
Monte Carlo Go

Bernd Brügmann

Max-Planck-Institute of Physics

Föhringer Ring 6

80805 München, Germany

bruegman@iws170.mppmu.mpg.de

October 9, 1993

Abstract1

We present an algorithm for the board game go
which attempts to find the best move by simu-
lated annealing. Remarkably, without including
any go knowledge beyond the rules, our imple-
mentation leads to a playing strength of about 25
kyu on a 9x9 board.

Introduction

The board game go is one of the grand challenges
of game related artificial intelligence. While go is
a finite, perfect information game, its game tree
is prohibitively large for tree searches. The sit-
uation in go is perhaps best compared with that
in chess, which has been called “the drosophila
of artificial intelligence”, meaning that a multi-
tude of key problems of artificial intelligence ap-
pear in chess and can be studied there. Currently,
the best chess playing programs rely heavily on
large scale tree searches and use a comparatively
small amount of chess knowledge. In go it is the
other way round, i.e. the quality of the go knowl-
edge is the determining factor. Due to the struc-
ture of go, strong go programs emphasize much
more the human way of thinking about go rather
than brute force methods for which computers
are ideal, and from this point of view one could
argue that go is a much more interesting prob-
lem than chess. Many important advances have
been made in go regarding the application of rule

1This article was written with the readership of Com-
puter Go magazine in mind. Therefore I tried to emphasize
a clear and complete development of concepts rather than
formalism. I would like to thank the referees of the AAAI
Symposium on ‘Games: Playing, Planning, and Learning’
(Fall 1993) for many helpful comments.

based knowledge representations, pattern recog-
nition and machine learning. For a recent, lucid
review of computer go see [1]. Several relevant
papers on computer go are collected in [2].

In this article we want to look at go from a com-
pletely different angle: How would nature play

go? This is not the starting point of a metaphys-
ical discussion. This is an attempt to learn from
physics about a method of optimization which
nature applies very successfully and “naturally”.
We will consider simulated annealing [3, 4, 5, 6],
which under surprisingly general circumstances
is able to find approximations to the extrema of
a mathematical function. Our topic will be the
question of how to formulate the task of finding a
good move as a problem in extremization which is
tailored to the strengths of simulated annealing.

Perhaps it is worthwhile to describe the main
idea right away in very simple terms to indicate
the direction in which we are heading. There
are essentially three ingredients in computer pro-
grams for playing games like go: (i) look-ahead
where different sequences of moves are tried, (ii)
evaluation where the value of a position is com-
puted without explicitly performing moves, and
(iii) an overall scheme for how (i) and (ii) are
combined. Here is our proposal:

(i) moves are performed randomly with
probabilities assigned by the method
of simulated annealing,

(ii) the value of a position in which the
game is over is defined by counting,
and

(iii) to find the best move in a given po-
sition play the game to the very end
as suggested by (i) and then evalu-

1

ate as in (ii); play many such random
games, and the best move will be the
one which does best on average.

Let me quickly point out the obvious. The
above idea is certainly simple, and I believe that
any good idea can be stated simply. However, not
every simple idea is a good one, and at first sight
the above one may sound ridiculous. The main
portion of this article is dedicated to convince the
reader that at least this is not necessarily a bad
idea. Furthermore, one may suspect that when
considered in detail, (i), (ii), and (iii) are not has
harmless as they seem. Let me just state that
the actual implementation in the go program de-
scribed below is still quite simple, but one can
hope that the more sophisticated the design, the
better the results.

The paper is organized as follows. First, we
introduce some background of simulated anneal-
ing. Then we discuss how it can be applied to the
problem at hand, in particular we discuss why our
approach could work in principle. In the next
section a computer implementation, Gobble, is
presented together with some examples for what
kind of strengths and weaknesses Gobble displays
in games on the 9x9 board. We conclude with a
general discussion.

Simulated annealing, a Monte Carlo

method for combinatorial optimization

Monte Carlo methods in physics

At the heart of most topics in theoretical physics
is a variational principle. Given the phase space
of a system, i.e. the space of possible configu-
ration and momentum variables, the dynamics
of the system is contained in the definition of
the action. The action is a functional on phase
space, and the equations of motion are obtained
from it by the condition that the path in phase
space which the system follows corresponds to an
extremum of the action. All the fundamental
classical theories like mechanics, thermodynam-
ics, electromagnetism and general relativity are
conveniently defined in terms of the action. In
fact, given the action one can often construct the
corresponding quantum theory straight-forwardly
with so called path-integrals. All this we only
point out to emphasize how fundamental extrem-
ization procedures are in physics.

Monte Carlo methods have their origin in an
anology with statistical physics. A statistical sys-
tem consists typically of a large number of par-
ticles, and we are interested in its configuration,
say the position and velocity of the particles, and
in how it evolves in time. Key aspect of the evo-
lution is that some quantity like the action or
the energy is minimized. Let us give a concrete
example. Consider a metal near its transition
from a liquid to a solid state. A configuration is
described by giving the position and velocity of
each atom in the metal. The atoms do not move
around freely but experience forces due to the
combined electric potential created by all atoms.
At high enough temperatures, the atoms move
around quite randomly, but as the metal is cooled,
the atoms move less, and when the metal becomes
solid, the atoms are essentially fixed in place by
their mutual electromagnetic forces. This pro-
cess is called annealing. The energetically most
favourable configuration for the solid state is that
of a regular, crystalline structure.

The surprising fact is that in experiments na-
ture is able to come extremely close to this mini-
mum in energy, i.e. billions of atoms form a per-
fectly regular lattice — if enough time is allowed
for the cooling process. Imagine the atoms mov-
ing around in the electric potential like balls on a
surface with many dents and bumps. At the min-
imal energy every atom/ball has come to rest at
a place where the potential has a local minimum.
If the atoms are slowed down too quickly, how-
ever, they probably have not found the smallest
local minima possible, i.e. the metal solidifies in
a less regular, amorphous state in which the total
potential energy is larger than in a crystal.

In Monte Carlo simulations one simulates the
evolution of a statistical system on a computer
[7]. One does not attempt to solve the terribly
complicated equations of motion for each parti-
cle exactly, but follows a probabilistic evolution
that stays close to but not exactly at the min-
imum of the action. First of all, one chooses a
suitable description of all possible system con-
figurations. Second, one needs a set of elemen-
tary moves which are ergodic, that is, changes in
the configurations which enable one to cover the
space of all configurations step by step. Third, for
a given configuration moves are suggested com-
pletely randomly. Finally, the physically correct

2

evolution is approximated by accepting a sug-
gested random move with a probability that de-
pends on whether the move increases or decreases
the action.

So let us give an example for what these prob-
abilities should be for a system in thermal equi-
librium. In this case the temperature is the same
everywhere and the energy is constant. Notice
that even if the total energy or the temperature
is fixed, individual particles may behave differ-
ently. In many cases the probability p(E) that a
single particle has energy E when the system is
in thermal equilibrium at temperature T is given
by the Boltzmann probability distribution,

p(E) ∼ exp(−E/kT), (1)

where k is Boltzmann’s constant. For such sys-
tems the probabilistic evolution can be given by
the following rules (Metropolis et al. 1953 [9]). If
a proposed move lowers the energy, it is accepted.
If a proposed move raises the energy by ∆E > 0,
it is accepted with probability p = exp(−∆E/kT)
(i.e. 1 > p > 0). Note that every move, even very
’bad’ ones, have non-vanishing probability.

Simulated annealing is special in that ’cooling’
is introduced [3]. The temperature is lowered to-
wards 0, and in that limit moves that raise the en-
ergy are almost never accepted by the Metropolis
algorithm. Again, if the system is cooled very
slowly so that it is effectively always in ther-
mal equilibrium, the system is also close to its
minimal energy. If cooling happens too quickly,
many particles are caught after moves away from
the minimum and the total energy is not mini-
mal. What we have to add to the prescription
for Monte Carlo simulations of systems in ther-
mal equilibrium is an “annealing schedule” which
defines how fast the temperature is lowered.

Let us end our discussion of physical systems
at this point. Monte Carlo simulations are widely
and successfully used in the physics of statisti-
cal systems. They are that successful, in fact,
that non-statistical theories like QCD (quantum
chromo dynamics), the theory of elementary par-
ticles, has been turned into a statistical theory
to make it tractable. At least one other idea of
physics, the idea to use potentials to measure in-
fluence, has been successfully applied in computer
go [1, 8].

Simulated annealing for mathematical

problems

We now want to focus on the features of simulated
annealing which make it a successful method of
extremization for many mathematical problems
[3]. Consider an arbitrary function of several vari-
ables. If the function is simple enough and de-
pends only on a small number of variables, there
are very efficient exact numerical methods to find
its local minima. They all are based on essen-
tially the same principle. Pick initial values for
each variable and compute the function. Change
the variables slightly in such a way that the func-
tion value decreases. Repetition allows one to
come arbitrarily close to a local minimum. Dif-
ferent algorithms have been invented to optimize
the progress at each iteration for different classes
of functions.

Whenever one of these methods is applicable,
e.g. find the minimum of f(x) = x2, it usually
works much better than simulated annealing, but
there are several types of problems where there
is virtually no alternative to simulated anneal-
ing. As it turns out, these exact algorithms are
’greedy’ by design, that is given a starting point
they greedily walk downhill (following the steep-
est descent) until they have found a local min-
imum. But if one is looking for a global min-
imum among many local ones, and if one does
not know before-hand where to look for it, one
will never find it. Simulated annealing does much
better in finding at least an approximate solution
to a global minimum since it allows uphill moves.
Another area were exact numerical methods fail
is when the function depends on a large number
of variables. Finally, simulated annealing works
equally well for non-differentiable (even discontin-
uous) functions while exact methods often require
the existence of the derivative of the function.

Perhaps the reader feels that already far too
much as been said about the physical and math-
ematical background of simulated annealing (see
[4] for the mathematical theory behind simulated
annealing). After all, consider the simple pre-
scription for simulated annealing to find the min-
imum of a function of many variables that can
be distilled from the above. Given is a space of
configurations described by some variables and
a function which assigns a number to each con-

3

figuration. To approximate the global minimum
we perform small random moves in configuration
space. If the function decreases, we accept the
move. If the function increases, we accept the
move with a probability which decreases expo-
nentially with the increase in the function and
also decreases exponentially with the inverse of
the temperature. The temperature is decreased
according to our annealing schedule which should
leave enough time for proper thermalization. The
reason I gave so much background is that even
though the procedure of simulated annealing may
look trivial, it should not be underestimated.

We conclude this section with two examples
from combinatorial optimization, which is in
many ways similar to our goal, to analyze game
trees. Simulated annealing has, as far as practi-
cal applications are concerned, solved the famous
’traveling salesman problem’ [3, 5]. The problem
is to find the shortest path that connects N cities.
The same type of problem arises when one wants
to optimize the layout of integrated circuits, or
in a phone system with several possibilities to lo-
cate the switches. These problems are examples
for combinatorial optimization since the configu-
ration space on which a function (length of path)
is to be minimized is a discrete, factorially large
space. In the traveling salesman problem, there
are N ! = N ∗ (N − 1) ∗ . . . ∗ 1 possibilities to
make an ordered list of N cities. The compu-
tation time to find the solution by an exhaustive
search increases exponentially with N . Simulated
annealing achieves a good approximation to the
optimal solution in computing time which grows
with N only as a small power of N . The proce-
dure starts with an arbitrary path. Two types
of local changes are performed. One move is to
reverse the order of several cities which are next
to each other on the path, and the other move is
to remove several neighboring cities from the list
and move them to a different position in the list.

For a second example see [6], where the prob-
lem is to find the arrangements of 25 playing cards
in a 5x5 tableau such that the value of the rows,
columns, and diagonals interpreted as hands for
poker is maximized. Again, simulated annealing
is successful and much faster and simpler than
other methods.

Simulated annealing for tree searches

The problem

After having gained some intuition about sim-
ulated annealing, let us now try to apply our
knowledge to tree searches [11]. Given a game
position, we are looking for the best move. Tree
searches are similar to combinatorial optimization
problems in that an extremely large number of al-
ternatives has to be considered for an exhaustive
search.

Let us first focus on aspects of tree searches
which lead to the failure of some natural sugges-
tions for the implementation of simulated anneal-
ing before we argue why the suggestion given in
the introduction could work in principle. Faced
with a game tree which is far to large for complete
exploration, some sort of pruning becomes essen-
tial. There are different algorithmical techniques
which allow one to ignore parts of the game tree,
for example, α-β pruning. In fact, the evaluation
function which is invoked at the deepest level of
the tree to find the value of a position is also some
sort of pruning. The outcome of the remainder
of the tree is estimated by applying game heuris-
tics. For example in go, certain patterns are good
because they have been proven to be so in previ-
ous games, and to increase one’s influence on the
board is advantageous because experience shows
that influence helps in the long run (down the
tree).

A first proposal could therefore be to ap-
ply simulated annealing to pruning. At each
branching, evaluate the move possibilities from
go knowledge but pursue moves only with a cer-
tain probability. This is actually an old idea, and
I do not believe that the exponential probabil-
ities from simulated annealing would give any-
thing useful. The main problem is that the game
tree of go is still far too large even if only two
moves are considered at each level. Go knowl-
edge remains essential.

After completion of this work the author found
[12], where Andrei Grigoriev reports that simu-
lated annealing can be successfully applied to tree
searches in Gomoku and Renju, and in fact sug-
gests that the method could also be useful in go.
His approach is based on exactly the idea that I
just described, i.e. to grow game trees stochas-
tically. His annealing schedule consists of lower-

4

ing the temperature with the depth of the tree.
When I was thinking about how to map the tree
search problem into a problem that is well-suited
for simulated annealing, I conjectured that the
game tree in go is too large for such an approach.
I wouldn’t mind at all to be proven wrong in this
point.

Getting back to combinatorial optimization
where simulated annealing succeeded in optimiz-
ing long lists of objects, to find the best move
really means to find the best move considering
optimal play of both players, i.e. we want to op-
timize a sequence of moves. Maybe we can con-
sider entire games as the object of optimization?
This would make the evaluation trivial, since at
the end of a game counting gives a precise value.

Game trees are, however, profoundly differ-
ent from the traveling salesman problem because
there are two competing parties playing the game
(trees are not paths). This fact makes it impossi-
ble to find local moves in the configuration space
of the type used in the traveling salesman prob-
lem. We are really dealing with the optimization
of two sequences of moves, one for Black, one for
White. The problem is that any local change in
the order of moves that Black makes has a non-

local effect on the game tree. For any move that
Black chooses at a given point in the game over
another, the optimal play for both players will in
general have changed completely for the remain-
der of the game. Think of the value of a move for
Black as a function of the order in which Black
intends to play his moves. For a numbered list
of such orderings, the value for ordering 1, 2, . . .
is likely to look like a sequence of random num-
bers because of the different, optimal responses
by White. It seems that simulated annealing can-
not be applied in this case since there are no local
moves and under changes in the list of moves the
value function behaves so discontinuously.

One possible solution

The question is, can anything be learned from
playing random games? The answer is yes for
the following reason. There will be some moves
which are good no matter when they are played,
if a player actually gets to play them. For ex-
ample, if a certain move of Black makes a group
of Black stones live, but if White prevents that

move, Black’s group dies, the average result of
the games differs by the corresponding value. To
what extent this heuristics is valid depends of
course on the game that is considered.

A general rule taught to novices in go is to “al-
ways look for the biggest move on the board”.
One separates the situation on the go board into
local move exchanges and assigns to the move
initiating play in a region the estimated bene-
fit explicitly in the number of points gained or
lost. The suggestion is to play the move with the
best value first. Of course, this can only be a
rule of thumb because often the moves are not
completely independent of each other. Further-
more, it is important which player will have the
initiative after a sequence of moves (sente), i.e. a
smaller move which does not loose sente can be
played first. For our goal it is of interest that
go nevertheless allows such localization to a high
degree, much more so than it is for example the
case in chess.

Under these circumstances, playing random
games to the end is not a wasted effort since
good moves may be detected. To identify good
moves whenever they happen in a game tree is
also a standard tool of pruning. The α-β al-
gorithm has to consider the minimal number of
moves if at each branching the best move is tried
first. The so-called killer heuristic suggests to
try those moves first which are currently the best
moves anywhere in the tree, and significant im-
provements can be achieved [10].

For these reasons we adopt the following strat-
egy for playing random games. Each player de-
cides beforehand in what order he wants to play
his moves (taking into account that pieces may
be played several times onto the same field after
captures). A game is played to the end such that
if a move in the predetermined list is not possi-
ble, the next one is used. Each move is assigned
the average value of all the games in which it was
played. This value is initially set to zero and then
updated after every game. After every update the
moves are ordered according to their average val-
ues. The strategy is therefore that moves which
are most successful on average are deemed most
important to be played first. After a large number
of games both Black and White will have settled
on a sequence of moves which are most successful
with regard to the other. The best move for the

5

one to move first is the first one in his list.

As described so far, we are considering a greedy
algorithm which will tend to remain at local ex-
trema. The modification for simulated anneal-
ing is to introduce a finite probability for a move
to be played out of order which depends on the
exponential of the value difference divided by a
parameter playing the role of temperature. As
before, when the temperature becomes zero, we
have frozen all deviations from the greedy strat-
egy.

The algorithm given in the introduction pro-
vides the framework for several variations of this
idea. The above construction could be called
the zeroth order approach in the following sense.
Obviously, there are some moves which are only
good as answers to particular other moves. To
incorporate such interdependencies one can store
not just the average value of each move but the
average value after a particular other move was
played first. This could be called the first order
approach, and there clearly is a generalization
to n-th order. In the limit of large n the com-
plete game information has been stored and the
method becomes equivalent to an exhaustive tree
search. This means that in the limit the method
works perfectly (if inefficiently).

The principle limitation is that the more in-
formation we want to use from the games that
are played, the more games have to be played to
make this information meaningful. A general fact
about the statistics of the data is that the error in
the average value ∆v is typically proportional to
one over the square root of the number of games
n,

∆v ∼
1√
n

. (2)

(Other numerical methods work usually much
better.) This implies that to determine the value
of a move to within 1 point when the value in
the random games fluctuates by 100 we have to
play on the order of 10000 games! For the ac-
tual tests presented below a few hundred games
turned out to be feasible. Therefore, higher order
considerations have to be postponed.

What our algorithm is expected to accomplish
is to play perfect games against a specified, dumb

opponent. The games can be made perfect by col-
lecting enough statistics (cooling slowly enough).
How dumb the opponent is depends on how much

information can be extracted from the games.
Playing a large number of games against a strong,
perhaps human opponent could possibly let the
algorithm play a better game against any oppo-
nent. The problem is, of course, that the only
opponent available is the algorithm itself.

This concludes our motivation for the algo-
rithm introduced in the introduction. The cru-
cial point of our proposal for applying simulated
annealing to tree searches in go is to replace the
strict move order (as familiar from combinatorial
optimization) by the concept of timeliness or pri-
ority of each possible move. Hopefully, this rep-
resentation of a tree search leads to changes of
configuration that simulated annealing can man-
age. The other novel aspect (as far as computer
go is concerned) is to try to utilize the strengths
of simulated annealing by playing complete games
as a substitute for go heuristics. Enough of theo-
retical musings, does it work in practice?

Gobble: a program plays Monte Carlo

go

In this section we present results obtained with
the computer program Gobble (version 1.0) that
plays go on the 9x9 board using simulated an-
nealing to find “the best” move. The point is
that nothing more than simulated annealing is
implemented on top of the bare go playing rules
to allow us to study the method.

We will not describe the program in detail,
since this would obscure rather than help the gen-
eral discussion. Anyone with some experience in
programming will agree that an implementation
of the algorithm should be straightforward. One
technical issue we have to mention is how we de-
fine the end of a game (recall that we want to play
games routinely to the very end). On first sight
this is at least intuitively clear to human players,
but while the rules for playing moves in go are
elegant and simple, rules for when the game ends
and how the result is to be counted are surpris-
ingly complex. The latter two issues are related,
and there are in fact different (Japanese, Chinese,
...) rules which in rare cases like a multilple ko or
special seki give slightly different results.

We adopt for the moment the following pre-
scription. The computer only passes if either no
legal move is available or all legal moves reduce

6

the eye space of one of its groups from two to one.
The (over-) simplification lies in the definition of
an eye, which is defined to be a field whose direct
neighbors are all of the same color and whose di-
agonal neighbors contain no more than 1 stone of
the opposite color (0 for border and corner fields).
The reader may convince himself that this def-
inition of an eye is correct for most situations,
excluding sekis. When both sides have to pass,
the game is over and the result is determined via
Chinese counting. These are standard rules ex-
cept that the computer player does not realize
that stones in a seki are alive. Sekis can be dealt
with once passing is allowed as an option, but we
leave it at that for simplicity and speed.

One could argue that the rule to never fill in
one of two eyes represents go knowledge. Let us
point out that there is another instance where
simple, logical rules for playing go are needed,
and an equivalent rule is defined. In Berlekamp’s
mathematical go [13] a group with two true eyes
becomes “immortalized”, i.e. even when its liber-
ties are filled in it is not removed from the board.
Furthermore, the go knowledge that is implicitly
included by this rule is worth very little in prac-
tice. On the one hand, the rule is necessary for
technical reasons, and even though (if passing was
implemented) the program could figure out the
rule by itself, that would be very inefficient. On
the other hand, just knowing not to kill its own
groups once they have two eyes does not help a
program at all if it otherwise plays random moves.
So the two eye rule is necessary for the program
to be able to play acceptable go at all, but it is
by far not sufficient to lift the playing strength of
a program playing random moves (worse than 50
kyu) to 30 kyu.

Let us also mention a few points about the
probabilistic aspects of the program and the an-
nealing schedule. Determination of a good an-
nealing schedule is a matter of experimentation
[3], here is what we found useful. First we order
the moves strictly by value, which corresponds to
a probability of 1 that a move with better value
is played first. Then we sweep over the list once
from best to worst move and switch the order
of two neighboring moves with probability pswap.
The probability p(n) that a move is shifted n ≥ 1
steps down the list is

p(n) = (pswap)
n = exp(−n/T), (3)

T = −1/ ln pswap ≥ 0. (4)

The annealing schedule is to lower pswap to 0 lin-
early with the number of games and set pswap = 0
(i.e. T = 0) for a few games at the end to settle
in the nearest local extremum. Notice that this
is not the Metropolis algorithm (which is not the
only choice possible anyway). We found that for
the few games we play it didn’t seem to matter
whether pswap depends on the value difference or
not. In addition a few percent of all moves are
performed completely randomly to avoid infinite
(or long) loops. Further experimentation in con-
junction with a measure of how well the annealing
process works is needed.

Gobble was developed on a 286/16 PC, which
translates into very slow and powerless by todays
workstation standards. We restrict our attention
to the 9x9 board. One important aspect of sta-
tistical methods like simulated annealing is that
some minimal amount of data is needed to find
the signal in the noise. Let us denote by strategy
A the algorithm of order 0 described in the previ-
ous section. Strategy A requires several hundred
games to be played before the data is reasonably
reliable which takes on the order of 1 minute on
the PC and a few seconds on a IBM/RISC work-
station. (Typical physics applications in Monte
Carlo are allowed to run for days or weeks, but
we have game play with humans in mind.)

A simple example

Here is our first example! Figure 1 shows a time-
less beautiful position: the empty board, Black to
move. After playing 10000 random games, Gob-
ble assigned to each field a number, ranging from
0.9 to 5.3 in this case. These values are the av-
erage game results for all games in which Black
was the first to move onto a field. For exam-
ple, if Black was the first to take the center field,
whether it is in move 5 or 50, all such games re-
sulted in an average point count at the end of the
game of 5.2 points. In particular, 5.2 is not the
average value for games with Black’s first move
at the center.

The main feature is that moves near the cen-
ter give better results than moves onto the border
and corners. This result is non-trivial, indicating
that strategy A is able to find one of go’s sim-
ple rules of thumb. The absolute worth of the

7

first move amounts to about 5 points, which is
lower than it should be, but remember, these 5
points are just the advantage that Gobble knows
to derive from the first move. During the compu-
tation it is nice to watch how the average value
of all games increases steadily as Gobble becomes
smarter and tries better moves.

This one example already gives an impression
of the statistical errors involved. The board is
symmetric, but equivalent moves do not get ex-
actly the same values (consider the corners, for
example). An estimate for the error could be
∆v = ±0.6. The values near the center are more
evenly distributed because good moves are more
often tried at the beginning of games which leads
to more consistent results. Bad moves are played
near the end of the game when they tend to be
irrelevant and less correlated with the outcome of
the game.

Test results for games on the 9x9 board

To determine the strength of Gobble we had
it play several games on the 9x9 board against
Many Faces of Go, the excellent go program by
David Fotland. Many Faces of Go is the North
American computer go champion. In 1986 [14],
Fotland writes, “I would love to have other com-
puter programs to compete with. ... It is hard for
me to tell how good it really is.” To have Many
Faces of Go available (public domain, xgo.s800,
rev. 7.34) has been very helpful since it provides
a strong, unvarying opponent. Fotland gives this
version of Many Faces of Go a 16 kyu rating [15].
The latest version of Many Faces of Go (rev 8.3
running on a HP Snake workstation at level 15)
has earned a respectable 12 kyu rating in hun-
dreds of games against human opponents on the
Internet Go Server.

Table 1 shows the results of twenty games
with Gobble playing Black at different handicaps
and Many Faces of Go playing White at level
10 (medium strength). For strategy A, Gobble
played 500–1000 games to find its moves. Strat-
egy B is an extension of strategy A to the first
halfmove. In the left column for strategy B, 400
games were played and then the 4 best moves
performed and evaluated with another 400 games
each. In the rightmost column, games 1 to 3
were played with 500 games per evaluation and

3 trial moves, and for games 4 and 5 the num-
ber of games was doubled. Handicap stones are
placed on the star points.

One should keep in mind that such a small
sample can only give a rough overview. The
sample is representative in the sense that except
for a few test games used to adjust the param-
eters all games the author had time to play are
shown. The scores vary a lot because the players
are weak by human standards, and the board-
size is small. Nevertheless, there is clear and per-
haps unexpected evidence that Gobble plays re-

spectable novice go. Gobble’s strength for strat-
egy B seems to be about 25 kyu. The exact num-
ber is unimportant, what matters is that Gobble
plays better than a human beginner who typically
is 30–35 kyu after a few games.

Strategy A requires three handicap stones to
have a chance against Many Faces of Go, but al-
though this is a huge advantage, Gobble displays
a basic capability to stay alive and also to kill
its opponent. Strategy B brings an improvement
of about one handicap stone. Gobble’s strategy,
stated in general terms, is to build a strong cen-
ter, while Many Faces of Go tries to increase its
influence along the borders. Gobble only wins a
game if it succeeds in cutting off and killing one of
its opponents groups. Otherwise, Many Faces of
Go wins because of its superior territorial skills.

Analysis of a game between Many Faces

of Go and Gobble

It is instructive to analyze one of the games in
detail to get a feeling for Gobble’s non-human,
probalistic way of “thinking”. Computer go is
usually not pretty, even to the eyes of the author
who is a 13 kyu, but there are some interesting
observations to be made. Remember that Gob-
ble lacks even the simplest go heuristics, and any
signs of go understanding produced by our algo-
rithm are therefore of interest.

Figures 2 and 3 show the game record of one
of the games played with strategy B and a two
stone handicap. Black wins by 9 points.

Move 2. Figure 4 shows the board after White
moved onto 2. To give an impression of how Gob-
ble evaluates the position, the six highest and
lowest values according to strategy A are shown.
Border moves are considered bad by Gobble while

8

moves somewhere in the center or near White 2
are preferred. Incidentally, a move onto the field
now occupied by White, i.e. after White’s stone
has been captured, is worth about 40 points.

Let us again emphasize that there are noticable
random fluctuations in the result, although 2000
random games were played. Figure 5 shows ex-
actly the same position for a second evaluation.
Notice that the average value has shifted by 2
points and only one move made it into the top
six twice, and for some reason the idea to attack
White’s stone does not play a role. The lesson
is that there may be many moves which cannot
be differentiated by Gobble. However, among the
top six there always seems to be one or two good
moves on an objective scale, which is remarkable
in itself. The challenge is to find them, which is
one motivation for strategy B. As with human go
players, many will recognize that a move should
be played “somewhere in the center”, fewer are
able to pinpoint the best move.

Move 4. White has knowledge about fuseki.

Move 5. Definitely much too tight. We tried to
reproduce this move with strategy A, but failed.
400 games per move in strategy B may allow to
much randomness. Also see moves 9 and 11.

Move 6, 7, 8. Nice shape.

Move 9, 11. These moves look good to Gobble
because on average a connected group with many
liberties is more likely to survive than separate
stones.

Move 12. Defends territory.

Move 13. If connected pieces are strong, a cut
produces a weakness.

Move 14–24. White defends its territory while
Black is cluttering the center.

Move 25. Having one eye under all circum-
stances is another feature which is valuable on
average, and this move is sente.

Move 26. By now White has a big advantage
and it is still open whether Black is capable of
making a second eye.

Move 27, 28. Black tries to make territory for
the first time, White takes it away at the other
end of the board.

Move 29, 30. A futile invasion.

Move 31. Black probably considers White’s
stones in the lower right corner as half dead, sim-
ply because with a probabilistic algorithm there
is always a chance that a player does not notice

an atari. This chance may be slim, but if the
gain involved is large enough, such a move will
be played.

Move 32. Uncharacteristically poor move for
White, the loosing move.

Move 33. Black is able to take advantage of
White’s mistake.

Let us pause here for a moment and consider
the values strategy A would assign to this posi-
tion. Figure 6 shows that Black 33 clearly stands
out as the best move for Black with 20.2 points
(gained by starting from this position). The worst
move is worth 12.2 points. There is a large num-
ber of moves worth about 15 points. The differ-
ence of 5 points between these moves and the best
move can only mean that Black wrongly considers
part of White’s stones in the lower right corner
as dead.

Figure 7 shows the situation before White 32.
That the best move is the one worth 5.7 points
(for White, the lower the value the better) indi-
cates that Gobble is consistent in that he makes
the same mistake as in the evaluation for Black
33. Still, this move is much better than White
32 which scores a 10.5. The move values in the
upper left corner suggest that Gobble does not
understand the position that Many Faces of Go
has build. We return to the game.

Move 47 (figure 3). This move should of course
be played at 51. The bonus from an oversight by
White must have outweight the territorial loss in
the upper right corner. The single most impor-
tant reason that Gobble looses in the endgame
are such nonsense threats, while defending the
borders is consistently underrated.

Move 49, 51. More meaningless ataris.

Move 57, 59, 61, 65. Meaningless.

Move 63, 69, 71, 73. At times when no compet-
ing flawed goals exist, Gobble’s statistic is good
enough to detect even small gains.

The remaining moves are not shown since they
do not affect the outcome of the game.

Let us summarize what we have learned from
this example. Gobble displays its own brand
of typical computer go: surprising (relative)
strengths in some areas and glaring weaknesses
in others. Examples are life-death and territorial
evaluations, respectively. Based on these obser-
vations there certainly are many natural sugges-
tions for improvement of Gobble’s strategy, some

9

of which are mentioned in the following discus-
sion.

Discussion and Conclusion

First we pointed out that there is a powerful op-
timization scheme in nature, known on the com-
puter as simulated annealing, which has not been
applied in computer go. We proceeded to adapt
simulated annealing to the problem of finding the
best move in the game tree of go. The adaptation
is based on the observation that there is a cer-
tain move reorder invariance in go. There are two
key elements to our proposal: 1) We suggest that
the timeliness of a move is a good objective func-
tion for simulated annealing; 2) Playing games
to the very end can substitute for go heuristics.
Finally, we presented first test results of a com-
puter implementation of our algorithm that plays
go clearly above the human beginner’s level of 30
kyu.

Since the idea seems to work in practice, we
would like to point out several interesting av-
enues for further exploration. First let us com-
ment about the relevance of the algorithm for
two features of computer go, tree searches and
evaluation functions. A lot of research has been
done on α-β pruning and related algorithms. One
should perform a quantitative study of how sim-
ulated annealing performs for the different orders
of implementation (one move, two move, ... se-
quences), and find out how well the method can
do in practice (see Chs. 1–3 of [16]). Recall that
for the traveling salesman problem the compu-
tational effort was reduced tremendously. Here
we face the additional problem that our objective
function for tree searches is an approximation.

As far as evaluation functions are concerned,
an age old dream of game related artificial intelli-
gence is to tell the machine the rules, and nothing
else, and have it play a perfect game. Although
Gobble plays very poorly by human standards,
whatever “understanding” of go Gobble has was
not fed in by humans in the form of go heuristics
(except perhaps for a small benefit from the two
eye rule). The fact that points are best counted
when the game is over apparently is important
enough to matter even through the haze of ran-
dom games and poor statistics. It is open whether
this phenomenon can be utilized, for example, on

larger boards.

So far we have studied simulated annealing only
in its pure form to identify its characteristica. We
definitely do not want to suggest that this is the
best way to program go. Strong go programs like
Many Faces of Go succeed because they apply a
collection of ideas like pattern matching, tactical
analysis and influence potentials. The most diffi-
cult problem is to combine all methods into one
well-rounded computer go player. Just because
Gobble shows some aptitude in tree searches and
evaluation does not mean that this is the optimal
strategy under all circumstances. Whenever ex-
act methods are available, say local or small scale
tactical searches (e.g. for ladders), they are much
superior to statistical methods.

For example, we noticed that Gobble is partic-
ularly weak when it comes to defending its terri-
tory near borders. The correct moves are elemen-
tary patterns most good programs know. Indeed,
one promising way to improve Gobble could be
the addition of a pattern library. This could be
implemented on the top level of the move tree for
alternatives which are hard to distinguish. The
same applies to all standard techniques. A pat-
tern library might have an advantage over other
methods if pattern matching is sufficiently fast
to allow its inclusion at all stages of the random
games. The stronger the computer player is that
plays the random games, the more representative
the final results are.

On the technical side, let us mention that sim-
ulated annealing is well-suited for special com-
puter hardware. Computers are good at simple
repetitive tasks, which is in contrast to the re-
quirements of many applications in artificial in-
telligence where the main problem is program-
ming and manipulating complicated structures,
e.g. in expert systems for go. Monte Carlo sim-
ulations are a prime example for number crunch-
ing. Simulated annealing is easily implemented
on parallel computers [16], which are the most
powerful and affordable computing resource to-
day. Another approach to increase the raw com-
puting speed in Gobble combined with a pattern
library is dedicated hardware. In fact, there is an
ongoing project to design a fast VLSI chip which
incorporates precisely the two functions which are
most time consuming in such an algorithm, move
generation and pattern matching [17].

10

To summarize, simulated annealing seems to
be a promising idea about how to approach com-
puter go from a new direction. Simulated anneal-
ing is certainly not a magic wand which resolves
all the profound problems related to computer go.
But we believe it is quite possible that simulated
annealing could become an integral part of the go
programmer’s repertoire.

References

[1] D. Erbach, Computers and Go, in The Go
Player’s Almanac, ed. R. Bozulich (The Ishi
Press, 1992) 205–17

[2] D. Levy (ed.), Computer Games II
(Springer, 1988)

[3] W. Press, B. Flannery, S. Teukolsky, and W.
Vetterling, Numerical Recipes in C (Cam-
bridge University Press, 1988)

[4] R. Otten and L. van Ginneken, The simu-
lated annealing algorithm (Kluwer Academic
Publ., 1989)

[5] S. Kirkpatrick, C. Gelatt, and M. Vecchi,
Optimization by simulated annealing, Sci-
ence 220 (1983) 671–80; S. Kirkpatrick, Op-
timization by simulated annealing: quantita-
tive studies, J. Stat. Phys. 34 (1984) 975–86

[6] M.P. McLaughlin, Simulated annealing:
This algorithm may be one of the best so-
lutions to the problem of combinatorial op-
timization, Dr. Dobb’s Journal (Sept. 1989)
26–37, 88–91

[7] K. Binder, D. Heermann, Monte Carlo simu-
lation in statistical physics: an introduction
(Springer, 1992)

[8] To determine the influence of stones on a
board, a potential function can be computed
very much like the electric potential due to
charged conductors. This is a good anology,
since all connected parts of a perfect conduc-
tor are always at the same potential, very
much like in go where each stone of a chain
of stones has the same number of liberties
assigned to it. Physics may be able to teach
as more about how such potentials are com-
puted.

[9] N. Metropolis, A. Rosenbluth, M. Rosen-
bluth, A. Teller, and E. Teller, Equations
of state calculations by fast computing ma-
chines, J. Chem. Phys. 22 (1953) 1087-92

[10] P.W. Frey, The alpha-beta algorithm: Incre-
mental uptdating, well behaved evaluation
functions, and non-speculative forward prun-
ing, in Computer Game Playing: Theory and
Practice, ed. M.A. Bramer (Ellis Horwood
Ltd., 1983) 285–289

[11] The author is not aware of any previous
attempts to apply simulated annealing to
game trees as they are present in go, but
see [12]. There is an isolated comment in
[3] about random number generators suit-
able for “Monte Carlo exploration of binary
trees”. Any references are welcome!

[12] A. Grigoriev, Artificial intelligence or
stochastic relaxation: simulated annealing
challenge, in Heuristic programming in arti-
ficial intelligence 2, ed. D. Levy and D. Beal
(Ellis Horwood Ltd., 1991) 210 – 16

[13] R. High, Mathematical Go, in The Go
Player’s Almanac, ed. R. Bozulich (The Ishi
Press, 1992) 218–24

[14] D. Fotland, The program G2, Computer Go
1 (1986) 10–6

[15] D. Fotland, private communication

[16] R. Azencott (ed.), Simulated annealing: par-
allelization techniques (Wiley, 1992)

[17] Rob H. Tu, Developing a VLSI go game pro-
cessor, a Berkeley class project (newsreader
post 3/93)

11

0.9 3.0 2.9 3.2 2.3 3.2 2.5 2.6 2.1

3.2 3.3 3.8 3.8 4.3 4.6 4.3 3.3 2.8

3.1 3.7 4.8 4.6 4.9 4.5 4.6 3.5 1.5

2.7 4.2 4.7 5.0 5.2 4.9 4.9 4.6 2.5

3.4 4.1 4.9 5.1 5.2 5.3 4.9 4.7 2.1

2.1 4.3 4.8 5.0 5.1 5.0 4.8 4.3 2.2

2.1 3.8 4.6 4.5 5.1 4.8 4.6 4.1 1.8

1.8 2.2 4.1 3.9 4.4 4.5 3.6 3.2 1.6

1.3 2.7 1.9 2.5 1.5 1.8 2.4 1.7 1.5

���������
	�����������
���
��������	�� �"!�	$#%����	&�'���&�(�)���(����	+* �,��#���-
��#��/.0�
���21�� 34�
�65�� 798%	&#����
	:�
!�	4�+��	&�,����	����(����	4�;.<�(�=�
�%����	+*>��#�?�!@���
!��������
�A?���*B�
!�	DC)�,*E� �
�F������	$��#%�
�F�
!G���
C)	H��8B�

IJ!@���
	�"KL��#%M:�G���,	+*"�;.DNF�
�������
�B�NF��O�O@��	
P �
�,���
	&��M Q Q � �
RF��#G8S���&��T 7 U U 1:VW#��A�����X�0Y
Z���#G8%���[�%����	+* 5�1�1 �+1�1�1 5(\@]%1�1];\)5�1�1�^�];\>�+1�1�1
���"N�����	 I_O%M:] �`O%M9a I_O%M4U�5 I_O%M4U��
U�� I_O%M:] I_O%M:]G� �`O%M93 I_O%ML���
7�� �`O%ML� IbO%M6� I_O%M43 �`O%M4c��
]G� I_O%M4c�� I_O%M4c�� �`O%M93 I_O%ML���
5�� �JO%M4U�U I_O%M47%a �`O%ML��a I_O%M43

� ��O@��	:��$N�����	��
	+*E�@���,*d.0���"�
!�	�3(\)3AOG�%���,8B�

2

4

6 8

10

12

16

14

18

20

22

24

26

28

30

32

3

5

79

11

13

15

17

19

21

23

25

27

29

31

33

���������
	LU�4�����,*E��TG���
�A�;. �%����	:OG	&�E?"	&	&#JNF��O�O@��	L��#G8
KL��#%M4�G���,	+*"�;.DNF�G�

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

67

69 7173

68

64

62

60

58

56

5452

50 4846 44

42

40

38

36

34

���������
	A7� P 	+�,��#G89TG���
�"�;. �%����	�OG	&�E?"	&	&#LNF��O�O@��	A��#G8
KL��#%M4�G���,	+*"�;.DNF�G� � 5�� � ��^ ��� �F5�3�^Ga�1��F5�5�^Ga�U�� � 5��

8.59.6 9.3

9.6

9.5

9.5

14.2

13.9

13.8

13.9

14.3

13.9

���������
	F]G �������
���
��������	�� �"!�	F!@����!�	+*E�"��#G8 ����?"	+*E�"* �=\
���(����	+*����
	�*E!���?�#��

8.2

8.0 7.8 7.3

8.0

8.1

11.9 12.2

12.5

12.1

12.1

12.1

���������
	�5�$�������
�4�
�A������	����<���>	&�
	&#%�F*E�,���'��*E�'���&*D.0�����
!�	
TG�%* ���'����# ��# C)�����
	�]G�

20.2 15.0 15.6 15.5

15.5

15.4

15.3

15.3

15.3

15.3

12.2 15.2

15.0

15.2

15.2

15.2

15.1

15.1

15.2

���������
	 � �������
�A�
��������	�� �"!�	FOG	+*E�$������	F*E�,��#G8�* �����+�

10.5

5.7

8.8 8.9 8.8

8.9

8.8 7.78.0

8.38.3

7.0

8.0

8.7

8.9

���������
	:a%FIJ!@���
	��
�4������	��A�"!�	9�+1�� 5�������	 ��*�#���� ��#
�,��#%�
	&#%�'����# .0���"OG	+*E�F������	��

