u) =
2∑

i=0

dixui

5

where xui
denotes the partial derivative of x with respect to barycentric component ui. The second-order

direction derivative is

D2
dx(u) =

[
d0 d1 d2

] 
xu0u0 xu0u1 xu0u2

xu1u0 xu1u1 xu1u2

xu2u0 xu2u1 xu2u2




d0

d1

d2


A general formulation can be made by using Bernstein polynomials,

Bn
(i,j,k)(u) =

n!
i!j!k!

uivjwk

where i + j + k = n. The rth-order directional derivative is

Dr
dx(u) =

∑
|I|=r

∂Ix(u)Br
I (d)

where I = (i0, i1, i2) and ∂Ix = ∂|I|x/∂ui0
0 ∂ui1

1 ∂ui2
2 . For a Bezier triangle, the rth-order directional derivative

is given in terms of de Casteljau iterates and Bernstein polynomials:

Dr
dbn(u) =

n!
(n− r)!

∑
|I|=r

bn−r
I (u)Br

I (d)

For the quadratic case n = 2, the first and second directional derivatives of b2(u, v, w) are

D1
(d,e,f)b

2(u, v, w) = 2
[

u v w
] 

b(2,0,0) b(1,1,0) b(1,0,1)

b(1,1,0) b(0,2,0) b(0,1,1)

b(1,0,1) b(0,1,1) b(0,0,2)




d

e

f


and

D2
(d,e,f)b

2(u, v, w) = 2
[

d e f
] 

b(2,0,0) b(1,1,0) b(1,0,1)

b(1,1,0) b(0,2,0) b(0,1,1)

b(1,0,1) b(0,1,1) b(0,0,2)




d

e

f


Note that the second derivative is constant with respect to u, v, and w, as expected for a quadratic function.

2.5 Derivative Continuity

Farin provides a comprehensive development of derivative continuity on the common boundary between two
adjacent triangular patches. The main result is that derivatives up through order s of bn depend only on
the s + 1 rows of control points “parallel” to the boundary in question. I only discuss the cases relevant to
the quadratic interpolation, s = 0 and s = 1. Figure 2.2 illustrates two adjacent triangular patches (n = 2).

6

Figure 2.2 Adjacent Bezier triangle patches.

The patches define two functions b2(u, v, w) and c2(u, v, w). Continuity of the functions is guaranteed if

b(2,0,0) = c(2,0,0), b(1,1,0) = c(1,1,0), b(0,2,0) = c(0,2,0)

Continuity of the derivatives is guaranteed if

c(1,0,1) = ub(1,0,1) + vb(2,0,0) + wb(1,1,0),

c(0,1,1) = ub(0,1,1) + vb(1,1,0) + wb(0,2,0).

Each pair of shaded triangles in the figure are coplanar. Moreover, the two pairs have the same barycentric
coordinates. I will refer to these two continuity conditions as coplanarity and coaffinity. Note that coaffinity
implies coplanarity.

3 The Algorithm for Graphs of f(x, y)

This section is a description of the Cendes-Wong algorithm. The input is a set of points of the form
(xi, yi, f(xi, yi), fx(xi, yi), fy(xi, yi)) for 0 ≤ i < N . The output is a globally C1 quadratic interpolating
function which takes as input spatial points (x, y) and produces as output function values f(x, y) and
derivatives fx(x, y) and fy(x, y). Indirectly the algorithm also produces a triangulation of the data points.

7

A Delaunay triangulation is applied to the spatial components of the data points. The idea is to subdivide
the triangles and fit the subtriangles as quadratic Bezier triangles so that derivative continuity is achieved on
each shared triangle edge. The Cendes-Wong paper provides a construction which stresses the coplanarity
condition for derivative continuity. The coaffinity condition is a consequence of the affine subdivision of the
planar triangles. Consider one of the triangles, shown in Figure 3.1.

Figure 3.1 Control points in triangle subdivision.

The points b2, b4, and b6 are the vertices of the triangle (spatial components in the xy-plane). The point
b0 is the inscribed center. The points Ai are the inscribed centers for the adjacent triangles. The points
b1, b3, and b5 are the intersections of the triangle edges with the line segments connecting the inscribed
center with those of its adjacent triangles. In the case that the triangle does not have an adjacent triangle
for one of its edges (the edge is on the boundary of the mesh), then I use the midpoint of the edge in lieu of

8

an intersection. The spatial relationships for the subdivision points are as follows.

b0 = δ0b2 + δ1b4 + δ2b6, δ0 + δ1 + δ2 = 1, b3 = α0b2 + α1b4, α0 + α1 = 1,

b5 = β1b4 + β2b6, β1 + β2 = 1, b1 = γ0V2 + γ2V6, γ0 + γ2 = 1,

b8 = (b2 + b3)/2, b9 = (b4 + b3)/2,

b10 = (b4 + b5)/2, b11 = (b6 + b5)/2,

b7 = (b2 + b1)/2, b12 = (b6 + b1)/2,

b14 = (b2 + b0)/2, b16 = (b4 + b0)/2,

b18 = (b6 + b0)/2, b15 = α0b14 + α1b16,

b17 = β1b16 + β2b18, b13 = γ0b14 + γ2b18

The 3D mesh points are denoted (bi, φi). The indices are convenient for identifying the six Bezier control
points for each of the 6 subdivision triangles. If i is the index for a triangle, 1 ≤ i ≤ 6, then the indices of
the control points for that triangle are 0, 12 + i, 13 + i mod 6, i, 6 + i, and 1 + i mod 6.

The goal now is to specify functions and derivatives at the three vertices and to choose function values at
the remaining sixteen so that the coplanarity and coaffinity conditions are satisfied in the Bezier triangle
constuction. Figure 3.2 has diagrams from from the Cendes and Wong paper.

Figure 3.2 A combination of two diagrams from the Cendes and Wong paper.

The shaded regions must be coplanar for derivative continuity to occur. The shaded quadrilateral straddling
the interface of two triangles must be planar. The result that shows this is

9

Let A, B, C, and D be any four points in IR3. Let e, f , g, and h be points along the line segments
AB, BC, CD, and DA, respectively. If

Length(Ae)
Length(AB)

=
Length(Dg)
Length(DC)

= ρ1 and
Length(Bf)
Length(BC)

=
Length(Ah)
Length(AD)

= ρ2,

then the four points e, f , g, and h are coplanar.

The proof involves showing eg = (ρ1/ρ2)ef + ((1 − ρ1)/ρ2)eh, in which case eg, ef , and eh are linearly
dependent vectors and must be coplanar. The quadrilateral ABCD is constructed so that the desired length
ratios hold, and the result applies.

Now for the construction of the function values at the control points. Let φi denote the function values at
the 19 control points, 0 ≤ i ≤ 18. The vertex values φ2, φ4, and φ6 are already specified. The derivative
values at the vertices are also specified, call them ∇φi, i = 2, 4, 6.

To satisfy coplanarity at vertex V0:

φ7 = φ2 +∇φ2 · (b7 − b2)

φ8 = φ2 +∇φ2 · (b8 − b2)

φ14 = φ2 +∇φ2 · (b14 − b2)

To satisfy coplanarity at vertex V1:

φ9 = φ4 +∇φ4 · (b9 − b4)

φ10 = φ4 +∇φ4 · (b10 − b4)

φ16 = φ4 +∇φ4 · (b16 − b4)

To satisfy coplanarity at vertex V2:

φ11 = φ6 +∇φ6 · (b11 − b6)

φ12 = φ6 +∇φ6 · (b12 − b6)

φ18 = φ6 +∇φ6 · (b18 − b6)

To satisfy coplanarity of the quadrilaterals containing E0, E1, and E2:

φ3 = α0φ8 + α1φ9

φ5 = β1φ10 + β2φ11

φ1 = γ0φ7 + γ2φ12

10

To satisfy coplanarity of the large triangle containing C:

φ15 = α0φ14 + α1φ16

φ17 = β1φ16 + β2φ18

φ13 = γ0φ14 + γ2φ18

φ0 = δ0φ14 + δ1φ16 + δ2φ18

Verifying coaffinity in the spatial components is straightforward. The triangle vertices are related by a0 =
ub0+vb3+wb5. The midpoints are b1 = (b0+b3)/2, b2 = (b0+b5)/2, b4 = (b3+b5)/2, a1 = (a0+b3)/2,
and a2 = (a0 + b5)/2. Consider

a1 = (a0 + b3)/2

= (u/2)b0 + ((v + 1)/2)b3 + (w/2)b5

= (u/2)b0 + ((v + u + v + w)/2)b3 + (w/2)b5

= u(b0 + b3)/2 + vb3 + w(b3 + b5)/2

= ub1 + vb3 + wb4

Similarly,

a2 = (a0 + b5)/2

= (u/2)b0 + (v/2)b3 + ((w + 1)/2)b5

= (u/2)b0 + (v/2)b3 + ((w + u + v + w)/2)b5

= u(b0 + b5)/2 + v(b3 + b5)/2 + wb5

= ub2 + vb4 + wb5

Therefore, the midpoint subdivision satisfies the coaffinity conditions. We need to verify that the function
values assigned to the control points also satisfy the coaffinity conditions. This turns out to be a consequence
of the midpoint subdivision and the coplanarity of certain triangles in the Bezier net.

For example, let b1 = ub3 +vb0 +wb2 for some barycentric coordinates (u, v, w). The midpoint subdivision
guarantees that b7 = ub8 +vb14 +wb2. The plane at the vertex b2 is of the form φ = K +N ·b. Therefore,

φ7 − uφ8 − vφ14 − wφ2 = (K + N · b7)− u(K + N · b8)− v(K + N · b14)− w(K + N · b2)

= K(1− u− v − w) + N · (b7 − ub8 − vb14 − wb2)

= K(0) + N · 0

= 0

so φ7 = uφ8 + vφ14 + wφ2. The midpoint subdivision also guarantees that b13 = ub15 + vb0 + wb14. The
plane containing control points bi for i = 0 and 13 ≤ i ≤ 18 is also of the form φ = K + N · b. A similar
argument shows that φ13 = uφ15 + vφ0 + wφ14. Thus, the two subtriangles satisfy the coaffinity condition.
The same argument holds for any pair of subtriangles, both within a single triangle and across a triangle
boundary.

11

4 The Algorithm for Graphs of f(x, y, z)

The Cendes-Wong algorithm may be extended to the interpolation of graphs of functions of three variables.

It is assumed that the 3D points have been tetrahedralized. Consider a tetrahedron whose vertices are Vi,
0 ≤ i ≤ 3. Let C be the center of the inscribed sphere for the tetrahedron. Let Fijk be a point on the
face with vertices Vi, Vj , and Vk. If the face is shared with another tetrahedron, let Fijk be the intersection
of that face and the line connecting the inscribed centers of the tetrahedra sharing that face. If the face
is not shared, let Fijk be the average of the vertices for that face. Let Eij be the midpoint of the edge
joining vertices Vi and Vj where i < j. Such a consistent choice, when multiple tetrahedra share the same
edge, allows the construction of the Bezier net without having to analyze neighbor relationships. However, if
only two tetrahedra share the same edge, then any interior edge point suffices. I will take advantage of this
later when I discuss the extension of the Cendes-Wong algorithm to general triangular meshes, the extension
relying on an embedding of the problem as a 3D graph in 4D.

The tetrahedron can be subdivided into 24 smaller tetrahedrons, each having four vertices consisting of
C, a vertex Vi, an edge point Eij , and a face point Fijk. Figure 4.1 shows a typical tetrahedron and one
subtetrahedron.

Figure 4.1 Subdivision of a tetrahedron.

Each face of a subtetrahedron is partitioned into four Bezier triangles by selecting the midpoints of each of
the edges. Figure 4.2 shows the labeling of those midpoints.

12

Figure 4.2 Subdivision of a subtetrahedron.

The equations relating all the labeled points are given below.

C = c0V0 + c1V1 + c2V2 + c3V3; ci ≥ 0, c0 + c1 + c2 + c3 = 1 1 equation

Fijk = f0Vi + f1Vj + f2Vk; fi ≥ 0, f0 + f1 + f2 = 1 4 equations

Eij = (Vi + Vj)/2 6 equations

V Eij = (Vi + Eij)/2 12 equations

V Fijk = (Vi + Fijk)/2 12 equations

CVi = (C + Vi)/2 4 equations

CEij = (Eij + C)/2 6 equations

CFijk = (C + Fijk)/2 4 equations

EFijk = (Eij + Fijk)/2 12 equations

There are a total of 61 equations relating the points. The same number of equations relates the sample
values at those points. (Compare to the 19 values in the 2D case.)

It is also assumed that at each vertex a function value and gradient have been specified. At vertex Vi let the
function value be φVi

and let the gradient vector be DφVi
. The remaining sample values will be denoted φP

where P is one of the points mentioned earlier. To guarantee derivative continuity at a vertex, the Bezier
net about that vertex must be covolumetric. This is possible by choosing

φV Eij
= φVi

+ DφVi
· (V Eij − Vi)

φV Fijk
= φVi

+ DφVi
· (V Fijk − Vi)

φCVi = φVi + DφVi · (C − Vi)

13

From these equations and the barycentric relationships, it follows that

φFijk
= f0φV Fijk

+ f1φV Fjki
+ f2φV Fkij

φC = c0φCV0 + c1φCV1 + c2φCV2 + c3φCV3

φCFijk
= f0φCVi + f1φCVj + f2φCVk

To guarantee derivative continuity along the edges, we need

φEij
= (φV Eij

+ 0.5φV Eji
)/2

The 1/2 coefficients occur because Eij was chosen as the midpoint between two vertices, so it is also the
midpoint between V Eij and V Eji. Also note that φEij

must depend only on function values at Vi and Vj

since it is possible for arbitrarily many tetrahedrons to share an edge. Any dependence of an edge value on
a particular tetrahedron would invalidate the construction.

It is also necessary that the subtetrahedrons containing the edge between V Eij and V Eji are covolumetric.
Define

Dφij =
φV Eij

− φV Eji

|V Eij − V Eji|2
(V Eij − V Eji)

The remaining sample values are determined by

φCEij = φEij + Dφij · (C − Eij)

φEFijk
= φEij

+ Dφij · (EFijk − Eij)

The argument of coaffinity is the same as in the 2D case: covolumetricity and midpoint subdivision imply
coaffinity. However, this is more challenging to visualize since the covolumetricity refers to two 3-dimensional
tetrahedrons belonging to the same 3-dimensional hyperplane which lives in 4D.

5 The Algorithm for Surfaces

This section is a description of an extension of the Cendes-Wong algorithm to triangular meshes which are
not necessarily the graph of a function. The input is a triangular mesh in IR3. The output is a globally C1

quadratic interpolating function which takes as input a mesh triangle and a barycentric coordinate for that
triangle and produces as output a surface point (x, y, z) and the surface normal N(x, y, z) at that point.

The idea is to apply the 3D algorithm to each spatial component. That is, the functions to interpolate are
X = X(x, y, z), Y = Y (x, y, z), and Z = Z(x, y, z) where the mesh points provide the samples for X, Y ,
and Z. The triangles in the mesh are considered as boundary faces of a mesh of tetrahedra. The tetrahedra
can be interpolated using the 3D algorithm. The interpolation restricted to those faces which belong to the
triangular mesh is C1 and quadratic. While it would be burdensome to produce a tetrahedral mesh, it is
not necessary. Since the interpolation on a tetrahedral face only depends on the Bezier nodes living on that
face, we can build the interpolation function directly from the triangular mesh.

Because the triangles are treated as boundary faces in the tetrahedral mesh, the subdivision of a triangle does
not require building the inscribed centers. It is sufficient to compute the center of mass for the subdivision,

14

which saves some computation time. However, such a subdivision does not take into account the geometry
of neighboring triangles. My implementation still uses subdivision based on inscribed centers so as to let
the neighbor geometry affect the interpolation. In the Cendes-Wong algorithm, the subdivision required
computing the intersection of a triangle edge with the line segment connecting the inscribed centers of the
adjacent triangle. Since we are now working with the meshes in IR3, the line segment will not intersect the
edge. Instead we find the intersection of the triangle edge with a plane containing the two inscribed centers
and the average normal of the triangles sharing that edge.

Another aspect of the generalization is the selection of vertex information. In the case of graphs, the user
needed to specify the function and its derivatives at each vertex. In the case of general meshes, the user needs
to specify the functions X, Y , and Z and their derivatives at the sample points. Rather than require the
user to select the derivatives, I select a normal vector at each vertex (which acts as derivative information)
by analyzing all the triangles which meet at that vertex.

5.1 Selecting Normal Vectors at Vertices

Some of the additional control points a triangle will be generated by projecting triangle points onto three
specified planes at the triangle vertices. The normal vectors at the vertices must be chosen to guarantee
that the projections exist. Let T1 through Tn be a list of triangles in the mesh which share the common
vertex V. For all projections to exist, it is necessary that the selected normal N form an angle of at most
90 degrees with all triangle normals Ni, 1 ≤ i ≤ n.

This is not always possible. The surface at a vertex can be ruffled enough to prevent this. For example, let
the common vertex be 0 = (0, 0, 0). Define the six points V0 = (0,−1, 0), V1 = (0, 0,−1), V2 = (−1, 0, 0),
V3 = (0, 1, 0), V4 = (−1, 1,−1), and V5 = (1, 0, 0). Six triangles forming a mesh and sharing V0 are
Ti = 〈0,ViVi+1〉 for 0 ≤ i ≤ 5 and where the indices are computed modulo 6. The triangle normals are
N0 = (−1, 0, 0), N1 = (0,−1, 0), N2 = (0, 0, 1), N3 = (1, 0,−1)/

√
2, N4 = (0, 1, 1)/

√
2, and N5 = (0, 0, 1).

If there were a vector N = (x, y, z) such that N ·Ni ≥ 0 for all i, then −x ≥ 0, −y ≥ 0, z ≥ 0, x − z ≥ 0,
y + z ≥ 0, and z ≥ 0. A few algebraic steps will show that the only solution is x = y = z = 0.

If the normal vectors of the triangles containing common vertex are plotted as points on the unit sphere,
then the existence of a normal satisfying the acuteness condition reduces to showing that the minimum angle
cone containing the normal points has angle no larger than 180 degrees. In this case, a normal satisfying the
condition is the cone axis. The following algorithm will construct the cone axis for the minimal cone if its
angle is smaller than 180 degrees. If the angle is 180 degrees or larger, then the algorithm will detect this
and terminate. Vertices for which this normal exists are defined to be regular vertices of the mesh.

The minimal cone, assuming angle smaller than 180 degrees, must contain on its boundary those two normal
vectors whose angle between them is largest amongst all normal vectors. However, it is possible that the
cone angle is greater than the largest angle between normals. For example, the largest angle for pairs of
the three normals (1, 0, 0), (0, 1 − ε, ε(2 − ε)), and (0, 1 − ε,−ε(2 − ε)), for ε > 0 and small, is 90 degrees.
However, the cone has angle slightly larger than 90 degrees.

The algorithm begins by computing the two normal vectors with largest angle between them, label the
vectors N1 and N2. If angle is not smaller than 180 degrees, the algorithm terminates and the vertex is
flagged as not regular. If angle is smaller than 180 degrees, the cone axis is initialized to be the unitized
average of the two normal vectors, A = (N1 +N2)/|N1 +N2|. The cone angle is tracked via its dot product,
d = A ·N1.

15

The remaining vertices are tested one at a time to see if their inclusion forces the cone angle to increase.
Let N3 be the test vector. If N3 ·A < d, then the test vector is outside the current cone. The cone must
be expanded to include the test vector. The new cone axis must be equiangular with Ni for i = 1, 2, 3.
Let the new axis be A =

∑3
i=1 uiNi. To be equiangular, we need A ·Ni = λ, a constant for all i. Define

dij = Ni ·Nj . We may solve the system of three equations
1 d12 d13

d12 1 d23

d13 d23 1




u1

u2

u3

 =


1

1

1


and then unitize the resulting vector to obtain A. The solution to the system is

u1 = (1− d12 − d13) + d23(d12 + d13 − d23)

u2 = (1− d12 − d23) + d13(d12 + d23 − d13)

u3 = (1− d13 − d23) + d12(d13 + d23 − d12)

If the new cone angle forms an obtuse angle with either of the boundary normals N1 or N2, then the
algorithm terminates and the vertex is flagged as not regular. Otherwise, after all normals have been tested,
the vector A is the normal which forms acute angles with all the triangle normals and the vertex is flagged
as regular.

5.2 Subdividing the Triangles

The indexing of control points is the same as in the Cendes-Wong algorithm. The three vertices are labeled
as p2, p4, and p6. The inscribed center p0 is computed for the triangle. Keep in mind that the triangle lives
in IR3, so the inscribed center is on that triangle and not in the xy-plane. Three subtriangles are formed
by connecting the inscribed center to the three vertices. The edge points p1, p3, and p5 are constructed in
a slightly different manner than in the graph case. Let A0 be the inscribed center of the triangle sharing
edge 〈p2,p4〉 and let N0 be its normal. Let N be the normal of the current triangle. The point p3 is the
intersection of the edge 〈p2,p4〉 with the plane containing points p0 and A0 and containing the “average”
normal N + N0. This plane has equation

(N + N0)× (p0 −A0) · (x− p0) = 0

If the point of intersection is p3 = p2 + t(p4 − p2), then

t =
(N + N0)× (p0 −A0) · (p0 − p2)
(N + N0)× (p0 −A0) · (p4 − p2)

Similar constructions apply to the other two edges. Intuitively these intersections always exist. Given two
triangles meeting at an edge, you can rigidly move one to the plane and rotate the other into the same plane
using the edge as rotation axis. In the plane we already proved that the intersections always exist. While
this intersection was between two lines, it can also be viewed as the intersection of the plane containing the
inscribed centers and the normal of this plane. Reversing the transformations cannot undo the intersection.

The remaining subdivision uses midpoint selection, just as in the graph case.

16

5.3 Selecting Control Points

At a vertex point v, the user must specify the new positions X, Y , Z, and their derivatives. A Bezier node
b which is immediately adjacent to v is modified as

φv = v + D(b− v)

where D is a 3 × 3 derivative matrix. The first row of D is the user-specified derivative ∇X, the second
row is ∇Y , and the third row is ∇Z. If instead an “average” normal N is desired (a more intuitive choice
about how a vertex is smoothed), then set D = NNT. Each φv is therefore a projection of v onto the
plane containing b and having normal N. Note that such selection is a convenience. It is possible to select
D at each vertex regardless of topology at that vertex, and the construction still produces a C1 quadratic
interpolation.

Given a triangle in the mesh with vertices b2, b4, b6, and computed normals N2, N4, N6, the other Bezier
nodes are computed just as in the 2D graph case. The αi, βi, γi, and δi are the proportions from the
subdivision, as before. The nodes are

φ2 = b2

φ4 = b4

φ6 = b6

φ7 = b2 + N2 · (b7 − b2)

φ8 = b2 + N2 · (b8 − b2)

φ14 = b2 + N2 · (b14 − b2)

φ9 = b4 + N4 · (b9 − b4)

φ10 = b4 + N4 · (b10 − b4)

φ16 = b4 + N4 · (b16 − b4)

φ11 = b6 + N6 · (b11 − b6)

φ12 = b6 + N6 · (b12 − b6)

φ18 = b6 + N6 · (b18 − b6)

φ3 = α0φ2 + α1φ4

φ5 = β1φ4 + β2φ6

φ1 = γ0φ2 + γ2φ6

φ15 = α0φ14 + α1φ16

φ17 = β1φ16 + β2φ18

φ13 = γ0φ14 + γ2φ18

φ0 = δ0φ14 + δ1φ16 + δ2φ18

17

6 Implementation Notes

Just a few notes on the implementations.

1. I am using some simple data structures to store the vertices, edges, and faces. Probably I should
change these to ones that are compatible with OpenGL and other graphics libraries.

2. In the graph case, each triangle maintains an array of 19 doubles which represent the function values
at the control points. Two triangles sharing a common edge will maintain duplicates of the control
values on that common edge. Probably I should let the edge data structures maintain their own control
points to reduce memory usage. This is even more important in the general mesh case since the array
is now of 19 points, each point consisting of 3 doubles.

3. In the graph case, any triangle with a mesh boundary edge (an edge not shared by any other triangle)
will cause problems when you try to compute the intersection of that edge with a line connecting
the inscribed centers of the adjacent triangles. I handle this in the graph case by attaching “dummy
triangles” to those boundary edges. The intersections are designed to be the midpoints of those edges.
The user of the code need not worry about these issues; they are handled automatically.

In the general mesh case, the triangle data structure has a list of indices to adjacent triangles. If an
adjacent triangle does not exist, then the index must be set to a negative number. This lets the method
for computing intersections know that the midpoint of the edge should be used instead.

4. Currently, if a vertex is not regular, the method that tries to compute a normal vector at that vertex
fails. I have a flag in the mesh interpolation class which indicates success or failure in building the
normals. This flag should be tested before attempting to evaluate the interpolation method. The
sample code shows how to use the flag.

Any choice of normal will provide a C1 fit, so it is not necessary to terminate the algorithm. However,
it would be nice to interpolate in a geometrically intuitive way.

7 References

1. Zoltan J. Cendes and Steven H. Wong, C1 quadratic interpolation over arbitrary point sets, IEEE
Computer Graphics & Applications, pp. 8-16, November 1987

2. Dave F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi poly-
topes, The Computer Journal, 24(2), pp. 167-172, 1981.

3. Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Acad-
emic Press, Inc., San Diego, CA, 1990.

18

	1 Introduction
	2 Mathematical Preliminaries
	2.1 Barycentric Coordinates
	2.2 Inscribed Centers
	2.3 Bezier Triangles
	2.4 Derivatives
	2.5 Derivative Continuity

	3 The Algorithm for Graphs of f(x,y)
	4 The Algorithm for Graphs of f(x,y,z)
	5 The Algorithm for Surfaces
	5.1 Selecting Normal Vectors at Vertices
	5.2 Subdividing the Triangles
	5.3 Selecting Control Points

	6 Implementation Notes
	7 References

