The following is a solution of my own and I used in marking.

1. a. Everybody knows.

1. b. Generally speaking, the more information you collect, the more accurate you can act. So, it is no harm to get page fault rate for processes and it will be proved useful in page-replacement algorithm. The question is what overhead it takes and how well it will perform. The more page fault one process creates, the more memory it might require. So, the least possible we want to replace any page from it. Combined with LRU, we can now replace LRU page with consideration of which process it belongs to. Generally speaking, this should give us better performance than LRU alone.

2. Almost everybody knows.

3. a. SJF will favour I/O job because they usually don’t consume the whole time quantum allocated to them. In the worst scenario, many I/O jobs goes and comes in large number. Then the CPU-bound jobs will be permanently starved.

3.b. Most people gives most answers.

 3.c. Is this an English question or a philosophy question?

4. a. Sufficient condition is straight-forward. Since there is an allocation cycle, it implies that each process holds an instance of one resource type and at the same time requests another held by other process. Since each process must acquire at least one instance of each resource type (This is the biggest understatement you should be aware of.) to be able to start working, the deadlock is created because no process can finish its work and release what it holds.

The necessary condition is also simple. Just refer to those four necessary conditions of deadlock in textbook and we know the allocation cycle is indeed the necessary condition.

b. Since each process needs at most two instances it is very simple to observe that the worst case is just each process holds one instance at the same time. Then we still get one free instance and no matter which process gets it the process will be able to finish its work. After the work is done, the process will release whatever it holds and system gets more resource instances to allocate. Therefore no deadlock is possible.
c. This proof is just a general case of b and it is like this:

Suppose in the system we have exactly k processes which get some resource instance and waiting for more to be able to work. Then we can claim the total number of resource instances for them is m+k. Just imagine we have allocated all m instances to these k processes and still none of them is satisfied with its need. Then each of them has at least one instance request. Therefore their total demand is m+k at least. By given we know the total request need for all n process is less than n+m or at most n+m-1. And we have n-k processes which have total request need of (n+m-1)-(m+k)=n-k-1. You see, at least one process among the rest n-k processes has only 0 demand which is contradiction to what is given. Therefore, the deadlock cannot happen.
