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1 Discussion

Consider an open, uniform B-spline curve whose control points are Pj for 0 ≤ j ≤ n and whose degree is d.
The B-spline basis functions are Nj,d(t) where t ∈ [0, 1] and depend on a set of knots sj for 0 ≤ j ≤ n+d+1.
The curve is defined by

X(t) =
n∑

j=0

Nj,d(t)Pj

The goal is to construct another open, uniform B-spline curve of degree d that approximates X(t) but has
fewer control points. Let the approximating curve have control points Qj for 0 ≤ j ≤ m where m < n. The
B-spline basis functions for this curve are Mj,d(t) and depend on a set of knots tj for 0 ≤ j ≤ m + d + 1.
The curve is defined by

Y(t) =
m∑

j=0

Mj,d(t)Qj

The approximation curve is chosen to minimize the integral of the squared distance between X(t) and Y(t),
a least-squares fitting algorithm.

The control points of Y(t) are the unknown quantities to be determined by the algorithm. The least-squares
error function is

E(Q0, . . . ,Qm) =
∫ 1

0

∣∣∣∣∣∣
m∑

j=0

Mj,d(t)Qj −
n∑

j=0

Nj,d(t)Pj

∣∣∣∣∣∣
2

dt

The error function is nonnegative and has a global minimum that occurs when its gradient vector is zero.
We may establish these conditions by setting the derivatives with respect to the control points to zero (as
compared to setting the derivatives with respect to the components of the control points). That is,

0 =
∂E

∂Qi

=
∫ 1

0

 m∑
j=0

Mj,d(t)Qj −
n∑

j=0

Nj,d(t)Pj

 Mi,d(t) dt

This simplifies to ∑m
j=0

(∫ 1

0
Mi,d(t)Mj,d(t)

)
Qj =

∑n
j=0

(∫ 1

0
Mi,d(t)Nj,d(t)

)
Pj∑m

j=0 aijQj =
∑n

j=0 bijPj

AQ = BP

where the matrix A = [aij ] is (m + 1)× (m + 1) and the matrix B = [bij ] is (m + 1)× (n + 1). The vector
Q is an (m + 1) × 1 block-column vector whose rows are the unknown control points Qk for 0 ≤ k ≤ m.
Similarly the vector P is an (n+1)× 1 block-column vector whose rows are the known control points Pk for
0 ≤ k ≤ n. If A is an invertible matrix, then we may solve for the unknown control points: Q = A−1BP. If
A−1B = [cij ], this equation reduces to

Qi =
n∑

j=0

cijPj , 0 ≤ i ≤ m

The problem of computing a curve Y(t) that approximates X(t) and has fewer control points reduces to
computing the matrices A and B, inverting A, computing the product A−1B, and finally computing the
products Qi =

∑m
j=0 cijPj .
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The entry aij of the matrix A is an integral of the product of basis functions Mi,d(t)Mj,d(t). The support of
Mi,d(t) is the closed interval [ti, ti+d+1] and has the property that Mi,d(t) is not zero on the open interval
(ti, ti+d+1). The basis function is zero everywhere outside the closed interval. What this means to us is
that the product Mi,d(t)Mj,d(t) only contributes to the integral of aij when it is nonzero. And it can only
be nonzero when the support of Mi,d(t), namely [ti, ti+d+1], and the support of Mj,d(t), namely [tj , tj+d+1],
are intervals that overlap on some interval of positive length (overlap at a single point is not relevant). The
supports do not overlap when ti+d+1 ≤ tj or tj+d+1 ≤ ti. Equivalently, no overlap occurs when i + d + 1 ≤ j
or j + d + 1 ≤ i. Thus, the supports do overlap when |i− j| ≤ d. The elements aij are

aij =


∫ ti+d+1

tj
Mi,d(t)Mj,d(t) dt, 0 ≤ i− j ≤ d∫ tj+d+1

ti
Mi,d(t)Mj,d(t) dt, −d ≤ i− j ≤ 0

0, |i− j| > 0

Consequently A is a symmetric and banded matrix with 2d + 1 bands, each band starting in the first row
or first column of the matrix and proceeding diagonally downwards in the matrix. The matrix elements
on the bands are the only (potentially) nonzero elements. All elements off the bands are zero. You are
certainly familiar with diagonal matrices (one band) and tridiagonal matrices (three bands). A banded
matrix generalizes these concepts. For example, if m = 4 and d = 1, the matrix A has three bands,

A =



a00 a01 0 0 0

a01 a11 a12 0 0

0 a12 a22 a23 0

0 0 a23 a33 a34

0 0 0 a34 a44


The main diagonal is one band, a band starts in row 0 and column 1, and a band starts in row 1 and column
0. If m = 5 and d = 2, the matrix A has five bands,

A =



a00 a01 a02 0 0 0

a01 a11 a12 a13 0 0

a02 a12 a22 a23 a24 0

0 a13 a23 a33 a34 a35

0 0 a24 a34 a44 a45

0 0 0 a35 a45 a55


The main diagonal is one band. Two bands start in row 0, one at column 1 and one at column 2. Two bands
start in column 0, one at row 1 and one at row 2.

A similar analysis applies to matrix B. The support for Mi,d(t) is [ti, ti+d+1] and the support for Nj,d(t) is
[sj , sj+d+1]. The integral for bij is nonzero only when the two supports have positive overlap. The support
interval lengths are not the same, so the test for overlap is not as easily reduced to comparisons of the knot
indices. However, this is irrelevant for the application since we can compute only those bij that are not zero
by testing the supports themselves for overlap.
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Clearly the computational effort lies in the inversion of the matrix A. The band entries aij are integrals of
polynomials and may be computed in closed form. Rather than determining the closed form equations, the
implementation uses a Romberg integration to compute the integrals. Inverting a general N × N matrix
requires on the order of N3 operations. However, a banded matrix requires less computation time because
of the presence of all those zeros. A diagonal matrix with all nonzero diagonal entries can be inverted with
N operations (one division per diagonal element). Inversion of a tridiagonal matrix is covered in standard
undergraduate text books on numerical methods and requires on the order of N operations. Our banded
matrix can be inverted quickly as long as the degree d is much smaller than m, which for most practical
applications it is. The inversion algorithm itself is similar to the one used for tridiagonal matrices.

2 Implementation

An implementation is currently available at the web site. An illustrative application is provided to show how
effective an approximation you can obtain with a greatly reduced set of control points (the example uses
m = n/10). The application is in the folder

GeometricTools/WildMagic4/SampleFoundation/BSplineFitContinuous
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