Design example: a USB pointing device

Implementing a USB mouse using a generic microcontroller and a USB Interface
IC, Philips PDIUSBD11.

Introduction

Adding aUSB interface to your peripheral device may not be the easiest task, but with the PDIUSBD11 it
can be made simpler.

This document shows by example how you can implement a USB system using the PDIUSBD11.

Selecting a USB Solution

There are already many USB | C devices available on the market. They can be collectively classified into
three categories. Thefirst category would be a USB microcontroller. The second type isaone-chip
solution that implements a specific USB function. The third and last category belongsto the USB interface
IC.

The data throughput, endpoint requirements and data delivery constraintsimpact what kind of solution you

can choose. The following table displays the maximum effective datarate in increasing order of data
throughput.

Table | : Effective Data transfer rate of USB device

Buffer | Low Speed datarate (bytes per Full Speed datarate (bytes per frame)
Size frame)

Control Interrupt Control | Interrupt Bulk 1SO
1 3 1(0.1Kbytes/sec) | 32 1 (1 Kbytes/sec) 107 150
2 6 2 (0.2 Kbytes/sec) | 62 2 (2 Kbytes/sec) 200 272
4 12 4 (0.4 Kbytes/sec) | 120 4 (3 Kbytes/s) 352 460
8 24 8 (0.8 Kbytes/sec) | 224 8 (8 Kbytes/s) 568 704
16 384 16 (16 Kbytes/s) 816 960
32 608 32 (32 Kbytes/s) 1056 1152
64 832 64 (64 Kbytes/s) 1216 1280
Y I e e s 1280
256 1280
512 1024
1023 1023

When operating at full speed, ashielded USB cable must be used. Apart from that, the only difference the
physical layer dictatesis the allowable bandwidth each device can use on the bus - at full speed, the useful
datathroughput rate is higher.

The colored region shows what the PDIUSBD11 can deliver. However, the user must also consider the
datarate of 1°C which may bottleneck the throughput. PDIUSBD11 can run at an 12C clock speed of 1
MHz. Allowing for the overhead in accessing the dataregisters of the D11, thistranslates to a maximum
effective data rate of 40K bytes/sec.

The benefits of using aUSB interface IC are:

1. Lower costs of USB interface I Cs versus high-end USB micro-controllers (full speed microcontrollers

generally belong to the higher end of micro-controllers)

Specific features required of the micro-controllersthat have been tailored to fit your specific system.

3. Lower development costs and avoidance of risksinvolved in re-writing code for anew
microcontroller.

N

Thetrade-offsin using aUSB interface IC like PDIUSBD11 are;

1. Therequirement to use 1°C to communicate with the PDIUSBD11, including the required 1/0 pins for
Interrupt and Suspend signals.

2. Requirement for some additional ROM space on your micro-controller.

3. Possible limitationsin the I°C datarate

The hardware

The hardware for this project was selected to target an audience whose wishes are to learn about developing
USB peripheral devices. For tutorial purposes, mouse functionality was selected as the design goal,
because the hardware involved is simple and host device drivers are already avail able on Windows 98.

The schematic diagram for the application, consisting mainly of a microcontroller, a scan matrix, the USB
interface, and finally a supply regulator, isas shownin Fig.1.

A standard scan matrix implementing 9 buttonsis used. The scan outputs are connected to Port2.5 through
Port2.7 of the microcontroller, and the scanned inputs are read in from Port2.2 through Port 2.4.

Thisdevice will be designed for bus-powered operation. Therefore, the system will have to be limited to
consume no more than 500mA of current when it isin the suspend state. To achieve that, the micro-
controller hasto be in the Power-down state. The current consumption for the micro-controller under the
power-down state goes to a 50 mA maximum value. Adding the suspend current for PDIUSBD11 and the
mandatory internal pull-up resistor on the D+ line, we are well under the 500 mA limit. When the deviceis
in suspend state, the 12C lines are inactive. Y et, all interrupts will have to be serviced, so the INT_N should
be high. SUSPEND is an active high signal. The pull-up resistors on these lines do not contribute to the
total current consumption.

Waking up the micro-controller from the power-down state involves pulling the INTO (pin 3.2) of the
micro-controller LOW. There are two scenarios in which this occurs. Thefirst possibility isa user-
initiated wakeup which is done through the WAKEUP button. After the micro-controller sensesalow on
its external interrupt INTO (pin P1.5 on microcontroller), it wakes the micro-controller. The micro-
controller will need to issue a Remote Wakeup command to the USB host. Thisis performed viaa
command register afforded by the PDIUSBD11. The second possibility for awakeup is one where the
host, or another device on the system, initiates the wakeup. When that happens, PDIUSBD11 detects the
event and holds down the SUSPEND pin as soon astraffic is resumed on the USB bus. Thiswakes up the
micro-controller, which can then continue its normal operation.

The clock of the micro-controller is supplied by the PDIUSBD11. The frequency at power-up is 4AMHz
whereafter the microcontroller can change the operating frequency to avalue as high as48MHz. The
frequency of operation used hereis 12MHz. Aninverter isused to buffer between the PDIUSBD11, which
gives out the clock at 3.3V logic, and the micro-controller. A PicoGateQ is used to save areain the PCB
layout.

The USB Interface | C used here, the Philips PDIUSBD11, takes care of the USB hardware and protocol
layers and communicates with a micro-controller viathe 1°C Bus. The user need only to connect the usual
SDA, SCL pinsfor the 12C, aswell as pinsfor Interrupt, INT_N and SUSPEND (assuming the system is

power-constrained). The USB signals consist mainly of the D+ and D- lines which the user connectsto the
USB Type B connector. Asthe PDIUSBD11 is ESD-robust to 8kV, no additional ferrite beads or diodes
are needed to protect the D+/D- lines. In fact, the ferrite beads are unwanted since they would cause ringing
on the signal's during EOP (End-Of-Packet) signaling. The 1.5 Kohms pull-up resistor is not seen on the
D+ line on the schematics because the pull-up is done internally through software control. Thisfeatureis
termed SoftConnect™.

The Vbus pin from the type B connector isto be connected viaaresistor to the Vbus sensing pin of the
PDIUSBD11. When a0V issensed on this pin, the D+ pull-up resistor will automatically be disconnected.
However in this bus-powered example, Vbus sensing is not critical because when Vbusisremoved, sois
the power for all the devices!

The power regulator is needed to convert the available 5V from the USB to a 3.3V supply voltage needed
to operate the PDIUSBD11. The USB specification states that a bus-powered peripheral remains
operational even when the Vbusinput voltage dropsto 4.4V. Since PDIUSBD11 can operate at a
minimum voltage of 3V, the design constraints on the regulator are somewhat relaxed.

The firmware

The firmware was written in C and compiled using the Keil C DOS compiler. A pictorial representation of
the component files used is shown below.

D11 MAIN.C

Polling Routine to check for interrupt events.

D11 CHAP9.C MISC.C

Handles Chapter 9 Miscellaneous routines.
routines. Example : delay_1s().

Diagram 1: Layered functions and filenamesfor the firmware

Thefuntion calls are built in layered fashion. D11 _RW.C contains some “bit-bang” routines to emulate the
I2C protocol. The header files for all function calls are listed in the file D11_RW.H. Below isalisting and
brief explanation of all the functions used in the program:

extern void W_command(unsi gned char D11_CDATA);

Sends a single command data to the |2C command address at Ox1B. The command
data is contained in the argument D11_CDATA.

extern void Rd_Ndat a(unsi gned char *PO NTER, unsigned char N);

Sends the Read N data fromthe |12C Data Address at Ox1A. Al the data read is
stored in the array referenced by PONTER N indicates the nunmber of data
bytes to read.

extern void W _Ndat a(unsi gned char *PO NTER, unsigned char N);

Wites N data referenced by PO NTER to | 2C Data Address at Ox1A.

extern void Rd_Bufdata(unsi gned char *PO NTER);

Reads Data fromthe data buffer at Ox1A. However, the nunber of data bytes to
strobe in is derived fromthe second byte of the 12C data. Al the data bytes
(D1,D2.., DN) read are stored into the array referenced by PO NTER

1 2C stream — 0x35, 0x??, OxNN, Di,..,DN.

extern void W_Bufdata(unsi gned char *PO NTER);

Wites Data contained in the array referenced by PO NTER to the |2C address
Ox1A. The nunber of data bytes to strobe in is derived fromthe 1st byte.

Exanple : PONTER 5] = {3,1, 2,3}
12C Stream: 0x34, 0x00, 0x03, 0x01, 0x02, 0x03.
PDI USBD11 rel ated comands are coded in the file DI1_CVD.C. The associ ated

header file is D11_CMD.H Most of the function names are self-explanatory. In
this file, 9 bytes are data bytes reserved for the |2C buffer.

extern void Set Mode(unsi gned char D11_MDATA, unsigned char D11_CLKDI V) ;
Set the configuration byte and the clock divider byte for the PD USBD11. The
new configuration byte is the first argunent D11 MDATA and the second argunent,
D11_CLKDIV, contains the new CLOCK DI VI DER

extern void Set Address(unsi gned char NewAddr);

This sets and enabl es the new address. The enable bit is the MSB of NewAddr.
extern void Di sO her Address(void);

Thi s di sabl es the Hub address. The PDI USBD11 shares the sanme digital core as
that of the PDI USBH11A which includes a hub. This conmand disabl es the

(vacant) Hub address. It is essential that this conmand be used prior to
activating the SoftConnect feature.

extern voi d Set Endpt Enabl e(unsi gned char Enabl e_dat a) ;
Thi s enables the D11 endpoints. To enable, wite 0x02; to disable, wite 0x00.
extern voi d Updatel nt Reg(void);

This reads the Interrupt register. The interrupt register is then stored into
two registers: ENDPT_I NT and OTHER I NT.

To check if either the main endpoint or endpoint O has an interrupt pending, you
can “AND’ the ENPT_INT with the foll ow ng:

CTRL_ENDPT_OUT 0x04 // bit 2
CTRL_ENDPT_IN 0x08 // bit 3

ENDPT1_I N 0x10 // bit 4

ENDPT1_OUT 0x20 // bit 5
ENDPT2_OUT 0x40 // bit 6
ENDPT2_I N 0x80 // bit 7

O if the interrupt comes fromother interrupt sources:

#defi ne ENDPT3_OUT 0x01 // bit 1
#def i ne ENDPT3_I N 0x02 // bit 2
#defi ne BUS_RESET 0x40 // bit 6

extern void ReadBuffer(void);

This reads the endpoint data Buffer into DBUFFER[9]. The first byte al ways
stores the nunber of valid data bytes.

extern void WiteBuffer(void);

This wites the data to the data Buffer from DBUFFER[9]. The first byte stores
t he nunber of data bytes to be witten.

extern void Ack_SETUP(void);

When a SETUP Token is received, the data in the endpoint buffer is |ocked.
This neans that a C earBuffer command or a Validate command has no effect till
the Ack_SETUP is issued. This is always issued after a SETUP token is
received. Only then would C earBuffer work.

extern void SendResune(void);
This issues a Renote Wakeup signal to the Host.
extern unsi gned char Sel ect Endpoi nt (unsi gned char ENDPT);

The Sel ect Endpoi nt (ENDPT) is used to select the endpoint to be read or to be
witten to. The possible argunents are:

#define CTRL_OUT 2 //Endpoi nt | ndex
#define CTRL_IN 3 //Endpoint Index
#defi ne ENDPO NT1_OUT 5 //Endpoi nt | ndex
#define ENDPO NT1_IN 4 //Endpoint |ndex
#defi ne ENDPO NT2_OUT 6 //Endpoi nt | ndex
#defi ne ENDPO NT2_IN 7 //Endpoi nt |ndex
#defi ne ENDPO NT3_OUT 8 //Endpoi nt | ndex
#define ENDPO NT3_IN 9 //Endpoint |ndex

extern unsi gned char ReadEndpt St at us(unsi gned char ENDPT) ;

This reads the Last Transaction Status and clears the interrupt bit
corresponding to the endpoint. The possible argunments are:

#define CTRL_OUT 2 //Endpoi nt | ndex
#define CTRL_IN 3 //Endpoint Index
#defi ne ENDPO NT1_OUT 5 //Endpoi nt | ndex
#define ENDPO NT1_IN 4 //Endpoint |ndex
#defi ne ENDPO NT2_OUT 6 //Endpoi nt | ndex
#define ENDPO NT2_IN 7 //Endpoint |ndex
#def i ne ENDPOI NT3_OUT 8 //Endpoi nt | ndex

#defi ne ENDPO NT3_IN 9 //Endpoint |ndex

extern voi d Set Endpt St at us(unsi gned char ENDPT, unsigned char
ENDPTDATA) ;

This allows an individual endpoint to be stalled in response to an unidentified
or unsupported USB request. The ENDPT nunbers are:

#define CTRL_QUT 2 //Endpoi nt | ndex
#define CTRL_IN 3 //Endpoint |ndex
#defi ne ENDPO NT1_OUT 5 //Endpoi nt | ndex
#define ENDPO NT1_IN 4 //Endpoint |ndex
#defi ne ENDPO NT2_OUT 6 //Endpoi nt | ndex
#define ENDPO NT2_IN 7 //Endpoint |ndex
#defi ne ENDPO NT3_OUT 8 //Endpoi nt | ndex
#defi ne ENDPO NT3_IN 9 //Endpoint |ndex

To stall, put OxOl1l into ENDPTDATA. To un-stall the endpoint, put 0x00.

extern void Cl earBuffer(void);

This clears the buffer such that the subsequent DATA can be “ACK’ed (received
fromthe Host).

extern void ValidateBuffer(void);
This command is issued when the endpoint buffer has been filled with the data
to be witten to the Host in. The Validate command tells PDI USBD11 that the

data stored in the endpoint buffer is ready to be accepted upon issue of an
“I N’ token.

extern voi d SendZeroPacket (unsi gned char ENDPT) ;

This command sends a zero packet data to the host. Basically it wites to an IN
endpoint, then wites a zero length data packet, followed by witing the

val i dat e comrand.

extern unsi gned char ReadEPStal | (unsi gned char ENDPT);

Wth this command you can read the status of an endpoint to check if it has
been stall ed.

Procedures to Read and Write data to Host

The PDIUSBD11 buffers the hardware handshaking. The Chapter 9 handshake protocol isto be
implemented by the user. Hence, it isessential that the basic data reading/writing sequence is understood.

O

Select
Endpoint

If Buffer
Full

Yes
Read Buffer

Clear Buffer

Flow Chart 1: Reading
Data from the Host

Writing Data

The endpoint isfirst selected to re-initialize the internal

pointer to the buffer.

The datais strobed into the endpoint buffer. Thefirst data
byteisareserved byte; the second byte indicates how g
many actual data bytes contained in the buffer are to be
sent to the host. o
Flow Chart 2: Writing Data
ValidateBuffer informs PDIUSBD11 that the buffer is now to Host

fully loaded and ready to send the data out.

Reading Data

The Select Endpoint re-initializes the PDIUSBD11 internal
pointer to where the endpoint buffer starts. The return status bit
also showsif the endpoint if full or empty.

A ReadBuffer command followed by strobing in the data gets
the actual data stored in the endpoint. Thefirst bytereceivedis
areserved byte. The second byte indicates the number of valid
data bytesin the buffer, thisis followed by the actual data.

ClearBuffer allows the endpoint to be cleared such that the next
packet that comes by through the USB traffic will be accepted
and acknowledged.

Select
Endpoint

WriteBuffer

[ValidateBuffer ’

The following shows aflow diagram of the initialization routine.

Asthe PDIUSBD11 sharesthe same digital core
asthe PDIUSBH11A but does not contain a hub, it
isrequired to “disable” the hub through the Set
Address command 0xDO. The next Set Address
command 0xD1enables the D11 function.

Start
Initialisation

Load al registers)
with oroper data The SoftConnect feature is enabled through the
i SetMode command OxF3.

-
Disable Hub
Command DOh, Data 00h

v

-
Enable D11 Function
Command D1h, Data 80h

v

Load Configuration Register
Enable SoftConnect, and load
confiauration Clock

é End

Initialisation

-

-

Flow Chart 3 : Initialisation Routine
(D11_MAIN.C)

Scanning for User Keypressed

A common scanning routine
O isused. Eachscanlineis
pulled down and the scanned
input isread to check If any

st
Pull 1% Scan key has been pressed.

bit low.

On detection of a“button
pressed” event, the
corresponding increment or
decrement of the X or Y
movement is tracked.

Pull next

Scan bit low

Once acomplete scan has
been done, the datais sent to
the Host (provided the
previous data has been

v removed).

Update X, Y
increments

The data being sent should
follow what was described on
the Report Descriptor.

Thefirst byte containsthe

es information as to whether
Send data there has been a user “click”,
to buffer. the second byte shows the

amount of horizontal
movement and the third byte

shows the amount of vertical
5 movement.

data changed
and last data
sent ?

No

Flow Chart 4 : Button Scanning Routine
(D11_MAIN.C)

Chapter 9 standard requests

All the USB Standard requests are implemented based on D11 _CHAP9.C and its associated file
CHAP9.DES.

There are 2 main functions that will be called by the main program USB_MAIN.C. They are:

void ProcessCtrl I nEP(void);
voi d ProcessCtr| Qut EP(void);

Whenever there data is going through Endpoint O and when the direction is from the host to the device,
ProcessCtrl Qut EP(void) would be called. This includes the Setup
Tokens. On receipt of a Setup Data, the information is re-packaged
into a structure call ed REQUEST shown bel ow.

typedef struct REQUEST { BYTE bnRequest Type;
BYTE bRequest;
WORD wVal ue;
WORD wi ndex;
WORD wLengt h; /1 Data Phase's data |ength

b
Thiswould be passed to the handling routines :

Voi d D11St andar dRequest (struct REQUEST *pReq)
voi d D11Cl assRequest (struct REQUEST *pReq)
voi d Dl1Vendor Request (struct REQUEST *pReq)

In this example, in addition to implementing D11StandardRequest, a class handler for the HID classisalso
implemented. The function call to it is D11ClassRequest. Alternately, a D11V endorRequest could be
implemented by the user if required.

The descriptors are stored in file CHAP9.DES. Therefore one can easily modify basic information such as
the Device Descriptors, Configuration Descriptors, Endpoints Descriptors, HID descriptors and the String
descriptors.

struct DEVI CE { BYTE bLengt h;
BYTE bDescri ptor Type;
WORD bcdUSB;
BYTE bDevi ceCl ass;
BYTE bDevi ceSubCl ass;
BYTE bDevi cePr ot ocol ;
BYTE bMaxPacket Si ze;
WORD i dVendor ;
WORD i dPr oduct ;
WORD bcdDevi ce;
BYTE i Manuf act urer;
BYTE i Product ;
BYTE i Seri al Nunber ;
BYTE bNunConfi gurati ons;

}s

struct CONFI GURATI ON { BYTE bLengt h;
BYTE bDescri ptor Type;
BYTE wTot al Lengt h;
BYTE wZer o;
BYTE bNuml nt erf aces;
BYTE bConfi gurationVal ue;
BYTE i Confi guration;
BYTE bmAttri butes;
BYTE MaxPower ;

b

struct | NTERFACE { BYTE bLengt h;
BYTE bDescri pti onType;
BYTE bl nt er f aceNunber;
BYTE bAl ternateSetting;
BYTE bNunEndpoi nts;
BYTE bl nterfaceCl ass;
BYTE bl nt erfaceSubCl ass;
BYTE bl nt erfaceProtocol ;

BYT
b

ENDPOI NT {
BYTE
BYTE
BYTE
WORD
BYT

b

HI DDESC {
BYTE
BYTE
W\ORD
BYTE
BYTE
BYTE
WOR

struct

struct

il nterface;

BYTE bLengt h;
bDescri pt or Type;
bEndpoi nt Addr ess;
bmAttri but es;
wivexPacket Si ze;
bl nterval ;

bLengt h;

bDescri pt or Type;

bcdHI D

bCount r yCode;
bNunmDescri pt ors;
bReport Descri pt or Type;
w t enlLengt h;

b

CONFI G { struct
struct
struct
struct

struct CONFI GURATI ON sConfi g;
| NTERFACE sl nterface;
HI DDESC sHI DDesc;
ENDPOI NT sEndpoi nt 1;

}s

The report descriptor coded here uses the mouse report descriptor as documented in the HID1.0 - final. Itis
shown here for completeness. The data on the right column are sent to the Host on a
Get_Report Descriptor

E.10 Report Descriptor (Mouse)

Item Yalue (hex)
Usage Page |Generic Desktop). U5 0l
Usag Ze) 19 02

Gl ion [Application). Al 0l

+ [Pointer). (19 01

Collection (FPhysical), AT D0
Ugage Fage (Buttons), (15 08
Usage Minimum (01}, 19 (H
Usage Maximun (03)., 2003
Logical Minimum i), 15 00
Logical Maximum (197, TR0

T fount (3), Q5 03

T Size (1), 75101
Input |Data, Warilable, Absolute}, % utcen bite 102
Report Count (1) G501
Heport Size (3, 7505
Inpuc [Constant), {5 bit padding #1001
g [Generic Desktop) , (15
ge (X, ()9 30}
- 19 3]
1 Minimum (-127), 15 K1
Maximum (1271, [T
size (3) 7508
Count (2) 895 02
Input. [Data, Variable, Ralabiwe], e posiEion Iytes 2106
1H e on
End Collection, i

End Collection

request.

D11 initialise()

>

YES

UpdatelntReg()

IN Endpt O
Interrupt 2 ProcessCtrlInEP()
OUT Endpt O 0cessCt
Interrupt ? Pr rIOUER)
:r’:lteEPdptt g Process In EP1
upt Routine
Bus Reset
Routine

Flow Chart 5: Main Loop for USB
(D11_MAIN.C)

The main program isapolling routine. On
retrieval of data, the interrupt pin of the
PDIUSBD11 goeslow.

The firmware checks for the interrupt
source and diverts the program flow to the
respective endpoint handler.

In the ProcessCtrl OutEP(), the steps to
read a Setup command is as follows.

A ReadlL astTransaction command is
issued to clear the respectively endpoint.

It ischecked to seeif the current received
status shows a Setup packet being given.
If so, the Setup endpoints have to be
“Ack”ed. Thisisto prevent already
validated datafrom being sent in response
to the current Setup token.

Thejustification for thisis based on the
USB protocol that allows any Setup token
to supersede an uncompleted Setup
request. Thus, to safeguard the accuracy
of the handshake, once a Setup token is
received, the dataisreceived and locked.
The other endpoint buffers are then frozen.

To unfreeze the endpoints, we use the
Ack_Setup command. Hence, on every
receipt of a Setup packet, the IN endpoint
isselected. The Ack_Setup Command is
given followed by aclearing of the buffer.

The Ack_Setup command is also issued on
the CONTROL _IN buffer. Thedatais
read and deciphered before routing it to
either the StandardChapter9 or the
ClassHandler.

ProcessCtrlOutEP()

v

ProcessCtrlInEP()

Clear Interrupt

Buffer

Emptied?
Process Received
DATA
Send Next Set of 8
YES bytes

Flush IN endpoint
* Return

Read Setup Data,
Clear Buffer

v

D11Standard
Request?

D11St andar dRequest ()

D11ClassReq

uest? D11d assRequest ()

Stals IN Endpoint

¢<
(OReturn Flow Chart 6 : Endpoint Handlers
(D11_CHAP9.C)

Because the PDIUSBD11 has only buffer size of 8 bytes, long descriptors have to be divided into packets
of 8 bytes and sent out one packet at atime. The firmware needs to keep track of the current data packet
being sent out and to ensure that a zero packet datais sent on the final packet if the descriptor sizeisa

factor of 8.

D11StandardRequest()

Set/Clear
Feature Request?

Get Descriptor
Request?

Get
Configuration?

Set
Configuration?

Get Interface
Request?

Get Devi ceStatus()

Set Devi ceFeat ure()

Process Set Address

Get Descriptor()

Process Cet Config

Process Set Config

Process GCet
Interface

Process Set
Interface

Stalls IN Endpoint

v
O Return

Flow Chart 7 : Standard
Requests Handling
(D11_CHAP9.C)

All the Chapter 9 standard requests
are largely unchanged for all devices.

Except, aHID device is how required
to handle the addition
GetReportDescriptor. And also, the
data expected from the
GetConfigurationDescriptor includes
the additional HID descriptor
embedded between the Interface and
the endpoint descriptors.

Conclusion

A board waswired to implement a
USB mouse using the PDIUSBD11.
The source code for the
implementation is available.

The device was tested to enumerate
and function properly on Windows
98.

Get Idle Return IDLE tinme
Reauest?

St ore BOOT prot ocol
value into

Ret ur n BOOT
nr ot ocol val e

Store IDLE tine

Stals IN Endpoint
Flow Chart 8 : HID Class Request
+ Handling

(O Reumn (D11_CHAPY.C

