
Distance from Point to Orthogonal Frustum

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright c© 1998-2008. All Rights Reserved.

Created: May 8, 2000
Last Modified: March 1, 2008

Contents

1 Introduction 2

2 2D Distance 2

3 3D Distance 4

1

http://www.geometrictools.com/

1 Introduction

The algorithm for computing the distance from a point to an orthogonal frustum is based on determining
the Voronoi regions for the faces, edges, and vertices of the frustum. The region containing the point is
computed. The nearest point on the frustum in that region is also computed. From this the distance can be
calculated. The concepts are illustrated first in 2D. The 3D case is slightly more difficult to visualize, but is
a straightforward generalization of the Voronoi idea.

2 2D Distance

The orthogonal frustum has origin E, unit-length direction vector D, and perpendicular unit-length vector
L. The near line has normal D and contains the point E + nD for some n > 0. The far line has normal D
and contains the point E + fD for some f > n. The four vertices of the frustum are E + nD± `L for some
` > 0, and E + (f/n)(nD ± `L). Let P be the point whose distance to the frustum is required. The point
can be written in the frustum coordinate system as

P = E + x0L + x1D,

so x0 = L · (P−E) and x1 = D · (P−E). It is sufficient to demonstrate the construction for x0 ≥ 0. For if
x0 < 0, a reflection can be made by changing sign on x0, the closest point can be calculated, then a reflection
on that point yields the closest point to the original. Figure 2.1 shows the portion of the frustum in the first
quadrant.

Figure 2.1 Portion of frustum in first quadrant.

The Voronoi regions are marked in red. Region R0 contains those points inside the frustum. Region R1

contains those points closest to the top edge of the frustum. Region R2 contains those points closest to the
vertex (f`/n, f) of the frustum. That region is split into three subregions based on D component being
larger than f , between n and f , or smaller than n. Region R3 contains those points closest to the slanted
edge of the frustum. That region is split into two subregions based on D component being between n and

2

f or smaller than n. Region R4 contains those points closest to the vertex (`, n) of the frustum. Finally,
region R5 contains those points closest to the bottom edge of the frustum.

The pseudocode for determining the Voronoi region for (x0, x1) is given below.

if (x1 >= f)
{

if (x0 <= f*l/n)
point in R1;

else
point in R2a;

}
else if (x1 >= n)
{

t = Dot((n,-l),(x0,x1));
if (t <= 0)

point in R0;
else
{

t = Dot((l,n),(x0,x1));
if (t <= Dot((l,n),(f*l/n,f)))

point in R3a;
else

point in R2b;
}

}
else
{

if (x0 <= l)
point in R5;

else
{

t = Dot((l,n),(x0,x1));
if (t <= Dot((l,n),(l,n)))

point in R4;
else if (t <= Dot((l,n),(f*l/n,f)))

point in R3b;
else

point in R2c;
}

}

The closest point to (x0, x1) in R1 is (x0, f). The closest point in R2 is (f`/n, f). The closest point in R4

is (`, n). The closest point in R5 is (x0, n). Region R3 requires projecting out the (n,−`) component from
(x0, x1). The closest point is (x0, x1)− [(nx0 − `x1)/(`2 + n2)](n,−`).

3

3 3D Distance

The orthogonal view frustum has origin E. Its coordinate axes are determined by left vector L, up vector U,
and direction vector D. The vectors in that order form a right-handed orthonormal system. The extent of
the frustum in the D direction is [n, f] where 0 < n < f . The four corners of the frustum in the near plane
are E± `L± µU + nD. The four corners of the frustum in the far plane are E + (f/n)(±`L± µU + nD).

Let P be the point whose distance to the frustum is required. The point can be written in the frustum
coordinate system as

P = E + x0L + x1U + xxD,

so x0 = L · (P−E), x1 = U · (P−E), and x2 = D · (P−E). It is sufficient to demonstrate the construction
for x0 ≥ 0 and x1 ≥ 0. The idea is the same as in the 2D case, reflect the x0 and x1 components, find the
closest point, then reflect its x0 and x1 components back to the original quadrant.

The naming conventions for the frustum components are N for near, F for far, U for up, and L for left. The
top face of the frustum is labeled the F -face. It has two edges, the UF -edge that is in the direction of L
and the LF -edge that is in the direction of U. It also has a vertex, the LUF -vertex at (f`/n, fµ/n, f). The
bottom face of the frustum is labeled the N -face. It has two edges, the UN -edge that is in the direction
of L and the LN -ege that is in the direction of U. It also has a vertex, the LUN -vertex at (`, µ, n). The
remaining two faces are the L-face whose normal is (n, 0,−`) and the U -face whose normal is (0, n,−µ).
Finally there is the LU -edge that is shared by the L-face and the U -face. Figure 3.1 illustrates the Voronoi
region boundaries in red. The blue lines indicate the near and far planes that split some of the Voronoi
regions.

Figure 3.1 Portion of frustum in first octant.

4

The pseudocode for determining the Voronoi region for (x0, x1, x2)) is given below.

if (x2 >= f)
{

if (x0 <= f*l/n)
{

if (x1 <= f*u/n)
F-face is closest;

else
UF-edge is closest;

}
else
{

if (x1 <= f*u/n)
LF-edge is closest;

else
LUF-vertex is closest;

}
}
else if (x2 <= n)
{

if (x0 <= l)
{

if (x1 <= u)
N-face is closest;

else
{

t = u*x1 + n*x2;
if (t >= (f/n)*(u*u+n*n))

UF-edge is closest;
else if (t >= u*u+n*n)

U-face is closest;
else

UN-edge is closest;
}

}
else
{

if (x1 <= u)
{

t = l*x0 + n*x2;
if (t >= (f/n)*(l*l+n*n))

LF-edge is closest;
else if (t >= l*l+n*n)

L-face is closest;
else

LN-edge is closest;
}

5

else
{

r = l*x0 + u*x1 + n*x2;
s = u*r - (l*l+u*u+n*n)*x1;
if (s >= 0.0)
{

t = l*x0 + n*x2;
if (t >= (f/n)*(l*l+n*n))

LF-edge is closest;
else if (t >= l*l+n*n)

L-face is closest;
else

LN-edge is closest;
}
else
{

s = l*r - (l*l+u*u+n*n)*x0;
if (s >= 0.0)
{

t = u*x1 + n*x2;
if (t >= (f/n)*(u*u+n*n))

UF-edge is closest;
else if (t >= u*u+n*n)

U-face is closest;
else

UN-edge is closest;
}
else
{

if (r >= (f/n)(l*l+u*u+n*n))
LUF-vertex is closest;

else if (r >= l*l+u*u+n*n)
LU-edge is closest;

else
LUN-vertex is closest;

}
}

}
}

}
else
{

s = n*x0 - l*x2;
t = n*x1 - u*x2;
if (s <= 0)
{

if (t <= 0)
point inside frustum;

6

else
{

t = u*x1 + n*x2;
if (t >= (f/n)*(u*u+n*n))

UF-edge is closest;
else

U-face is closest;
}

}
else
{

if (t <= 0)
{

t = l*x0 + n*x2;
if (t >= (f/n)*(l*l+n*n))

LF-edge is closest;
else

L-face is closest;
}
else
{

r = l*x0 + u*x1 + n*x2;
s = u*r - (l*l+u*u+n*n)*x1;
if (s >= 0)
{

t = l*x0 + n*x2;
if (t >= (f/n)*(l*l+n*n))

LF-edge is closest;
else

L-face is closest;
}
else
{

t = l*r - (l*l+u*u+n*n)*x0;
if (t >= 0)
{

t = u*x1 + n*x2;
if (t >= (f/n)*(u*u+n*n))

UF-edge is closest;
else

U-face is closest;
}
else
{

if (r >= l*l+u*u+n*n)
LUF-vertex is closest;

else
LU-edge is closest;

7

}
}

}
}

}

The closest point in each region is obtained by projection onto that component.

8

	1 Introduction
	2 2D Distance
	3 3D Distance

