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1 Introduction

A circle in 3D is represented by a center C, a radius r, and a plane containing the circle, N - (X — C) = 0,
where N is a unit length normal to the plane. If U and V are also unit length vectors so that U, V,
and N form a right-handed orthonormal coordinate system (the matrix with these vectors as columns is
orthonormal with determinant 1), then the circle is parameterized by

X = C + r(cos(0)U + sin(6) V)
for angles 0 € [0,27). A disk in 3D is the set of points
X = C + s(cos(0)U + sin(8) V)

where 0 < s <.

2 Distance from Point to Disk

Any point P can be represented in terms of the coordinate system {C; U, V,N} by
P=C+2U+yV +2zN

wherez =U-(P-C),y=V-(P—-C), and z = N (P —C). The distance from P to the disk involves finding
the closest point, call it K, on the disk to P. This point can be determined by looking at the projection of
P onto the plane of the disk,

Q=C+2U+yV

If Q is inside the disk, then it is the closest point to P and the distance 0 is |z|. The condition for being
inside the disk is 22 + y? < r2. The closest point and squared distance are

K=Q, 62=22% fora?+y?<r?

If Q is outside the disk, then the closest point to P is on the disk’s circular boundary along the ray from C
to Q. The closest point and squared distance are

Q-C 2 2 .2 2
K=C+r—, *"=|P-K|*, forz*+y*>r
Q¢ " K
Notice that
P-K = P-C)—-(K-0C)
= (xU+yV+zN)—r<|‘z8f;¥|>

which implies
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P —K|* = (2% +3°) (1_F2+2> +22 =2+ + 22+ = 2r /22 + g2
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In summary, the squared distance from P to the disk is

22 , w22 <

PP+t =2y +y? P4yt >0?

5% =

3 Distance from Curve to Disk

A parametric curve is of the form P(t) for t € [tg,#1]. Let us assume that the curve is continuously
differentiable. The squared distance from the curve to the disk is

T2

IN

8= min 6%(t)= min (1)’ o w(t)? +y(t)?
elton] teliota] | ()2 + y(t)2 + 2()2 + 2 — 20y /202 Ty, ()2 +y(1)2 > r?

The condition z(t)? + y(¢)? < r? partitions the interval I = [to,#;] into two sets of subintervals. One set of
subintervals satisfies the condition; the other set does not.

If I C I is a subinterval that satisfies x(t)? + y(t)> < r?, then we need to minimize z(t)? for t € Iy = [a, b].
This is a calculus problem. The minimum occurs either at the end points ¢ = a or t = b or at a point
where the derivative is zero. The following equation sets the derivative to zero; a factor 2 has already been
cancelled from the equation:

2(t)2'(t) =0 (1)

Naturally, this equation is solved in two parts: z(¢t) = 0 or 2/(¢) = 0.

If I; C I is a subinterval that satisfies x(¢)? 4+ y(t)? > 72, then we need to minimize x(t)? + y(¢)? + 2(t)* +
r? —2r\/z(t)2 + y(t)? for t € I; = [a,b]. The minimum occurs either at t = a or ¢ = b or at a point where the
derivatives is zero. The following equation sets the derivative to zero; a factor 2 has already been cancelled
from the equation:
z(t)z'(t) +y()y' () _

z(t)? +y(t)?

Formally, the square root may be eliminated, but you need to take care in identifying extraneous solutions
introduced by the squaring:

(@(1)* + y(1)*) (@@ (1) +y(0)y (6) + 2(0)2' (1) = * (@) (1) + y(6)y (£) = 0 (2)

The reason for the reformulation is that if the parametric curve is polynomial in ¢, then the zero-derivative
equations are polynomials in ¢, in which case standard numerical packages for polynomial root finding may
be used to solve the problem.

z()2' () +y(O)y' (1) + 2(0)2'(t) —r

After all subintervals are processed for their minima, the minimum of the minima is chosen for 62.

4 Distance from Circle to Disk

Consider the parametric circle that has center T, radius p, and lies on the plane M - (X — T) = 0 for a
unit-length normal M. Let A and B be unit-length vectors so that { A, B, M} is a right-handed orthonormal



set. The parametric form for the circle is
P(t) =T + p(cos(t)A +sin(t)B) = C + z(t)U + y(¢t)V + 2(¢t)N

for ¢t € [0,27). The middle expression is the parametric form. The right-hand side specifies the representation
with respect to the coordinate system of the disk. Thus,

z(t)=U-(T —-C)+ (pcos(t))U - A+ (psin(t))U-B = ag + a1y + azo
y(t) =V - (T —-C)+ (pcos(t))V- A+ (psin(t))V - B = by + b1y + bao
z(t) =N (T —C) + (pcos(t))N - A+ (psin(t))N-B = ¢y + c17 + ca0
where
ao=U-(T-C), bp=V-(T—C), ¢g=N-(T—C),
a1 =pU- A by =pV - A, c1 =pN- A
ay = pU - B, be = pV - B, co = pN - B,

and v = cos(t) and ¢ = sin(¢). Naturally, v2 + 02 = 1.

4.1 Partitioning the Interval

The interval [0,27) is partitioned by setting z(t)? + y(t)? — 72 = 0,

0 z(t)? +y(t)? —r?
= (ap + a1y + ax0)? + (bg + b1y + bao)? — 12
= (a2 + b3y + 2(a1ag + biba)yo + (a3 + b3)a? + 2(agay + boby )y + 2(agas + bobs)o + (ag + bg —7?)

This is a quadratic equation in v and o. Using elimination theory for this equation and for 2 4 02 = 1, you
can obtain a quartic equation in ~:

do + diy +doy? + dzy® +dayt =0

If 4 is a real-valued root of the equation, then the corresponding ¢ values are solutions to cos(f) = #;
in particular, the ¢ are chosen in [0,27). If {3 and ?; are two consecutive values in the partition, then
z(t)? +y(t)? — 12 <0 on [tg,t1] or x(t)? +y(t)? — 72 > 0 on [to,?1]. If the first case, then Equation (1) is
solved during the minimization phase. If the second case, then Equation (2) is solved during the minimization
phase.

4.2 Minimization Case 1

Replacing z(t) into Equation (1) leads to

2(t)=co+c1y+cao =0 or 2'(t) = —cio0+cay=0



For the first condition, we have co + ¢1y + coo = 0 and 72 + 02 = 1. Substituting the first (linear) equation
into the second (quadratic) equation leads to a quadratic equation in either v or o, the choice depending on
whether ¢, is zero or not. The second condition is handled similarly. For example, suppose that ¢y # 0; then

o= —(co+ c1y)/c2

2
co+c¢
1_’_}/2 ( 0 - 1’}/)

(cf +3)7* + (2cocr)y + (c§ — 3) =0

and

which is equivalent to

If 4 is a real-valued root to this equation, then & = —(co + ¢17)/ce. The squared distance for this specific
case can be calculated using the formula derived earlier.

4.3 Minimation Case 2

Replacing z(t), y(t), and z(t) into Equation (2) leads to a formal polynomial equation of degree 6. This is
clear from the expression

z(t)a'(t) +y()y' () + 2(0)2'(t) = (a0 + a1y + az20)(—a10 + azy) + (bo + b1y + b20)(—b10 + b2)

+ (co + c17 + c20)(—c10 + c27)

ao(—a10 + azy) + bo(—b10 + ba) + co(—c10 + c27) (3)
+ (a1a2 + biby + c1¢2)(7* — 0?)

+ (a3 + 83 +c3) — (af + 07 + ¢f)yo

This is quadratic in v and ¢. When you square it, you get degree 4, and then when you multiply by the
quadratic 2 + y2, you wind up with degree 6. However, notice that (ay,b1,c1)/p are the coordinates of the
unit-length vector A in the disk’s coordinate system and (asg, ba, c2)/p are the coordinates of the unit-length
vector B in the disk’s coordinate system. This means two things. First, |(a1,b1,c1)/p| = |(ag2,ba,c2)/p| =1
since A and B both have length 1, in which case a3+b3+c? = a3+b3+c3. Second, (a1, b1,c1)/p-(az,ba, ca)/p =
0 since A and B are perpendicular, in which case ajas 4+ b1bs 4+ c1co = 0. Consequently, the quadratic term
in Equation (3) is zero and

()2 (t) + y(t)y' (t) + 2(t)2'(t) = ag(—a10 + az7y) + bo(—b10 + bay) + co(—c10 + c27)
Equation (2) is therefore degree 4 in v and . Using elimination theory with this equation and with y2+02 = 1

leads to a degree 8 equation in . The roots are computed numerically, each root 7 is used to generate
candidates &, and pairs (7,5) are used to compute candidate minimum distances.
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