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1 Introduction

This article describes how to compute the points of intersection of two ellipses, a geometric query labeled
find intersections. It also shows how to determine if two ellipses intersect without computing the points of
intersection, a geometric query labeled test intersection. Specifically, the geometric queries for the ellipses
E0 and E1 are:

• Find Intersections. If E0 and E1 intersect, find the points of intersection.

• Test Intersection. Determine if

– E0 and E1 are separated (there exists a line for which the ellipses are on opposite sides),

– E0 properly contains E1 or E1 properly contains E0, or

– E0 and E1 intersect.

An implementation of the find query, in the event of no intersections, might not necessarily determine if one
ellipse is contained in the other or if the two ellipses are separated. Let the ellipses Ei be defined by the
quadratic equations
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for i = 0, 1. It is assumed that the Ai are positive definite. In this case, Qi(X) < 0 defines the inside of the
ellipse and Qi(X) > 0 defines the outside.

2 Find Intersection

The two polynomials f(x) = α0 + α1x+ α2x
2 and g(x) = β0 + β1x+ β2x

2 have a common root if and only
if the Bézout determinant is zero,

(α2β1 − α1β2)(α1β0 − α0β1)− (α2β0 − α0β2)2 = 0.

This is constructed by the combinations

0 = α2g(x)− β2f(x) = (α2β1 − α1β2)x+ (α2β0 − α0β2)

and
0 = β1f(x)− α1g(x) = (α2β1 − α1β2)x2 + (α0β1 − α1β0),

solving the first equation for x and substituting it into the second equation. When the Bézout determinant
is zero, the common root of f(x) and g(x) is

x̄ =
α2β0 − α0β2
α1β2 − α2β1

.
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The common root to f(x) = 0 and g(x) = 0 is obtained from the linear equation α2g(x) − β2f(x) = 0 by
solving for x.

The ellipse equations can be written as quadratics in x whose coefficients are polynomials in y,
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Using the notation of the previous paragraph with f corresponding to Q0 and g corresponding to Q1,
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The Bézout determinant is a quartic polynomial R(y) = u0 + u1y + u2y
2 + u3y

3 + u4y
4 where

u0 = v2v10 − v24
u1 = v0v10 + v2(v7 + v9)− 2v3v4

u2 = v0(v7 + v9) + v2(v6 − v8)− v23 − 2v1v4

u3 = v0(v6 − v8) + v2v5 − 2v1v3

u4 = v0v5 − v21

with
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For each ȳ solving R(ȳ) = 0 solve Q0(x, ȳ) = 0 for up to two values x̄. Eliminate any false solution (x̄, ȳ) by
verifying that Pi(x̄, ȳ) = 0 for i = 0, 1.
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3 Test Intersection

3.1 Variation 1

All level curves defined by Q0(x, y) = λ are ellipses, except for the minimum (negative) value λ for which
the equation defines a single point, the center of every level curve ellipse. The ellipse defined by Q1(x, y) = 0
is a curve that generally intersects many level curves of Q0. The problem is to find the minimum level value
λ0 and maximum level value λ1 attained by any (x, y) on the ellipse E1. If λ1 < 0, then E1 is properly
contained in E0. If λ0 > 0, then E0 and E1 are separated. Otherwise, 0 ∈ [λ0, λ1] and the two ellipses
intersect.

This can be formulated as a constrained minimization that can be solved by the method of Lagrange multipli-
ers: Minimize Q0(X) subject to the constraint Q1(X) = 0. Define F (X, t) = Q0(X)+tQ1(X). Differentiating
yields ∇F = ∇Q0 + t∇Q1 where the gradient indicates the derivatives in X. Also, ∂F/∂t = Q1. Setting
the t-derivative equal to zero reproduces the constraint Q1 =. Setting the X-derivative equal to zero yields
∇Q0 + t∇Q1 = 0 for some t. Geometrically this means that the gradients are parallel.

Note that ∇Qi = 2AiX + Bi, so

0 = ∇Q0 + t∇Q1 = 2(A0 + tA1)X + (B0 + tB1).

Formally solving for X yields

X = −(A0 + tA1)−1(B0 + tB1)/2 =
1

δ(t)
Y(t)

where δ(t) is the determinant of (A0 + tA1), a quadratic polynomial in t, and Y(t) has components quadratic
in t. Replacing this in Q1(X) = 0 yields

Y(t)TA1Y(t) + δ(t)BT
1 Y(t) + δ(t)2C1 = 0,

a quartic polynomial in t. The roots can be computed, the corresponding values of X computed, and Q0(X)
evaluated. The minimum and maximum values are stored as λ0 and λ1, and the earlier comparisons with
zero are applied.

This method leads to a quartic polynomial, just as the find query did. But this query does answer questions
about the relative positions of the ellipses (separated or proper containment) when the find query indicates
that there is no intersection.

3.2 Variation 2

An iterative method can be set up that attempts to find a separating line between the two ellipses. This does
not directly handle proper containment of one ellipse by the other, but a similar algorithm can be derived for
the containment case. Let the ellipses be in factored form, (X−Ci)

TMi(X−Ci) = 1 where Mi is positive
definite and Ci is the center of the ellipse, i = 0, 1. A potential separating axis (not to be confused with a
separating line that is perpendicular to a separating axis) is C0 + tN where N is a unit length vector. The

t-interval of projection of E0 onto the axis is I0(N) = [−r0, r0] where r0 =
√

NTM−1
0 N. The t-interval of

projection of E1 onto the axis is I1(N) = [N ·∆−r1,N ·∆+r1] where ∆ = C1−C0 and r1 =
√

NTM−1
1 N.
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Select an initial N. If the intersection F (N) := I0(N) ∩ I1(N) = ∅, then the ellipses are separated. If
F (N) 6= ∅, then the given axis does not separate the ellipses. When the intervals overlap, F (N) = [f0, f1]
where f0 = max{N ·∆ − r1,−r0} and f1 = min{N ·∆ + r1, r0}. The function D(N) = f1 − f0 > 0 when
there is overlap. If the two intervals have a single point of intersection, then f0 = f1. If the intervals are
disjoint, then f1 < f0 and D(N) < 0. The problem now is to search the space of unit length vectors, starting
at the initial N, to determine if there is such a vector that makes D < 0. It is enough to determine if D = 0
and the graph of D has a transverse crossing at that location.
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