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Disclaimer

Thistutorial isaimed at the enginee, not the mathematician. This does not mean that there will be no
mathematics, it just meansthat there will be no proofsin the text. In my humble opinion, mathematical
papers are mmpletely unreadable because of the proofs that clutter the text. For proofs the reader is
pointed to suitable references. The equations presented are thereto ill ustrate and to clarify things, | hope.
It should not be necessary to understand all the equationsin order to understand the theory. However, to
understand this tutorial, a mathematical background on an engineaingleve is required. Also some
knowledge of signal processng theory might comein handy.

The information presented in thistutorial is believel to be corred. Howeve, no responsibilty whatsoeve
will be accepted for any damage whatsoeve dueto errors or misleading statements or whatsoeve in this
tutorial. Should there be anything incorread, incomplete or not clear in thistex, please let me know so that
| canimprovethistutorial.
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1. Introduction

It iswell known from Fourier theory that asignal can be expressed as the sum of a, passbly infinite, series of sines
and cosines. This aimisalso referred to as a Fourier expansion. The big disadvantage of a Fourier expansion
however isthat it has only frequency resolution and no time resolution. This means that although we might be &leto
determine dl the frequencies present in asignal, we do not know when they are present. To overcome this problem
in the past decales sveral solutions have been developed which are more or lessable to represent asignal in the
time and frequency domain at the same time.

The ideabehind these time-frequency joint representationsis to cut the signal of interest into several parts and then
analyzethe parts eparately. It isclea that analyzing asignal this way will give more information about the when
and where of different frequency components, but it leads to a fundamental problem as well: how to cut the signal?
Suppaose that we want to know exadly all the frequency components present at a cetain moment in time. We aut out
only this very short time window using a Diracpulse, transform it to the frequency domain and ... somethingis very
wrong.

The problem hereisthat cutting the signal corresponds to a amnvol ution between the signal and the cutting window.
Since @nvolution in the time domain isidenticd to multi plication in the frequency domain and sincethe Fourier
transform of a Diracpulse contains al paossible frequencies the frequency components of the signal will be smeaed
out al over the frequency axis. In fad this stuation is the oppasite of the standard Fourier transform since we now
have time resolution but no frequency resolution whatsoever.

The underlying principle of the phenomena just described is Heisenberg' s uncertainty principle, which, in signal
processngterms, statesthat it isimpossible to know the exact frequency and the exad time of occurrence of this
frequency in asignal. In other words, asignal can simply not be represented as a point in the time-frequency space
The uncertainty principle shows that it is very important how one cuts the signal.

The wavdet transform or wave et andysisis probably the most recent solution to overcome the shortcomings of the
Fourier transform. In wavelet analysis the use of a fully scdable modulated window solves the signal -cutting
problem. The window is shifted along the signal and for every position the spedrum is caculated. Then this process
is repeaed many times with a dlightly shorter (or longer) window for every new cycle. Inthe end the result will be a
colledion of time-frequency representations of the signal, all with different resolutions. Because of this coll edion of
representations we can speak of a multiresolution analysis. In the cae of wavelets we normally do not speak about
time-frequency representations but about time-scae representations, scde being in away the oppdasite of frequency,
because the term frequency is reserved for the Fourier transform.

Sincefrom literatureit is not aways clea what is meant by small and large scdes, | will defineit here asfollows:
the large scale is the big picture, while the small scaes show the details. Thus, going from large scde to small scde
isin this context equal to zooming in.

A Diracpulseisdefined asf(t) = 1 at t = 0 and f(t) = O for al other t.
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In the following sedions | will present the wavelet transform and develop a scheme that will al ow usto implement
the wavelet transform in an efficient way on a digital computer. The transform will be so efficient that it does not
even use wavelets anymore. (The caeful reader might raise an eyebrow here and ask: “Surely youcan't be
serious?”?)

But before we mntinue adisclaimer. Since wavelet theory is not a new thing anymore, it has been around now for
fifteen yeas, say, | will not present afull and in-depth theory here. Several goodtextbodks on wavelet theory are
avail able and many readable papers with a goodreview of wavelet theory have been published. The list of references
at the end of this report contains pointers to texts with more extensive wavelet theory coverage like (in random order)
[Kai94], [Wei94], [She9g], [Bur9g], [Dau9?], [Hub9g], [Ma89], [Vet92]. | do however present some mathematicd

badkground in order to tell a wherent and clea tale (I hope).

Having this said, let’sgo on to the wavelets.

2. The continuous wavelet transform

The wavelet analysis described in the introduction is known as the continuows wavd et transform or CWT. More
formally it iswritten as:

y(s1) = j f (W (D), @)

where * denotes complex conjugation. This equation shows how afunction f(t) is decompased into a set of basis
functions yrs.(t), cdled the wavelets. The variables s and r are the new dimensions, scde ad trandation, after the
wavelet transform. For completeness ske equation (2) gives the inverse wavelet transform. | will not expand on this
sincewe ae not going to use it:

f(t) =I I V(S D)W, ()dTds. @
The wavelets are generated from a single basic wavelet yi(t), the so-cal ed mother waveet, by scding and trandation:

o) =——gpETE 3
Js Os C

In (3) sisthe scde fador, risthetranslation factor and the fador s¥? is for energy normali zation acrossthe different
scaes.

It isimportant to note that in (1), (2) and (3) the wavelet basis functions are not spedfied. Thisisadifference
between the wavelet transform and the Fourier transform, or other transforms. The theory of wavelet transforms

24| amserious, and con't call me Shirley.” Leslie Nielsen as Dr. Rumack in the film Airplane! (1980).



A Redlly Friendly Guide to Wavelets—© C. Valens, 1999 —c.valens@mindesscom

deds with the general properties of the wavelets and wavelet transforms only. It defines a framework within one @an
design wavelets to taste and wishes.

3. Wavelet properties

The most important properties of wavelets are the almissibili ty and the regularity conditions and these ae the
properties which gave wavelets their name. It can be shown [She96] that square integrable functions (t) satisfying
the admisshility condtion,

J—I LP|(3 P o< +co. 4

can be used to first analyze and then reconstruct a signal withou lossof information. In (4) ¥ (w) stands for the
Fourier transform of y(t). The almissibili ty conditi on impli es that the Fourier transform of y(t) vanishes at the zeo
frequency, i.e.

W@ _ =0. ®)

This means that wavelets must have aband-passlike spedrum. Thisis avery important observation, which we will
use later on to build an efficient wavelet transform.
A zero at the zeo frequency also means that the arerage value of the wavelet in the time domain must be zeo,

J'qJ(t)dt =0, (6)

and therefore it must be oscill atory. In other words, () must be awave

As can be seen from (1) the wavelet transform of a one-dimensional function is two-dimensional; the wavelet
transform of atwo-dimensional function is four-dimensional. The time-bandwidth product of the wavelet transform
isthe square of the input signal and for most pradicd applicaions thisis not a desirable property. Therefore one
impases me alditional conditi ons on the wavelet functionsin order to make the wavelet transform decease
quickly with deaeasing scale s. These ae the regularity condtions and they state that the wavelet function should
have some smoathness and concentration in both time and frequency domains. Regularity is a quite complex concept
and we will try to explain it alittle using the amncept of vanishing moments.

If we expand the wavelet transform (1) into the Taylor seriesat t = O until order n (let 7= 0 for smplicity) we get
[Shed6):

1 ot =
y(s,O)—\Eg;f of ; w%@mommg. @)
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Here f® stands for the p™" derivative of f and O(n+1) means the rest of the expansion. Now, if we define the
moments of the wavelet by M,

M, :J'tpL]J(t)dt, 8

then we aan rewrite (7) into the finite devel opment

0 @
¥(s0) =%Bf(owos+ — 0

(2 (n) 0
M2+ © 2|(0) M,ys®+ ..+ nn(O) M,s™+0(s™)0.  (9)
H H D

From the almissibili ty condition we dready have that the 0"" moment M, = 0 so that the first term in the right-hand
side of (9) is zero. If we now manage to make the other moments up to M,, zero as well, then the wavelet transform
coefficients y(s,t) will decay as fast as s™ for asmooth signal f(t). Thisisknown in literature a the vanishing
moments® or approximation order. If awavelet has N vanishing moments, then the goproximation order of the
wavelet transform is also N. The moments do not have to be exadly zero, asmall valueis often gpodenoudh. In fad,
experimental reseach suggests that the number of vanishing moments required depends heavily on the gplication
[Calofg].

Summarizing, the almissibility condition gave us the wave, regularity and vanishing moments gave us the fast decay
or the let, and put together they give us the wavelet. More aout regularity* can be found for instancein [Bur98] and
[Dau92].

4. Discrete wave ets

Now that we know what the wavelet transform is, we would like to make it pradicd. However, the wavelet
transform as described so far still has threeproperties that make it difficult to use diredly in the form of (1). The first
isthe redundancy of the CWT. In (1) the wavelet transformis cdculated by continuously shiftinga continuously
scdable function over asignal and cdculating the crrelation between the two. It will be dea that these scded
functions will be nowhere nea an orthogonal basis® and the obtained wavelet coefficients will therefore be highly
redundant. For most pracicd appli caions we would like to remove this redundancy.

Even without the redundancy of the CWT we till have an infinite number of waveletsin the wavelet transform and
we would like to seethis number reduced to a more manage&ble amunt. Thisisthe second problem we have.
Thethird problem isthat for most functions the wavel et transforms have no analytica solutions and they can be
cdculated only numericdly or by an opticd analog computer. Fast algorithms are needed to be ale to exploit the

/
3 There eist functions of which all moments vanish. An example isthe function e_x1 ) I];in(x“) for x> 0 [K6r96].

* The term regularity seems to stem from the definitionthat afilter is caled K-regular if its z-transform has K zeroes at z=€™ In
wavelet theory this applies to the scaling filter (which has not been mentioned yet) and it is possble only if all wavelet moments
up to K-1 vanish [Bur98]. The scding filter isformed by the mefficients h(k) in equation (17).

® The CWT behaves just like an orthogonal transform in the sense that the inverse wavelet transform permits us to reconstruct the
signal by anintegration o al the projedions of the signal onto the wavelet basis. Thisis cdled quasi-orthogonality [ She96].
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power of the wavelet transform and it isin fad the existence of these fast algorithms that have put wavel et
transforms where they are today.

Let us gart with the removal of redundancy.

Asmentioned before the CWT maps a one-dimensional signal to atwo-dimensional time-scae joint representation
that is highly redundant. The time-bandwidth product of the CWT isthe square of that of the signal and for most
applications, which seek a signal description with as few components as possble, thisis not efficient. To overcome
this problem discrete waved ets have been introduced. Discrete wavelets are not continuously scdable and trand atable
but can only be scded and trandated in discrete steps. Thisis achieved by modifying the wavel et representation (3)
to creae[Dau9?)

—kt j
W) =Lyt | (10
Js H 8 E

Although it is cdled adiscrete wavelet, it normally is a (pieaewise) continuous function. In (10) j and k are integers
and s, > 1 isafixed dlation step. The trandlation fador t, depends on the dil ation step. The dfed of discretizing the
wavelet isthat the time-scde spaceis now sampled at discrete intervals. We usually choose s, = 2 so that the
sampling of the frequency axis corresponds to dyadic sampling. Thisisavery natural choicefor computers, the
human ea and music for instance. For the trandation fador we usually choose 1o = 1 so that we dso have dyadic
sampling of the time axis.
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Figurel
Localization o the discrete wavdetsin the time-scale space on adyadic grid.

When discrete wavelets are used to transform a mntinuous sgnal the result will be aseries of wavelet coefficients,
and it isreferred to as the wavdet series decomposition. An important issue in such a decompasition schemeis of
course the question of reconstruction. It isall very well to sample the time-scde joint representation on adyadic grid,
but if it will not be passble to reconstruct the signal it will not be of gred use. Asit turnsout, it isindeed pcssble to
recmnstruct asignal from its wavelet series decompasition. In [Dau92] it is proven that the necessary and sufficient
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condition for stable reconstruction is that the energy of the wavel et coefficients must lie between two pcsitive
bounds, i.e.

AT < Z|<f,w,-,k>|2 <g|f|?, 1y
N

where | f|?isthe energy of f(t), A>0, B<« and A, B are independent of f(t). When equation (11) is stisfied, the
family of basis functions s; «(t) with j, k € Z isreferred to as a frame with frame bounds A and B. When A = B the
frameistight and the discrete wavelets behave exadly like an orthonormal basis. When A £ B exad reconstruction is
still posshble & the expense of adud frame. In adual frame discrete wavelet transform the decomposition wavelet is
different from the reconstruction wavel et.

We will now immediately forget the frames and continue with the removal of al redundancy from the wavelet
transform. The last step we have to take is making the discrete wavelets orthonormal. This can be done only with
discrete wavelets. The discrete wavelets can be made orthogonal to their own dil ations and translations by spedal
choices of the mother wavelet, which means:

. 51 if j=m and k=n
j Wk (OWna®dt=0 : (12)

Eb otherwise

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis functions, weighted by the
wavelet transform coefficients [ She96]:

f(t) = Zv(j,k)lbj,k(t)- 13
Js

Equation (13) shows the inverse wavelet transform for discrete wavelets, which we had not yet seen.

Orthogonality is not esential in the representation of signals. The wavelets need not be orthogona and in some
appli cations the redundancy can help to reduce the sensitivity to noise [She96] or improve the shift invariance of the
transform [Bur98]. Thisis a disadvantage of discrete wavelets: the resulting wavelet transformis no longer shift
invariant, which means that the wavelet transforms of asignal and of atime-shifted version of the same signal are
not simply shifted versions of ead other.

5. A band-passfilter

With the redundancy removed, we still have two hurdles to take before we have the wavelet transform in a pradica
form. We continue by trying to reduce the number of wavelets needed in the wavel et transform and save the problem
of the difficult analyticd solutions for the end.
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Even with discrete wavelets we till need an infinite number of scaings and trandlations to caculate the wavel et
transform. The eaiest way to tadkle this problemis $mply not to use an infinite number of discrete wavelets. Of
course this poses the question of the quality of the transform. Isit possble to reduce the number of wavelets to
analyze asignal and still have auseful result?

The trandations of the wavelets are of course limited by the duration of the signal under investigation so that we
have an upper boundary for the wavelets. This leaves us with the question of dil ation: how many scdes do we need
to analyze our signal? How do we get alower bound? It turns out that we can answer this question by looking at the
wavelet transform in a different way.

If welook at (5) we seethat the wavelet has a band-passlike spedrum. From Fourier theory we know that
compression in timeis equivalent to stretching the spedrum and shifting it upwards:

F{f (a0} = ﬁ FEH (14)

This meansthat atime cmmpresson of the wavelet by afador of 2 will stretch the frequency spedrum of the wavelet
by afador of 2 and also shift al frequency components up by afador of 2. Using thisinsight we can cover the finite
spedrum of our signal with the spedra of dil ated wavelets in the same way as that we mvered our signal in the time
domain with translated wavelets. To get a good coverage of the signal spedrum the stretched wavelet spedra should
touch each other, asif they were standing hand in hand (seefigure 2). This can be aranged by corredly designing
the wavelets.

o

f

Figure2
Touching wavdet spedra resulting from scaling o the mother wavdet in the time domain.

Summarizing, if one wavelet can be seen as a band-passfilter, then a series of dil ated wavelets can be seen asa
band-passfilter bank. If we look at the ratio between the center frequency of a wavelet spedrum and the width of
this edrum we will seethat it isthe same for al wavelets. Thisratio isnormally referred to as the fidelity fador Q
of afilter and in the case of wavelets one spedks therefore of a constant-Q filter bank.

6. I nter mezzo: a constraint

Asan intermezz we will now take alook at an important constraint on our signal, which has sieaked in during the
last sedion: the signal to analyze must have finite energy. When the signal has infinite energy it will beimpossble to
cover its frequency spedrum and its time duration with wavelets. Usually this constraint isformally stated as

10
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J’|f(t)|2dt<oo, (15)

and it is equivalent to stating that the L?-norm of our signal f(t) should be finite. Thisis where Hil bert spaces come
in so we end our intermeza by stating that natural signals normally have finite energy.

7. The scaling function®

The caeful reader will now ask him- or herself the question how to cover the spedrum all the way down to zero?
Becaise every time you stretch the wavelet in the time domain with afactor of 2, its bandwidth is halved. In other
words, with every wavelet stretch you cover only half of the remaining spedrum, which means that you will need an
infinite number of wavelets to get the job done’.

The solution to this problemis smply not to try to cover the spedrum all the way down to zero with wavelet spedra,
but to use a ork to plug the hole when it is small enough. This cork then is alow-pass pedrum and it belongs to the
so-cdl ed scaling function. The scding function was introduced by Mallat [Mal89a]. Because of the low-passnature
of the scding function spedrum it is ometimes referred to as the averagingfilter.

scding function spedrum (¢)
A (cork) __Wavelet spectra (V)

w,/8 /4 Wy 12 o

Figure3
How aninfinite set of wavdetsis replaced by one scaling function.

If welook at the scaling function as being just a signal with alow-pass gpedrum, then we @an decomposeit in
wavelet components and expressit like (13):

o) = Zy(jvk)wj,k(t)- (16)
Js

Sincewe seleded the scding function ¢(t) in such away that its edrum nedly fitted in the spaceleft open by the
wavel ets, the expresson (16) uses an infinite number of wavelets up to a cetain scdej (seefigure 3). This means

® Note that our introduction d the scali ng function dffers from the usua introduction through multi resolution analysis. We
believe that by doing it thisway we keep ou story gripping.

" When you want to go from A to B you first have to travel half the distance But before you read this half-way point you have to
travel half of half the distance But before you read this quarter-way point you have to travel half of half of half the distance etc..
In ather words, youwill never arrive in B because you have to travel to an infinite number of half-way points. Thisis the famous
dichotomy paradox by Zeno d Elea(approx. 490-430 BC).

11
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that if we analyze asignal using the combination of scaing function and wavelets, the scding function by itself takes
care of the spedrum otherwise mvered by all the wavelets up to scde j, whil e the rest is done by the wavelets. In this
way we have limited the number of wavelets from an infinite number to a finite number.

By introducing the scding function we have drcumvented the problem of the infinite number of wavelets and set a
lower bound for the wavelets. Of course when we use ascding function instead of wavelets we lose information.
That isto say, from asignal representation view we do not loase any information, sinceit will still be possbleto
reconstruct the original signal, but from a wavelet-analysis point of view we discard pcssble valuable scde
information. The width of the scaing function spedrum is therefore an important parameter in the wavel et transform
design. The shorter its pedrum the more wavel et coefficients you will have and the more scde information. But, as
aways, there will be pradicd limitations on the number of wavelet coefficients you can handle. Aswe will seelater
on, in the discrete wavelet transform this problem is more or lessautomaticaly solved.

The low-pass pedrum of the scaing function allows us to state some sort of admisshility condition similar to (6)
I¢(t)dt =1, 17

which shows that the 0™ moment of the scaing function can not vanish.®

Summarizing once more, if one wavelet can be seen as a band-passfilter and a scding function is alow-passfilter,
then a series of dil ated wavelets together with a scding function can be seen as afilter bank.

8. Subband coding

Two of the threeproblems mentioned in sedion 4 have now been resolved, but we still do not know how to cdculate
the wavelet transform. Therefore we will continue our journey through multiresol ution land.

If we regard the wavelet transform as afilter bank, then we can consider wavelet transforming a signal as passing the
signal through thisfilter bank. The outputs of the different filter stages are the wavelet- and scaing function
transform coefficients. Analyzing asignal by passing it through afilter bank is not anew idea ad has been around
for many yeas under the name subbandcoding. It is used for instancein computer vision appli cations.

81f the degrees of freedom in awavelet transform design are not only used oncreaing vanishing moments for the wavelet, but are
equaly distributed among the scding function and the wavel et to creae vanishing moments for bath functions, we spe&k of

Coifl ets. Coiflets are more symmetric than the wavelet transforms known before their introduction (1989). They are named after
their inventer Coifman [Tia96a)].

12
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Figure4
Sitti ng the signd spedrumwith an iterated filter bark.

Thefilter bank needed in subband coding can be built in several ways. One way isto build many band-passfiltersto
split the spedrum into frequency bands. The alvantage is that the width of every band can be chosen fredy, in such a
way that the spedrum of the signal to analyzeis covered in the places where it might be interesting. The
disadvantage is that we will haveto design every filter separately and this can be atime cnsuming process Another
way isto split the signal spedrum in two (equal) parts, alow-passand a high-passpart. The high-passpart contains
the small est detail s we ae interested in and we wuld stop here. We now have two bands. However, the low-passpart
gtill contains some details and therefore we aan split it again. And again, urtil we ae satisfied with the number of
bands we have aeded. In thisway we have aeaed an iterated filter bark. Usually the number of bandsis limited by
for instance the amount of data or computation power avail able. The processof splitti ng the spearumis graphicdly
displayed in figure 4. The advantage of this sheme isthat we have to design only two filters, the disadvantage is that
the signal spedrum coverageis fixed.

Looking at figure 4 we seethat what we ae |eft with after the repeaed spedrum splitting is a series of band-pass
bands with doubling bandwidth and one low-pass band. (Althoudh in theory the first split gave us a high-pass band
and alow-passband, in redity the high-passband is a band-passband due to the limited bandwidth of the signal.) In
other words, we can perform the same subband analysis by feeding the signal into a bank of band-pass filters of
which ead filter has a bandwidth twice & wide & hisleft neighbor (the frequency axis runs to the right here) and a
low-passfilter. At the beginning of this ssdion we stated that thisis the same & applying a wavelet transform to the
signal. The wavelets give us the band-pass bands with doubli ng bandwidth and the scding function provides us with
the low-passband. From this we can conclude that a wavelet transform is the same thing as a subband coding scheme

13
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using a onstant-Q filter bank® [Mal894]. In general we will refer to thiskind of analysis as a multiresolution
analysis.

Summarizing, if we implement the wavelet transform as an iterated filter bank, we do not have to spedfy the
wavelets explicitly! This sure is aremarkable result™.

9. Thediscrete wavelet transform

In many pradicd applications and espedally in the goplication described in thisreport the signal of interest is
sampled. In order to use the results we have achieved so far with a discrete signal we have to make our wavelet
transform discrete too. Remember that our discrete wavelets are not time-discrete, only the trandation- and the scale
step are discrete. Simply implementing the wavelet filter bank as a digital filter bank intuitively seemsto dothe job.
But intuitively is not good enough, we have to be sure.

In (16) we stated that the scding function could be expressed in wavelets from minusinfinity up to a cetain scaej.
If we add awavelet spedrum to the scaling function spedrum we will get a new scaing function, with a spedrum
twiceaswide asthefirst. The dfed of this addition isthat we can expressthe first scaling function in terms of the
seoond, because dl the information we need to dothisis contained in the seand scding function. We can express
this formally in the so-cdled multiresol ution formulation [Bur98] or two-scale relation [She96]:

02 = th(km(zjﬂt -K). (18)

The two-scde relation states that the scaing function at a cetain scde can be expressed in terms of trandated scding
functions at the next smaller scde. Do not get confused here: smaller scde means more detalil .

Thefirst scding function replaced a set of wavelets and therefore we can also expressthe waveletsin this &t in
terms of trandated scding functions at the next scde. More spedficadly we can write for the wavelet at level j:

p2't) = Z 9;:(K0(2 " t-kK) (19

which is the two-scde relation between the scding function and the wavelet.

Sinceour signal f(t) could be expressed in terms of dil ated and trandlated wavelets up to ascde j-1, thisleadsto the
result that f(t) can also be expressed in terms of dilated and translated scaling functions at ascdej:

f(t) = Z)\j(k)q)(th—k). (20)

® Subband coding is not restricted to constant-Q filter banks.

Y Sinceitis possble to implement awavelet transform withou explicitly implementing wavelets, it might be agoodideanot to
use the term wavelet transform at all and just cdl it subband coding. But then again, the Fourier transform can be implemented
without explicitely implementing Fouriers, so why bother?

14
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To be mnsistent in our notation we should in this case speak of discrete scding functions snceonly discrete
dil ations and translations are dlowed.

If in this equation we step up ascdeto j-1 (1), we have to add wavelets in order to keep the same level of detail. We
can then expressthe signal f(t) as

f(t) = ZA (KMt -k) + Zvj-l(k)w(zj‘lt -K). (1)

If the scaling function ¢;(t) and the wavelets §; (t) are orthonormal or atight frame, then the wefficients Aj4(k) and
y-1(K) are found by taking the inner products

A ja(k) = (F(,0,,0)

. (22
Via (k) =(f (1), W 0)
If we now replaced; () and §;,(t) in the inner products by suitably scaled and trandlated versi ons** of (18) and (19)

and manipulate abit, kegping in mind that the inner product can also be written as an integration, we arive & the
important result [Bur98]:

A9 =3 (=200 (m) ; (29
Va0 = S gm=2yy; (m). (24)

These two equations date that the wavelet- and scding function coefficients on a cetain scde can be found by
cdculating a weighted sum of the scding function coefficients from the previous <de. Now recall from the section
on the scding function that the scding function coefficients came from alow-passfilter and recdl from the sedion
on subband coding how we iterated afilter bank by repeaedly splitting the low-pass pedrum into alow-pass and a
high-passpart. The filter bank iteration started with the signal spedrum, so if we imagine that the signal spedrumis
the output of alow-passfilter at the previous (imaginary) scde, then we can regard our sampled signal as the scding
function coefficients from the previous (imaginary) scde. In other words, our sampled signa f(k) is sSmply equal to
A(K) at the largest scde!

But thereis more. As we know from signal processng theory a discrete weighted sum like the onesin (23) and (24)
isthe same as a digital filter and sincewe know that the wefficients Aj(k) come from the low-pass part of the splitted
signal spedrum, the weighting factors h(k) in (23) must form alow-pass filter. And since we know that the
coefficients yj(k) come from the high-passpart of the splitted signal spedrum, the weighting factors g(k) in (24) must
form a high-passfilter. This means that (23) and (24) together form one stage of an iterated digital filter bank and
from now on we will refer to the wefficients h(k) as the scaling filter and the wefficients g(k) as the wavdet filter.

170 scde and trandlate suitably, replace2't in (18) and (19) by 2't-k.
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By now we have made cetain that implementing the wavelet transform as an iterated digital filter bank is posshble
and from now on we can spedk of the discrete wavdet transform or DWT. Our intuition turned out to be @rred.
Because of thiswe ae rewarded with a useful bonus property of (23) and (24), the subsampling property. If we take
one last look at these two equations we seethat the scding and wavelet filters have astep-size of 2 in the variable k.
The dfea of thisisthat only every other A(K) is used in the cnvolution, with the result that the output data rate is
equal to theinput datarate. Although thisis not anew idea it has aways been exploited in subband coding schemes,
it iskind of niceto seeit popup here a part of the ded.

The subsampling property aso solves our problem, which had come up at the end of the sedion on the scding
function, of how to choose the width of the scding function spedrum. Because, every time we iterate the filter bank
the number of samples for the next stage is halved so that in the end we ae left with just one sample (in the extreme
case). It will be dea that thisis where the iteration definitely hasto stop and this determines the width of the
spedrum of the scding function. Normally the iteration will stop at the point where the number of samples has
becme smaller than the length of the scding filter or the wavelet filter, whichever isthe longest, so the length of the
longest filter determines the width of the spedrum of the scding function.

g(k) 12 ——Y,,

)Lj—»

h(k) l2 ——As

Figure5
Implementation o equations (23) and(24) as one stage of aniterated filter bark.

10 Coda

By now we have managed to reduce the highly redundant continuous wavelet transform as formulated in (1) with its
infinite number of unspedfied wavelets to afinite stageiterated digital filter bank which can be diredly implemented
on adigital computer. The redundancy has been removed by using discrete wavelets and a scding function solved
the problem of the infinite number of wavelets needed in the wavelet transform. The filter bank has lved the
problem of the non-existence of analyticd solutions as mentioned in the sedion on discrete wavelets. Finaly, we
have built adigitally implementable version of (1) without spedfying any wavelet, just asin (1). The wavelet
transform has become very pradicd indeed.
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Figure 6

Same scaling functions (top) and wavdets (bottom) from the biorthogonad Dedauriers-Dubuc family (like humans
wavdetslivein famili es, but there are also spedesthat livein packs). Fromleft to right: (2,2), (4,2), (6,2), (2,4) and
(4,4). Thefirst number isthe number of vanishing moments of the analyzing wavedet (the waveet that decompases a
signd) andthe second number is the number of vanishing moments of the synthesizing wavdet (the wavdets that

reconstructs the signd). Note that with increasing number of vanishing moments (waveets a, b andc) the wavdet
beommes snoather or more regular. The sameistrue for the scaling function.

Note also that the shape of these wavdetsis not the rule. Althoughthere are many wavdets that look likethis, there
are also many wave ets that look completely different. The wavdets s1own here are just easy to create.
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I nternet resour ces

Besides clasgcd references there ae many Internet sources that ded with wavelets. Here | have listed a few that
have proved to be useful. With these links probably every other wavelet related site can be found. Kegp in mind
however that thislist was compiled in July 1999

» The Wavdet Digest, a monthly electronic magazne arrently edited by Wim Sweldens [Swe96a,b], is a platform
for people working with wavelets. It contains announcements of conferences, abstrads of publications and
preprints and questions and answers of readers. It can be found at www.wavelet.org/wavelet/index.html and it is
the site for wavelets.

*  Mathsoftd, the makers of Mathcadl, maintain awavelet site cdl ed wavelet resources, which contains a huge
list of wavelet-related papers and links. It islocaed at www.mathsoft.com/wavel ets.html

¢ RiceUniversity, the home of Burrus [Bur98] et al, kegps alist of publications and makes available the Rice
Wavelet Toolbox for MatLabll at www-dsp.rice.edu/publications/

« TheKatholieke Universiteit of Leuven, Belgium, is adive on the net with wavel ets, publi cations and the toolbox
WAILI, at www.cs kuleuven.acbe/~wavelets/

* AmaraGraps maintains alonglist of links, publications and tod's besides explaining wavelet theory in a nutshell
at www.amara.com/current/wavel et.html

* Thereisared lifting page, dedicaed to Liftpack, alifting toolbox at
www.cs.sc.edu/~fernande/liftpack/index.html
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« Finaly I would like to mention an interesting tutorial aimed at engineas by Robi Polikar from lowa State
University at www.publi c.iastate.edu/~rpolikar/WAVELETS
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