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1 Introduction

This document describes an algorithm for computing the area of intersection of two ellipses. The formulas
are in closed form, thus providing the exact area in terms of real-valued arithmetic. Naturally, the computer
evaluation of the trigonometric functions in the formulas has some numerical round-off errors, but the
formulas allow you to avoid (1) approximating the ellipses by convex polygons, (2) using the intersection of
convex polygons as an approximation to the intersection of ellipses, and (3) using the area of intersection of
convex polygons as an approximation to the area of intersection of ellipses.

The algorithm has two main aspects: Computing the points of intersection of the ellipses and computing the
area bounded by a line and an elliptical arc.

2 Area of an Ellipse

An axis-aligned ellipse centered at the origin is(x
a

)2
+
(y
b

)2
= 1 (1)

where I assume that a > b, in which case the major axis is along the x-axis. Figure 2.1 shows such an ellipse.

Figure 2.1 An axis-aligned ellipse centered at the origin with a > b.

The area bounded by the ellipse is πab. Using the methods of calculus, the area A is four times that of the
area in the first quadrant,

A = 4

∫ a

0

y dx = 4

∫ a

0

b
√

1− (x/a)2 dx (2)
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The integral may be computed using the change of variables x = a cosφ for 0 ≤ φ ≤ π/2. The differential is
dx = −a sinφdφ and the area is

A = 4
∫ a
0
b
√

1− (x/a)2 dx

= 4b
∫ 0

π/2
sinφ(−a sinφdφ)

= 4ab
∫ π/2
0

sin2 φdφ

= 2ab
∫ π/2
0

(1− cos(2φ)) dφ

= 2ab
(
φ− 1

2 sin(2φ)
)∣∣π/2

0

= 2ab
[(
π
2 −

1
2 sin (π)

)
−
(
0− 1

2 sin(0)
)]

= πab

(3)

3 Area of an Elliptical Sector

An elliptical arc is a portion of the ellipse bounded by two points on the ellipse. The arc is delimited by
angles θ0 and θ1 with θ0 < θ1. An elliptical sector is the region bounded by an elliptical arc and the line
segments containing the origin and the endpoints of the arc. Figure 3.1 shows an elliptical arc and the
corresponding elliptical sector.

Figure 3.1 An elliptical arc and its corresponding elliptical sector.

The polar-coordinate representation of the arc is obtained by substituting x = r cos θ and y = r sin θ into
Equation (1) and solving for r2,

r2 =
a2b2

b2 cos2 θ + a2 sin2 θ
(4)

The area of the sector is

A(θ0, θ1) =

∫ θ1

θ0

1

2
r2 dθ =

∫ θ1

θ0

(
a2b2/2

)
dθ

b2 cos2 θ + a2 sin2 θ
(5)
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An antiderivative of the integrand is

F (θ) =
ab

2

[
θ − Tan−1

(
(b− a) sin 2θ

(b+ a) + (b− a) cos 2θ

)]
(6)

where Tan−1(z) is the principal branch of the inverse tangent function whose range is (−π/2, π/2). The area
of the elliptical sector is therefore

A(θ0, θ1) = F (θ1)− F (θ0) (7)

4 Area Bounded by a Line Segment and an Elliptical Arc

Figure 4.1 shows the region bounded by an elliptical arc and the line segment connecting the arc’s endpoints.

Figure 4.1 The region bounded by an elliptical arc and the line segment connecting the arc’s
endpoints.

The area of this region is the area of the elliptical sector minus the area of the triangle whose vertices are the
origin, (0, 0), and the arc endpoints (x0, y0) = (r0 cos θ0, r0 sin θ0) and (x1, y1) = (r1 cos θ1, r1 sin θ1), where
θi are the polar angles to the points and where ri are determined using Equation (4). The triangle area is

1

2
|x1y0 − x0y1| =

r0r1
2
| cos θ1 sin θ0 − cos θ0 sin θ1| =

r0r1
2
| sin(θ1 − θ0)| (8)

In an implementation it is sufficient to use |x1y0 − x0y1|/2 rather than compute the right-hand side of
Equation (8).

If α(θ0, θ1) denotes the area of the aforementioned region, then

α(θ0, θ1) = A(θ0, θ1)− 1

2
|x1y0 − x0y1| (9)

where A(θ0, θ1) is the area of the sector as defined in Equation (7) and the other term on the right-hand
side is the area of the triangle.

The region of interest could be that bounded by the line segment and the elliptical arc that is spanned
counterclockwise from θ1 to θ0 + 2π. Figure 4.2 illustrates.
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Figure 4.2 The other region bounded by an elliptical arc and the line segment connecting the arc’s
endpoints.

The area of this region is
α(θ1, θ0 + 2π) = πab− α(θ0, θ1) (10)

The bounded region has the area of the ellipse minus the area of the smaller region bounded by the line
segment and elliptical arc. In Equation (9), the origin is outside the bounded region. In Equation (10), the
origin is inside the bounded region.

5 Intersection Points of Ellipses

The ellipses may be written as quadratic forms,

(P−Ci)
TRT

i DiRi(P−Ci) = 1, i = 0, 1 (11)

The center of ellipse i is Ci, a 2× 1 point. The orientation is Ri = [Ui0 Ui1], a 2× 2 rotation matrix whose
first column Ui0 is the 2× 1 direction of the major axis and whose second column Ui1 is the 2× 1 direction
of the minor axis. The 2×2 matrix Di = Diag(1/a2i , 1/b

2
i ) is a diagonal matrix where ai is the distance along

the major axis from the center to the ellipse and bi is the distance along the minor axis from the center to
the ellipse. The 2× 1 point P is any point on the ellipse.

Ignoring the i subscript for the sake of clarity, an ellipse (P−C)TRTDR(P−C) = 1 is parameterized by

P(φ) = C + (a cosφ)U0 + (b sinφ)U1, φ ∈ (−π, π] (12)

The point C may be viewed as the origin of a coordinate system whose axes have directions U0 and U1. If
(x, y) is a 2-tuple in the coordinate system, the point in the original coordinate system is P = C+xU0+yU1,
in which case x = U0 ·(P−C) and y = U1 ·(P−C). For the parameterized ellipse, x = a cosφ and y = b sinφ,
so (x/a)2 + (y/b)2 = 1. Thus, the ellipse is axis-aligned in the coordinate system induced by C, U0, and U1.

The ellipses may also be written as quadratic equations,

s0 + s1x+ s2y + s3x
2 + s4xy + s5y

2 = 0

t0 + t1x+ t2y + t3x
2 + t4xy + t5y

2 = 0
(13)
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where (x, y) is the 2-tuple version of P in Equation (11). This formulation is convenient for computing the
points of intersection of the ellipses; that is, the points are generated by solving simultaneously the two
quadratic equations.

The quadratic equations may be viewed as quadratic polynomials in x with coefficients that depend on y,

Q0(x, y) = f(x) = (s0 + s2y + s5y
2) + (s1 + s4y)x+ (s3)x2 = σ0 + σ1x+ σ2x

2 = 0

Q1(x, y) = g(x) = (t0 + t2t+ t5y
2) + (t1 + t4y)x+ (t3)x2 = τ0 + τ1x+ τ2x

2 = 0
(14)

The two polynomials f(x) and g(x) have a common root if and only if the Bézout determinant is zero,

(σ2τ1 − σ1τ2)(σ1τ0 − σ0τ1)− (σ2τ0 − σ0τ2)2 = 0. (15)

This determinant is constructed by

0 = σ2g(x)− τ2f(x) = (σ2τ1 − σ1τ2)x+ (σ2τ0 − σ0τ2) (16)

and
0 = τ1f(x)− σ1g(x) = (σ2τ1 − σ1τ2)x2 + (σ0τ1 − σ1τ0), (17)

Equation (16) is solved for x and substituted it into Equation (17) to produce Equation (15). When the
Bézout determinant is zero, the common root of f(x) and g(x) is

x̄ =
σ2τ0 − σ0τ2
σ1τ2 − σ2τ1

.

The common root to f(x) = 0 and g(x) = 0 is obtained from the linear equation σ2g(x) − τ2f(x) = 0 by
solving for x.

Equation (15) is a quartic polynomial in y, say,

B(y) = u0 + u1y + u2y
2 + u3y

3 + u4y
4 (18)

where

u0 = d31d10 − d230
u1 = d34d10 + d31(d40 + d12)− 2d32d30

u2 = d34(d40 + d12) + d31(d42 − d51)− d232 − 2d35d30

u3 = d34(d42 − d51) + d31d45 − 2d35d32

u4 = d34d45 − d235

(19)

where dij = sitj − sjti. For each ȳ solving B(ȳ) = 0 solve Q0(x, ȳ) = 0 for up to two values x̄. Keep only
the valid solutions, those for which Q0(x̄, ȳ) = 0 and Q1(x̄, ȳ) = 0.

6 Area of Intersecting Ellipses

The quartic polynomial of Equation (18) has an even number of real-valued roots: 0, 2, or 4. However, these
can be repeated. In geometric terms, repeated real-valued roots correspond to intersection points where the
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two ellipses are tangent. A distinct real-valued root corresponds to an intersection point where the ellipses
intersect transversely.

In the following discussion, the ellipses are named E0 and E1. The general logic for the area computation is
shown next. The subsections after this pseudocode describe why the function is structured as it is.

real AreaOfIntersection (Ellipse E0, Ellipse E1)
{

Polynomial2 Q0 = E0.GetQuadraticRepresentation(); // Q0(x,y)
Polynomial2 Q1 = E0.GetQuadraticRepresentation(); // Q1(x,y)
Polynomial1 B = GetBezoutDeterminant(Q0, Q1); // B(y)

// Compute the roots of B. The input to ComputeRoots is B. The output numDistinctRoots is the number of distinct
// real-valued roots. The output root[] stores the distinct roots, where only array elements 0 through
// numDistinctRoots-1 are valid. The output multiplicity[] stores the number of times the roots occur. For a
// distinct root, the multiplicity is 1. For a repeated root, the multiplicity is 2.
int numDistinctRoots, multiplicity[4];
real root[4];
ComputeRoots(B, numDistinctRoots, root, multiplicity);

// Compute the intersection points. The points are ordered counterclockwise about their centroid.
Point2 intr[4];
ComputeIntersections(E0, E1, Q0, Q1, numDistinctRoots, root, multiplicity, intr);

if (numDistinctRoots == 0)
{

// Returns area(E0) [E0 is contained in E1], area(E1) [E1 is contained in E0], or zero [E0 and E1 are separated].
return AreaOfIntersectionCS(E0, E1);

}
else if (numDistinctRoots == 1) // multiplicity[0] must be 2.
{

return AreaOfIntersectionCS(E0, E1);
}
else if (numDistinctRoots == 2)
{

if (multiplicity[0] == 2) // Two roots, each repeated. multiplicity[1] must be 2.
{

return AreaOfIntersectionCS(E0, E1);
}
else // Two distinct roots. Region bounded by two arcs, one from each ellipse.
{

return AreaOfIntersection2(E0, E1, intr[0], intr[1]);
}

}
else if (numDistinctRoots == 3)
{

if (multiplicity[0] == 2)
{

return AreaOfIntersection2(E0, E1, intr[1], intr[2]);
}
else if (multiplicity[1] == 2)
{

return AreaOfIntersection2(E0, E1, intr[2], intr[0]);
}
else // multiplicity[2] == 2
{

return AreaOfIntersection2(E0, E1, intr[0], intr[1]);
}

}
else // numDistinctRoots == 4
{

return AreaOfIntersection4(E0, E1, intr);
}

}

The assumption is that E0 and E1 are represented as quadratic forms, as defined by Equation (11), and that
the quadratic polynomials of Equation (13) must be computed. Of course, you can store as much information
as you like in the Ellipse data structure to avoid having to compute various quantities at run time.
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6.1 0 Intersection Points

One ellipse is contained strictly in the other, or the ellipses (as solids) are separated. Figure 6.1 illustrates.

Figure 6.1 Left: One ellipse is contained by the other. Right: The ellipses are separated.

In the case of containment, the area of intersection is the area of the smaller ellipse. In the case of separation,
the area of intersection is zero. The logic is

real AreaOfIntersectionCS (Ellipse E0, Ellipse E1)
{

if (E0.Contains(E1.center))
{

return Area(E1);
}
else if (E1.Contains(E0.center))
{

return Area(E0);
}
else
{

return 0;
}

}

6.2 1 Intersection Point

One ellipse is contained in the other but the two ellipses are tangent at the point of intersection, or the
ellipses (as solids) are separated except for a single point of tangency. Figure 6.2 illustrates.
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Figure 6.2 Left: One ellipse is contained by the other but they are tangent at a single point. Right:
The ellipses are separated except for a single point of tangency. The intersection point is drawn as
a red dot.

The area of intersection is computed using the function AreaOfIntersectionCS that was described in the
subsection for 0 intersection points.

6.3 2 Intersection Points

One ellipse is contained in the other but the two ellipses are tangent at the point of intersection, or the
ellipses intersect at two distinct points. Figure 6.3 illustrates.

Figure 6.3 Left: One ellipse is contained by the other but they are tangent at two points. Right:
The ellipses intersect at two distinct points. The intersection points are drawn as red dots.

For the case shown in the left of the figure, the area of intersection is computed using the function
AreaOfIntersectionCS because one ellipse is contained in the other.

The more interesting case is shown in the right of the figure. The region of intersection is bounded by two
elliptical arcs, one from each ellipse. In the coordinate system induced by E0, the points of intersection are

Pj = C0 + xjU00 + yjU01, j = 0, 1 (20)
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where xj = a0 cosφj and yj = b0 sinφj . The area of the region bounded by the E0-arc and the line segment
connecting P0 and P1 is computed using either Equation (9) or Equation (10) depending on whether C0 is
outside or inside the region. The angles are counterclockwise ordered as φ0 < φ1. The a and b in the area
equations are replaced by a0 and b0.

In the coodinate system induced by E1, the points of intersection are

Pj = C1 + xjU10 + yjU11, j = 0, 1 (21)

where xj = a1 cosψj and yj = b1 sinψj . The area of the region bounded by the E1-arc and the line segment
connecting P0 and P1 is computed using either Equation (9) or Equation (10) depending on whether C1 is
outside or inside the region. The angles are counterclockwise ordered as ψ0 < ψ1. The a and b in the area
equations are replaced by a1 and b1. The angles ψj replace the φj in the formulas, but be careful to use the
correct order as the formulas require.

The function

real AreaOfIntersection2 (Ellipse E0, Ellipse E1, Point2 P0, Point P1);

computes the area of the subregion associated with 〈P0,P1〉 using ellipse E0. It also computes the area of
the subregion associated with 〈P1,P0〉 using ellipse E1. The returned result is the sum of the two areas.

6.4 3 Intersection Points

The two ellipses intersect tangentially at one point and transversely at two points. Figure 6.4 illustrates.

Figure 6.4 Ellipses that intersect in 3 points.

The point of tangency is somewhat irrelevant here. The region of intersection is still bounded by two elliptical
arcs, one from each ellipse, so the algorithm for 2 intersection points still applies. In the figure, P2 is not
required in the area calculation.
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6.5 4 Intersection Points

The two ellipses intersect transversely at four points. Figure 6.5 illustrates.

Figure 6.5 Ellipses that intersect in 4 points.

The region of intersection is the union of a convex quadrilateral and four special regions, each region bounded
by an elliptical arc and the line segment connecting the endpoints of the arc.

The function

real AreaOfIntersection4 (Ellipse E0, Ellipse E1, Point2 P[4]);

computes the area of the subregion associated with 〈P0,P1〉 and the area of the subregion associated with
〈P2,P3〉. Ellipse E1 is used for these area calculations. Similarly, the function computes the area of the
subregion associated with 〈P1,P2〉 and the area of the subregion associated with 〈P3,P0〉. Ellipse E0 is used
for these area calculations. The area of the quadrilateral is computed as the sum of areas of two triangles,
〈P0,P1,P2〉 and 〈P3,P0,P2〉.
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