
Integer-based Algorithm for Drawing Ellipses

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: March 2, 1999
Last Modified: March 2, 2008

Contents

1 Specifying the Ellipse 2

2 Axis-Aligned Ellipses 2

3 General Ellipses 4

1

http://www.geometrictools.com/

1 Specifying the Ellipse

The algorithm described in this document is for drawing ellipses of any orientation on a 2D raster. The
simplest way for an application to specify the ellipse is by choosing an oriented bounding box with center
(xc, yc) and axes (xa, ya) and (xb, yb) where all components are integers. The axes must be perpendicular,
so xaxb + yayb = 0. I assume that (xa, ya) is in the first quadrant (not including the y-axis), so xa > 0 and
ya ≥ 0 are required. I also require that the other axis is in the second quadrant, so xb ≤ 0 and yb > 0.
There must be integers na and nb such that nb(xb, yb) = na(−ya, xa), but the algorithm does not require
knowledge of these. The ellipse axes are the box axes and has the same orientation as the box.

All pixel computations are based on the ellipse with center (0, 0). These pixels are translated by (xc, yc) to
obtain the ones for the original ellipse. A quadratic equation for the ellipse centered at the origin is

(xax + yay)2

(x2
a + y2

a)2
+

(xbx + yby)2

(x2
b + y2

b)2
= 1.

In this form it is easy to see that (xa, ya) and (xb, yb) are on the ellipse. Multiplying the matrices and
multiplying through by denominators yields the quadratic equation

Ax2 + 2Bxy + Cy2 = D

where the integer coefficients are

A = x2
a(x2

b + y2
b)2 + x2

b(x
2
a + y2

a)2

B = xaya(x2
b + y2

b)2 + xbyb(x2
a + y2

a)2

C = y2
a(x2

b + y2
b)2 + y2

b (x2
a + y2

a)2

D = (x2
a + y2

a)2(x2
b + y2

b)2

For standard size rasters, these integers can be quite large. The code uses 64-bit integers to accommodate
this.

2 Axis-Aligned Ellipses

The algorithm for an axis-aligned ellipse draws that arc of the ellipse in the first quadrant and uses reflections
about the coordinate axes to draw the other arcs. The ellipse centered at the origin is b2x2 + a2y2 = a2b2.
Starting at (0, b), the arc is drawn in clockwise order. The initial slope of the arc is 0. As long as the arc
has slope smaller than 1 in magnitude, the x value is incremented. The corresponding y value is selected
based on a decision variable, just as in Bresenham’s circle drawing algorithm. The remaining part of the
arc in the first quadrant has slope larger than 1 in magnitude. That arc is drawn by starting at (a, 0) and
incrementing y at each step. The corresponding x value is selected based on a decision variable.

While drawing the arc starting at (0, b), let (x, y) be the current pixel that has been drawn. A decision
must be made to select the next pixel (x + 1, y + δ) to be drawn. Here δ is either 0 or −1. The ellipse is
defined implicitly as Q(x, y) = 0 where Q(x, y) = b2x2 + a2y2 − a2b2. Each choice for next pixel lies on its
own ellipse defined implicitly by Q(x, y) = λ for some constant λ that is not necessarily zero. The idea is to
choose δ so that the corresponding level curve has λ as close to zero as possible. This is the same idea that is

2

used for Bresenham’s circle algorithm. In the case of the circle algorithm, the choice relates to selecting the
pixel that is closest to the true circle. For ellipses, the choice is based on level set value and not on distance
between two ellipses (a much harder problem).

Given current pixel (x, y), for the next step the ellipse must do one of three things:

1. pass below (x + 1, y) and (x + 1, y − 1) in which case Q(x + 1, y) ≥ 0 and Q(x + 1, y − 1) ≥ 0,

2. pass between (x + 1, y) and (x + 1, y − 1) in which case Q(x + 1, y) ≥ 0 and Q(x + 1, y − 1) ≤ 0,

3. pass above (x + 1, y) and (x + 1, y − 1) in which case Q(x + 1, y) ≤ 0 and Q(x + 1, y − 1) ≤ 0.

In the first case the next pixel to draw is (x+1, y). In the third case the next pixel to draw is Q(x+1, y−1).
In the second case, the pixel with Q value closest to zero is chosen. The decision in all three cases can be
made by using the sign of σ = Q(x + 1, y) + Q(x + 1, y − 1). If σ < 0, then next pixel is (x + 1, y − 1). If
σ > 0, then next pixel is (x + 1, y). For σ = 0 either choice is allowed, so I choose (x + 1, y).

The decision variable σ can be updated incrementally. The initial value is σ0 = Q(1, b) + Q(1, b − 1) =
2b2 + a2(1− 2b). Given current pixel (x, y) and decision variable σi, the next decision is

σi+1 =

 Q(x + 2, y) + Q(x + 2, y − 1), σi ≥ 0

Q(x + 2, y − 1) + Q(x + 2, y − 2), σi < 0

 .

The choice is based on whether or not the chosen pixel after (x, y) is (x+1, y) [when σi > 0] or (x+1, y− 1)
[when σi ≤ 0]. Some algebra leads to

σi+1 = σi +

 2b2(2x + 3), σi ≥ 0

2b2(2x + 3) + 4a2(1− y), σi < 0

 .

On this arc x is always incremented at each step. The processing stops when slope becomes 1 in magni-
tude. The slope dy/dx of the ellipse can be computed implicitly from Q(x, y) = 0 as Qx + Qydy/dx = 0
where Qx and Qy are the partial derivatives of Q with respect to x and y. Therefore, dy/dx = −Qx/Qy =
−(2b2x)/(2a2y) = −(b2x)/(a2y). The iteration on x continues as long as −(b2x)/(a2y) ≥ −1. The termina-
tion condition of the iteration using only integer arithmetic is b2x ≤ a2y.

3

Code for the iteration is

int a2 = a*a, b2 = b*b, fa2 = 4*a2;
int x, y, sigma;

for (x = 0, y = b, sigma = 2*b2+a2*(1-2*b); b2*x <= a2*y; x++)
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc+y);
DrawPixel(xc+x,yc-y);
DrawPixel(xc-x,yc-y);

if (sigma >= 0)
{

sigma += fa2*(1-y);
y--;

}
sigma += b2*(4*x+6);

}

The code for the other half of the arc in the first quadrant is symmetric in x and y and in a and b:

int a2 = a*a, b2 = b*b, fb2 = 4*b2;
int x, y, sigma;

for (x = a, y = 0, sigma = 2*a2+b2*(1-2*a); a2*y <= b2*x; y++)
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc+y);
DrawPixel(xc+x,yc-y);
DrawPixel(xc-x,yc-y);

if (sigma >= 0)
{

sigma += fb2*(1-x);
x--;

}
sigma += a2*(4*y+6);

}

3 General Ellipses

We could attempt to mimic the case of axis-aligned ellipses by drawing the arc from (xb, yb) to (xa, ya) and
reflecting each pixel (x, y) through the appropriate lines. For example, given pixel ~u = (x, y), we would also

4

draw the pixel reflected through ~v = (xb, yb) given by

(x′, y′) = ~u− 2
(

~u · ~v
~v · ~v

)
~v = (x, y)− 2

(
xbx + yby

x2
b + y2

b

)
(xb, yb).

The right-hand side requires a division. Moreover, even if the division is performed (whether as float or
integer), the resulting pixels are not always contiguous and noticeable gaps occur. The general orientation
of the ellipse requires a better method for selecting the pixels. Instead I generate the arc from (−xa,−ya)
to (xa, ya) and plot pixels (xc + x, yc + y) and their reflections through the origin (xc − x, yc − y).

The algorithm is divided into two cases.

1. Slope at (−xa,−ya) is larger than 1 in magnitude. Five subarcs are drawn.

(a) Arc from (−xa, ya) to a point (x0, y0) whose slope is infinite. For all points between, the ellipse
has slope larger than 1 in magnitude, so y is always incremented at each step.

(b) Arc from (x0, y0) to a point (x1, y1) whose slope is 1. For all points between, the ellipse has slope
larger than 1 in magnitude, so y is always incremented at each step.

(c) Arc from (x1, y1) to a point (x2, y2) whose slope is 0. For all points between, the ellipse has slope
less than 1 in magnitude, so x is always incremented at each step.

(d) Arc from (x2, y2) to a point (x3, y3) whose slope is −1. For all points between, the ellipse has
slope less than 1 in magnitude, so x is always incremented at each step.

(e) Arc from (x3, y3) to (xa, ya). For all points between, the ellipse has slope larger than 1 in magni-
tude, so y is always decremented at each step.

2. Slope at (−xa,−ya) is smaller than 1 in magnitude. Five subarcs are drawn.

(a) Arc from (−xa,−ya) to a point (x0, y0) whose slope is −1. For all points between, the ellipse has
slope less than 1 in magnitude, so x is always decremented.

(b) Arc from (x0, y0) to a point (x1, y1) whose slope is infinite. For all points between, the ellipse has
slope larger than 1, so y is always incremented.

(c) Arc from (x1, y1) to a point (x2, y2) whose slope is 1. For all points between, the ellipse has slope
larger than 1 in magnitude, so y is always incremented at each step.

(d) Arc from (x2, y2) to a point (x3, y3) whose slope is 0. For all points between, the ellipse has slope
less than 1 in magnitude, so x is always incremented at each step.

(e) Arc from (x3, y3) to (xa, ya). For all points between, the ellipse has slope less than 1 in magnitude,
so x is always incremented at each step.

Each subarc is computed using a decision variable as in the case of an axis-aligned ellipse. The decision
to switch between the three subarcs is based on slope of the ellipse. The ellipse is implicitly defined by
Q(x, y) = 0 where Q(x, y) = Ax2 + 2Bxy + Cy2 −D = 0. The derivative dy/dx = −(Ax + By)/(Bx + Cy)
is obtained by implicit differentiation. The numerator and denominator of the derivative can be maintained
incrementally. Initially the current pixel (x, y) = (−xa,−ya) and the numerator and denominator of the
slope are dy = Axa + Bya and dx = −(Bxa + Cya).

The decision variable σ is handled slightly differently than in the case of an axis-aligned ellipse. In the latter
case, the decision was made to use the pixel whose own level curve is closest to the zero level curve. In the

5

current case, a general ellipse handled in the same way can lead to gaps at the end points of the arc and the
reflected arc. To avoid the gaps, the decision is made to always select the ellipse with smallest positive level
curve value rather than smallest magnitude level curve value. The selected pixels are always outside the true
ellipse. I do not incrementally maintain the decision variable as it does not gain any cycles, although it is
possible to maintain it so.

Each of the algorithms for the ten subarcs are similar in structure. I describe the case 1a here. The initial
values are x = −xa, y = −ya, dx = Bxa +Cya, and dy = −(Axa +Bya). As y is incremented, eventually the
left-most point in the x-direction is encountered where the slope of the ellipse is infinite. At each step the two
pixels to test are (x, y +1) and (x− 1, y +1). It is enough to test σ = Ax2 +2Bx(y +1)+C(y +1)2−D < 0
to see if (x, y + 1) is inside the true ellipse. If it is, then (x − 1, y + 1) is the next pixel to draw. If σ ≥ 0,
then (x, y + 1) is outside the true ellipse and closer to it than (x − 1, y + 1), so the next pixel is (x, y + 1).
Code is given below.

while (dx <= 0) // loop until point with infinite slope occurs
{

DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc-y);
y++;
sigma = a*x*x+2*b*x*y+c*y*y-d;
if (sigma < 0)
{

dx -= b;
dy += a;
x--;

}
dx += c;
dy -= b;

}

The other nine cases are structured similarly.

6

	1 Specifying the Ellipse
	2 Axis-Aligned Ellipses
	3 General Ellipses

