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This document describes how to �t a set of data points with a B-spline curve using a least-squares algorithm.
The construction allows for any dimension for the data points. A typical application is to �t keyframes for
animation sequences, whether the data is positional (3D) or rotational using quaternions (4D). In the latter
case, the B-spline curve is not necessarily on the unit hypersphere in 4D, but the curve evaluations may be
normalized to force the results onto that hypersphere.

1 De�nition of B-Spline Curves

A B-spline curve is de�ned for a collection of n+ 1 control points fQig
n
i=0 by

X(t) =

nX
i=0

Ni;d(t)Qi (1)

The control points can be any dimension, but all of the same dimension. The degree of the curve is d and
must satisfy 1 � d � n. The functions Ni;d(t) are the B-spline basis functions, which are de�ned recursively
and require selection of a sequence of scalars ti for 0 � i � n + d + 1. The sequence is nondecreasing; that
is, ti � ti+1. Each ti is referred to as a knot, the total sequence a knot vector. The basis function that starts
the recursive de�nition is

Ni;0(t) =

8<
:

1; ti � t < ti+1

0; otherwise
(2)

for 0 � i � n+ d. The recursion itself is

Ni;j(t) =
t� ti

ti+j � ti
Ni;j�1(t) +

ti+j+1 � t

ti+j+1 � ti+1
Ni+1;j�1(t) (3)

for 1 � j � d and 0 � i � n+ d� j. The support of a function is the smallest closed interval on which the
function has at least one nonzero value. The support of Ni;0(t) is clearly [ti; ti+1]. In general, the support of
Ni;j(t) is [ti; ti+j+1]. This fact means that locally the curve is in
uenced by only a small number of control
points, a property called local control.

The main classi�cation of the knot vector is that it is either open or periodic. If open, the knots are either
uniform or nonuniform. Periodic knot vectors have uniformly spaced knots. The use of the term open is
perhaps a misnomer since you can construct a closed B-spline curve from an open knot vector. The standard
way to construct a closed curve uses periodic knot vectors. Uniform knots are

ti =

8>>><
>>>:

0 ; 0 � i � d

i�d
n+1�d

; d+ 1 � i � n

1 ; n+ 1 � i � n+ d+ 1

(4)

Periodic knots are

ti =
i� d

n+ 1� d
; 0 � i � n+ d+ 1 (5)

Equations (2) and (3) allow you to recursively evaluate the B-spline curve, but there are faster ways based
on the local control. This document does not cover the various evaluation schemes. You may �nd this topic
in any book on B-splines and most likely at online sites.
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2 Least-Squares Fitting

The data points are f(sk;Pk)g
m
k=0, where sk are the sample times and Pk are the sample data. The sample

times are assumed to be increasing: s0 < s1 < : : : < sm. A B-spline curve that �ts the data is parameterized
by t 2 [0; 1], so the sample times need to be mapped to the parameter domain by tk = (sk � s0)=(sm � s0).

The �tted B-spline curve is formally presented in equation (1), but the control points Qi are unknown
quantities to be determined later. The control points are considered to be column vectors, and the collection
of control points may be arranged into a single column vector

Q̂ =

2
6666664

Q0

Q1

...

Qn

3
7777775
: (6)

Similarly, the samples Pk are considered to be column vectors, and the collection written as a single column
vector

P̂ =

2
6666664

P0

P1

...

Pm

3
7777775
: (7)

For a specifed set of control points, the least-squares error function between the B-spline curve and sample
points is the scalar-valued function

E(Q̂) =
1

2

mX
k=0

������
nX

j=0

Nj;d(tk)Qj �Pk

������

2

(8)

The half term is just for convenience in the calculations. The quantity
Pn

j=0Nj;d(tk)Qj is the point on
the B-spline curve at the scaled sample time tk. The term within the summation on the right-hand side
of equation (8) measures the squared distance between the sample point and its corresponding curve point.
The error function measures the total accumulation of squared distances. The hope is that we may choose
the control points to make this error as small as possible.

The minimization is a calculus problem. The function E is quadratic in the components of Q̂, its graph a
paraboloid (in high dimensional space), so it must have a global minimum that occurs when all its �rst-order
partial derivatives are zero. That is, the vertex of the parabola occurs where the �rst derivatives are zero.
The �rst-order partial derivatives are written in terms of the control points Qi rather than in terms of the
components of the control points:

@E
@Q

i

=
Pm

k=0

�Pn

j=0Nj;d(tk)Qj �Pk

�
Ni;d(tk)

=
Pm

k=0

Pn

j=0Ni;d(tk)Nj;d(tk)Qj �
Pm

k=0Ni;d(tk)Pk

=
Pm

k=0

Pn

j=0 akiakjQj �
Pm

k=0 akiPk

(9)
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where arc = Nc;d(tr), and for 0 � i � n. Setting the partial derivatives equal to the zero vector leads to the
system of equations

0 =

mX
k=0

nX
j=0

akiakjQj �

mX
k=0

akiPk = ATAQ̂�ATP̂ (10)

where A = [arc] is a matrix with m+1 rows and n+1 columns. The matrix AT is the transpose of A. This
system of equations is in a familiar form of a least-squares problem. Recall that such problems arise when
wanting to solve Ax = b. If the system does not have a solution, the next best thing is to construct x so
that jAx� bj is as small as possible. The minimization leads to the linear system ATAx = ATb.

The matrix ATA is symmetric, a property that is desirable in the numerical solution of systems. Moreover,
the matrix A is banded. This is a generalization of tridiagonal. A banded matrix has a diagonal with
(potentially) nonzero entries. It has a contiguous set of upper bands and a contiguous set of lower bands,
each band with (potentially) nonzero entries. All other entries in the matrix are zero. In our case, the
number of upper bands and the number of lower bands are the same, namely d + 1. The bandedness is a
consequence of the local control for B-spline curves (the supports of the B-spline basis functions are bounded
intervals).

The direct approach to solving the equation (10) is to invert the coe�cient matrix. The equation ATAQ̂ =
ATP̂ implies

Q̂ =
�
ATA

�
�1

ATP̂ =
h�
ATA

�
�1

AT
i
P̂ = XP̂ (11)

where the last equality de�nes the matrix X. The problem, though, is that the matrix inversion can be ill
conditioned because the matrix has eigenvalues that are nearly zero. The ill conditioning causes a Gaussian
elimination, even with full pivoting, to have problems. For the application of �tting keyframe data, the
keyframes tend to be sampled at evenly spaced time intervale. In this case, the ill conditioning is not an
issue as long as you choose a B-spline curve with uniform knots. Regardless, an approach di�erent from the
direct inversion is called for, both to minimize the e�ects of ill conditioning and to take advantage of the
bandedness of the matrix. Recall that Gaussian elimination to solve a linear system with an n � n matrix
is an O(n3) algorithm. The solution to a linear system with a tridiagonal matrix is O(n). The same is true
for a banded matrix with a small number of bands relative to the size of the matrix.

The numerical method of choice for symmetric, banded matrix systems is the Cholesky decomposition. The
book Matrix Computations by G. Golub and C. van Loan has an excellent discussion of the topic. The
algorithm starts with a symmetric matrix and factors it into a lower-triangular matrix, G, times the trans-
pose of that lower-triangular matrix, GT, which is necessarily upper triangular. In our case, the Cholesky
decomposition is

ATA = GGT (12)

A numerically stable LU solver may be used �rst to invert G, then to invert GT. For the application of
�tting keyframe data, the choice of uniform knots leads to good stability, but also required is to make certain
that the number of control points is smaller than the number of samples by a half. This is essentially a
Nyquist-frequency argument. If you have as many control points as samples, the B-spline curve can have
large oscillations.

The matrix X is computed as the solution to ATAX = AT using the Cholesky decomposition to invert the
matrix ATA. The vector of control points, Q̂, is then computed from Equation (11).
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3 Implementation

A sample application to illustrate the �t is in the folder

GeometricTools/WildMagic4/SampleFoundation/BSplineCurveFitter

In the application, a spiral curve is generated as a polyline of 1000 sample points. A B-spline curve is created
using the algorithm of this document. The initial degree is 3 and the initial number of control points is 500.
The display shows the current degree and the current number of control points. It also shows the average
distance error between the original samples and the resample B-spline curve points as well as showing the
root-mean-square error for the distances.

You can increase or decrease the degree and the number of control points.

key action

`d' decrease the degree by 1

`D' increase the degree by 1

`s' decrease the number of control points by 1 (s for small)

`S' increase the number of control points by 1 (S for small)

`m' decrease the number of control points by 10 (m for medium)

`M' increase the number of control points by 10 (M for medium)

`l' decrease the number of control points by 100 (l for large)

`L' increase the number of control points by 100 (L for large)

ESC terminate the application

You may rotate the scene using the mouse and the built-in virtual trackball. Of interest is when the number
of control points is between 20 and 30. This is where you will see big di�erences between the curves. Note
that you get a very good �t with an extremely small number of control points.
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