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1 Mathematical Formulation

The problem is to compute the minimum distance between a point P and a triangle T(s, t) = B+ sE0 + tE1

for (s, t) ∈ D = {(s, t) : s ∈ [0, 1], t ∈ [0, 1], s + t ≤ 1}. The minimum distance is computed by locating the
values (s̄, t̄) ∈ D corresponding to the point on the triangle closest to P.

The squared-distance function for any point on the triangle to P is Q(s, t) = |T(s, t) − P|2 for (s, t) ∈ D.
The function is quadratic in s and t,

Q(s, t) = as2 + 2bst + ct2 + 2ds + 2et + f,

where a = E0 ·E0, b = E0 ·E1, c = E1 ·E1, d = E0 · (B−P), e = E1 · (B−P), and f = (B−P) · (B−P).
Quadratics are classified by the sign of ac− b2. For function Q,

ac− b2 = (E0 ·E0)(E1 ·E1)− (E0 ·E1)2 = |E0 ×E1|2 > 0.

The positivity is based on the assumption that the two edges E0 and E1 of the triangle are linearly inde-
pendent, so their cross product is a nonzero vector.

In calculus terms, the goal is to minimize Q(s, t) over D. Since Q is a continuously differentiable function, the
minimum occurs either at an interior point of D where the gradient ∇Q = 2(as + bt + d, bs + ct + e) = (0, 0)
or at a point on the boundary of D.

2 The Algorithm

The gradient of Q is zero only when s̄ = (be− cd)/(ac− b2) and t̄ = (bd− ae)/(ac− b2). If (s̄, t̄) ∈ D, then
we have found the minimum of Q. Otherwise, the minimum must occur on the boundary of the triangle. To
find the correct boundary, consider the Figure 2.1,

Figure 2.1 Partitioning of the st-plane by triangle domain D.
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The central triangle labeled region 0 is the domain of Q, (s, t) ∈ D. If (s̄, t̄) is in region 0, then the point on
the triangle closest to P is interior to the triangle.

Suppose (s̄, t̄) is in region 1. The level curves of Q are those curves in the st-plane for which Q is a constant.
Since the graph of Q is a paraboloid, the level curves are ellipses. At the point where ∇Q = (0, 0), the
level curve degenerates to a single point (s̄, t̄). The global minimum of Q occurs there, call it Vmin. As the
level values V increase from Vmin, the corresponding ellipses are increasingly further away from (s̄, t̄). There
is a smallest level value V0 for which the corresponding ellipse (implicitly defined by Q = V0) just touches
the triangle domain edge s + t = 1 at a value s = s0 ∈ [0, 1], t0 = 1 − s0. For level values V < V0, the
corresponding ellipses do not intersect D. For level values V > V0, portions of D lie inside the corresponding
ellipses. In particular any points of intersection of such an ellipse with the edge must have a level value
V > V0. Therefore, Q(s, 1− s) > Q(s0, t0) for s ∈ [0, 1] and s 6= s0. The point (s0, t0) provides the minimum
squared-distance between P and the triangle. The triangle point is an edge point. Figure 2.2 illustrates the
idea by showing various level curves.

Figure 2.2 Various level curves Q(s, t) = V .

An alternate way of visualizing where the minimum distance point occurs on the boundary is to intersect
the graph of Q with the plane s + t = 1. The curve of intersection is a parabola and is the graph of
F (s) = Q(s, 1 − s) for s ∈ [0, 1]. Now the problem has been reduced by one dimension to minimizing a
function F (s) for s ∈ [0, 1]. The minimum of F (s) occurs either at an interior point of [0, 1], in which case
F ′(s) = 0 at that point, or at a end point s = 0 or s = 1. Figure 2 shows the case when the minimum occurs
at an interior point. At that point the ellipse is tangent to the line s + t = 1. In the end point cases, the
ellipse may just touch one of the vertices of D, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partitioning idea applies in the one-
dimensional case. The interval [0, 1] partitions the real line into three intervals, s < 0, s ∈ [0, 1], and s > 1.
Let F ′(ŝ) = 0. If ŝ < 0, then F (s) is an increasing function for s ∈ [0, 1]. The minimum restricted to [0, 1]
must occur at s = 0, in which case Q attains its minimum at (s, t) = (0, 1). If ŝ > 1, then F (s) is a decreasing
function for s ∈ [0, 1]. The minimum for F occurs at s = 1 and the minimum for Q occurs at (s, t) = (1, 0).
Otherwise, ŝ ∈ [0, 1], F attains its minimum at ŝ, and Q attains its minimum at (s, t) = (ŝ, 1− ŝ).

The occurrence of (s̄, t̄) in region 3 or 5 is handled in the same way as when the global minimum is in region
0. If (s̄, t̄) is in region 3, then the minimum occurs at (0, t0) for some t0 ∈ [0, 1]. If (s̄, t̄) is in region 5, then
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the minimum occurs at (s0, 0) for some s0 ∈ [0, 1]. Determining if the first contact point is at an interior or
end point of the appropriate interval is handled the same as discussed earlier.

If (s̄, t̄) is in region 2, it is possible the level curve of Q that provides first contact with the triangle touches
either edge s + t = 1 or edge s = 0. Because the global minimum occurs in region 2, the negative of the
gradient at the corner (0, 1) cannot point inside D. The geometric intuition for this is the following. There
is a level curve of Q that just touches the triangle and for which the region inside the triangle and the region
inside the level curve do not overlap. The level curve does one of the following.

1. Touches the corner at (0, 1).

2. Touches the edge for which s = 0.

3. Touches the edge for which s + t = 1.

Figure 2.3 illustrates the three cases.

Figure 2.3 Three ways a level curve with center in Region 2 touches the triangle.

At any point on the level curve, −∇Q is in the direction towards the inside of the level curve, which implies
it cannot point inside the triangle. To decide which of the these three cases occurs, if ∇Q = (Qs, Qt) where
Qs and Qt are the partial derivatives of Q, it must be that (0,−1) · ∇Q(0, 1) and (1,−1) · ∇Q(0, 1) cannot
both be negative. The two vectors (0,−1) and (1,−1) are directions for the edges s = 0 and s + t = 1,
respectively. The choice of edge s + t = 1 or s = 0 can be made based on the signs of (0,−1) · ∇Q(0, 1) and
(1,−1) · ∇Q(0, 1). The same type of argument applies in region 6. In region 4, the two quantities whose
signs determine which edge contains the minimum are (1, 0) · ∇Q(0, 0) and (0, 1) · ∇(0, 0).
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3 Implementation

The implementation of the algorithm is designed so that at most one floating point division is used when
computing the minimum distance and corresponding closest points. Moreover, the division is deferred until
it is needed. In some cases no division is needed.

Quantities that are used throughout the code are computed first. In particular, the values computed are
D = B−P, a = E0 ·E0, b = E0 ·E1, c = E1 ·E1, d = E0 ·D, e = E1 ·D, and f = D ·D. The code actually
computes δ = |ac − b2| since it is possible for small edge lengths that some floating point round-off errors
lead to a small negative quantity.

In the theoretical development, we computed s̄ = (be− cd)/δ and (bd− ae)/δ so that ∇Q(s̄, t̄) = (0, 0). The
location of the global minimum is then tested to see if it is in the triangle domain D. If so, then we have
already determined what we need to compute minimum distance. If not, then the boundary of D must be
tested. To defer the division by δ, the code instead computes s̄ = be − cd and t̄ = bd − ae and tests for
containment in a scaled domain, s ∈ [0, δ], t ∈ [0, δ], and s + t ≤ δ. If in that set, then the divisions are
performed. If not, then the boundary of the triangle is tested. The general outline of the conditionals for
determining which region contains (s̄, t̄) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;
if ( s+t <= det )
{

if ( s < 0 ) { if ( t < 0 ) { region 4 } else { region 3 } }
else if ( t < 0 ) { region 5 }
else { region 0 }

}
else
{

if ( s < 0 ) { region 2 }
else if ( t < 0 ) { region 6 }
else { region 1 }

}

The block of code for handling region 0 is

invDet = 1/det;
s *= invDet;
t *= invDet;

and requires a single division.

The block of code for region 1 is

// F(s) = Q(s,1-s) = (a-2b+c)s^2 + 2(b-c+d-e)s + (c+2e+f)
// F’(s)/2 = (a-2b+c)s + (b-c+d-e)
// F’(S) = 0 when S = (c+e-b-d)/(a-2b+c)
// a-2b+c = |E0-E1|^2 > 0, so only sign of c+e-b-d need be considered
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if ( numer <= 0 )
{

s = 0;
}
else
{

denom = a-2*b+c; // positive quantity
s = ( numer >= denom ? 1 : numer/denom );

}
t = 1-s;

The block of code for region 3 is given below. Block for region 5 is similar.

// F(t) = Q(0,t) = ct^2 + 2et + f
// F’(t)/2 = ct+e
// F’(T) = 0 when T = -e/c
s = 0;
t = ( e >= 0 ? 0 : ( -e >= c ? 1 : -e/c ) );

The block of code for region 2 is given below. Blocks for regions 4 and 6 are similar.

// Grad(Q) = 2(as+bt+d,bs+ct+e)
// (0,-1)*Grad(Q(0,1)) = (0,-1)*(b+d,c+e) = -(c+e)
// (1,-1)*Grad(Q(0,1)) = (1,-1)*(b+d,c+e) = (b+d)-(c+e)
// min on edge s+t=1 if (1,-1)*Grad(Q(0,1)) < 0 )
// min on edge s=0 otherwise

tmp0 = B+D;
tmp1 = C+E;
if ( tmp1 > tmp0 ) // minimum on edge s+t=1
{

numer = tmp1 - tmp0;
denom = A-2*B+C;
s = ( numer >= denom ? 1 : numer/denom );
t = 1-s;

}
else // minimum on edge s=0
{

s = 0;
t = ( tmp1 <= 0 ? 1 : ( E >= 0 ? 0 : -E/C ) );

}
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