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The Intel Signal Processing Library provides a set of basic routines for 
signal processing on general purpose Intel Architecture processors rath
than special purpose DSP processors. The library is targeted towards 
non-real-time applications.  

About This Software
The computing power of the Pentium® and Pentium® Pro processors 
enables the use of many signal processing functions which previously w
done by add-in DSPs. The library includes functions for finite impulse 
response (FIR) and infinite impulse response (IIR) filters, fast Fourier 
transforms (FFTs), tone generation, and many vector operations. 

The library allows the CPU to process audio, video, and communications 
data using software only, rather than off-loading the data to fixed-function, 
dedicated digital signal processing hardware. 

Hardware/Software Requirements

The Intel Signal Processing Library is designed for use on the Intel 32-bit 
microprocessors such as Pentium Pro, Pentium, as well as Intel386™ (and
higher) processors. The library also includes a DLL which detects the 
processor on which it is running and loads an appropriate processor-specific 
DLL. The processor-specific DLLs are also provided. You must be runn
the Windows* 3.1 (with the Win32s* extension), Windows 95*, or WinNT
operating systems.  The software requires an ANSI C compiler.  See the 
Release Notes for a complete list of compilers supported.

Library 
function lists
1-1
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Platforms Supported

The Intel Signal Processing Library runs on Windows* platforms.  The 
code and syntax used for function and variable declarations in this man
are written in the ANSI C style.  However, versions of this library for 
different processors or operating systems may, of necessity, vary slightly.  
As a result, the declarations found in the include files distributed with the 
library may be slightly different than those shown here.  Consult the 
Release Notes for more information.

About This Manual
This manual describes the functions in the Intel Signal Processing Libra
The functions are organized around the types of computations performed in 
signal processing.  Each function is introduced by its name and a one-line 
description of its purpose.  This is followed by the function prototype and 
definitions of its arguments.  The following sections are also included in 
each function description:

Discussion This section defines the function and describes the 
operation which the function performs.  Often, code 
examples, as well as the equations which the function 
implements are included.  

Previous Tasks If present, this section describes any tasks you need to 
perform before calling the function.

Application Notes If present, this section describes any special informati
which applications programmers or other users of the 
function need to know.  

Related Topics If present, this section lists the names of functions which 
perform related tasks.  It also lists other sources of 
information on the operation which the function 
performs.  

All function names begin with the nsp?  prefix.  However, to help you 
quickly find the information you are looking for, the nsp?  prefix is omitted 
from function names when they appear in the table of contents and in 
section titles.  For example, the title above the section describing the 
nsp?GetBitRevTbl()  function is simply titled “GetBitRevTbl.”
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Meaning of “Implementation Dependent”

In this manual, certain behaviors and results of functions are identified as 
being “implementation dependent.” There are three reasons why 
implementation-dependent differences in the behavior and results of 
functions can occur:

• The library is implemented for use on different processors.
• The library is implemented for use on different operating systems.
• Different versions of the library are implemented.

The manual identifies implementation-dependent items to let you know 
where the behaviors and results might potentially be different.  
Implementation-dependent differences should be slight.

Audience for This Manual

This manual assumes that you are a programmer with experience in sig
processing and that you possess a working knowledge of signal processing 
vocabulary and principles.  For sources of information on signal process
principles, refer to the Bibliography of this manual.  

Manual Organization

Chapter 1, “Overview” : Provides information about this manual as well as
about the Intel Signal Processing Library software.  This chapter also 
provides general information which applies to the entire manual.  For 
example, this chapter describes the notational conventions used in this 
manual, the data types for which the functions are implemented, and th
contents of the header file nsp.h .  

Chapter 2, “Error Handling” : Provides information on the error handling 
functions included with the library.  

Chpter 3, “Arithmetic and Vector Manipulation Functions” : Provides 
information on the functions available for initializing and combining scalars 
and vectors. The following vector manipulation functions are also provided: 
companding, measure, conjugation, sample manipulation, and  correlat
1-3
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Chapter 4, “Vector Data Conversion Functions” : Provides information on 
functions which perform the following conversion operations: components
extraction and complex vector construction, floating point to integer and 
fixed point (and reverse) conversion of vector data, and cartesian to polar 
(and reverse) coordinate conversion.

Chapter 5, “Sample-Generating Functions” : Provides information about 
functions which perform tone-generating, triangle-generating, and 
pseudo-random sample-generating with uniform and Gaussian distribution.

Chapter 6, “Windowing Functions” : Provides information about the 
windowing functions included in the Intel Signal Processing Library.

Chapter 7, “Fourier Transform Functions” : Provides information on 
functions which calculate the discrete Fourier transform (DFT) and the 
Fourier transform (FFT).  Several variations of the basic DFT and FFT are 
included to support different application requirements, including normal 
order versus bit-reversed order, real versus complex signals, and complex 
arrays versus paired real arrays.

Chapter 8, “ Filtering Functions” : Provides information on how to create,  
use and implement the finite impulse response (FIR) filter, the least mean 
squares (LMS) adaptive filter, and infinite impulse response (IIR) filter. 

Chapter 9, “Convolution Functions” : Provides information on the functions
that perform convolution operations.

Chapter 10, “Library Information” : Provides a function to query the 
version number and the name of the current Signal Processing Library.

Appendix A, “Fast Fourier Transforms” : Provides notes and hints for using 
the fast Fourier transform algorithms. 

Appendix B, “Digital Fi ltering” : Provides a general background of digital
filtering and introduces  the concepts of the  filters used by Intel Signal 
Processing library.

Appendix C, “Multi-Rate Filtering” : Provides a brief introduction to 
multi-rate filters, which may be unfamiliar to some application 
programmers.

Glossary: Provides definitions of some of the terms used in this manual.  

Bibliography: Provides references to the books cited in this manual.
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Related Pub lications

This manual is designed as a reference for the Intel Signal Processing 
Library.  The manual contains numerous references to additional textbooks 
on filters and signal processing.  A bibliography is provided at the back of 
the manual. 

If you need functions implementing signal processing and recognition 
algorithm primitives for speech and optical character recognition (OCR), 
refer to the Intel Recognition Primitives Library Reference Manual, order 
number 637785.

Notational Conventions
This section describes the notational conventions used by the Intel Signal 
Processing Library and the notational conventions for mathematical 
symbols, data types, function names, and signal names used in this manu

Data Type Conventions

Many of the functions in the Intel Signal Processing Library are available
for both single-precision real (float ) and double-precision real (double ) 
floating point data types.  Additionally, many of the functions are also 
available for complex numbers and vectors.

The Intel Signal Processing Library provides structures which define a 
single-precision complex data type, SCplx , a double-precision complex 
data type, DCplx , and a short integer complex data type, WCplx. The 
definitions for these structures are listed in Figure 1-1.
1-5
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In most cases, scalar complex numbers are passed by value and returned
value, not reference.

Thus, a function can be available for the following data types:

• single-precision real (float )
• single-precision complex (SCplx )
• double-precision real (double )
• double-precision complex (DCplx )
• short integer real (short )
• short integer complex (WCplx)

Some functions can have more than these data types because they are able
to accept and process input of differing data types. For example, a function
can accept as input a complex signal and real filter coefficients. 

A character code embedded within the function name indicates which data
type can be used with a particular function.  Table 1-1 lists the names of the 
data types and their corresponding character codes.

Figure 1-1 Structure Definitions for Complex Data Types

 Single-Precision Complex Double-Precision Complex 
typedef struct _DCplx {

 double re;

 double im;

} DCplx;

typedef struct _SCplx {

 float re;

 float im;

} SCplx;

typedef struct _WCplx {

short int re;

short int im;

} WCplx;
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In addition, a character code for a complex type (that is, c, z, or v ) may be 
followed by the letter r .  This indicates a complex vector stored as a pair of 
real vectors (that is, one vector stores the real part and another vector s
the imaginary part).

Function Name Conventions 

The names of Intel Signal Processing Library functions always begin with 
the nsp  prefix and have the following general format:

nsp < character code > < flags > < name > < mods > ()

where:

character code One of the character codes described in Table 1-1 
above (s, c, d, or z).  The character code indicates
which data type to use with the function.  Some 
functions have multiple character codes or 
non-standard character codes.  When this occurs,
the function definition describes the exact 
meaning of the code.

flags The flags  field is optional and can be defined as 
b or r .  The b flag indicates a block (or vector) 
variety of the function.  A block variety of a 
function is generally equivalent to multiple 

Table 1-1 Data T ypes and Corresponding Character C odes  

Data Type C type/structure Character Code

Single-Precision Real float s

Single-Precision Complex SCplx c

Double-Precision Real double d

Double-Precision Complex DCplx z

Short Integer Real short w

Short Integer Complex WCplx v
1-7
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invocations of the non-block (scalar) function. 
The r  flag indicates that the function only uses 
real-valued arrays.

name Indicates the core functionality, such as Tone , 
Fft , or Fir .

mods The mods field is optional and indicates a 
modification to the core functionality of the 
function group.  Examples of mods are Nip  
(not-in-place) and Na (non-adaptive).  

Examples

nspcFft() Computes the FFT of single-precision complex 
data.

nspzFft() Computes the FFT of double-precision complex 
data.

nspzFftNip() Has the modifier Nip  (not-in-place).  Computes 
the FFT of double-precision complex data using 
separate input and output arrays.

Function Name Shorthand

By convention, a question mark “?” is used to indicate any or all possible 
varieties of the function described in the manual. For example, 

nsp?UpSample() Refers to all varieties of the UpSample  function: 
nspsUpSample()  nspcUpSample()  
nspdUpSample()  and nspzUpSample() .  

nsp?Fft() Refers to all varieties of the Fft  function: 
nspcFft()  and nspzFft() .  
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In this manual, the notation:

x(n)

refers to a conceptual signal, while the notation:

x[n]  

refers to an actual array.  Typically, both of these are annotated to indicate a 
specific finite range of values:

x(n) , 0 ≤ n < N

x[n] , 0 ≤ n < N

Occasionally, the shorthand below is used to indicate a finite range of 
values:

x(0)...x(N -1)  

x[0]...x[N -1]

Mathematical Symbol Conven tions

Floor and Ceiling of Values

The notation:

 value  
indicates the ceiling of value  (that is, the least integer greater than or equ
to value ), while the notation:

 value  
indicates the floor of value  (that is, the greatest integer less than or equal to 
value ).

Complex Conjugates of Values

Given a complex value a, the complex conjugate is denoted as a* :

Re(a*) = Re(a). Im (a*) = -Im (a)
1-9
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Macros and Data Structure
The header file nsp.h , included with the Intel Signal Processing Library, 
contains prototypes for all library functions, definitions for data types, and 
structures, and the most frequently used macros and constants. 

Constant Macros

The nsp.h  header file contains the following definitions for epsilon (EPS), 
pi (π), degree-to-radian conversion, maximum and minimum value 
comparisons, and the values for TRUE and FALSE. 

#define NSP_EPS  (1.0E-12) /* a very small value */

#define NSP_PI   (3.14159265358979324) /* define value of PI */

#define NSP_2PI  (6.28318530717958648) /* PI*2 */

#define NSP_PI_2 (1.57079632679489662) /* PI/2 */

#define NSP_PI_4 (0.785398163397448310) /* PI/4 */ 

#define NSP_MAX_SHORT_INT (32767) /* short integer max value*/

#define NSP_MIN_SHORT_INT (-32768) /* short integer min value*/

#ifndef FALSE /* define the values of TRUE and FALSE */

# define FALSE 0 

# define TRUE  1 

#endif 

Function Ma cros

The only macro in this category is defined by the following statement:

#define NSP_DegToRad(deg) ((deg)/180.0 * NSP_PI)
/* degree to radian conversion */

Control Ma cros

The Intel Signal Processing Library lets you choose the library functions
that will be available to your program.  A number of macros have been 
created which access an include file and the function prototypes it defines.  
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To include the functions, define the names of the appropriate macros wit
the #define  directive.  The #define  directive must always precede the 
#include “nsp.h”  statement. For example, the statements

#define nsp_UsesVector 

#include “nsp.h”

access the corresponding include (header) file and the prototypes for the 
scalar arithmetic and vector initialization functions defined there.

In this example, the include files for the FFT, the finite impulse respons
filter, and the error handler functions are made available to the program.

#define nsp_UsesFft 

#define nsp_UsesFir 

#include “nsp.h” 

If you want to make all of the signal processing functions  available to y
program, define the nsp_UsesAll  macro.

#define nsp_UsesAll 

#include “nsp.h”

You do not need to include error handling header file or any macro beca
nsp.h  includes them by default.

Table 1-2 lists the names of all of the control macros defined in nsp.h .  The  
functions are listed in the “Intel Signal Processing Library Functions” 
section later in this chapter.

Table 1-2 Control Macros

Macro Name Description

nsp_UsesVector Declares the arithmetic 
functions.

nsp_UsesConvolution Declares the convolution 
functions.

nsp_UsesTransform Declares the discrete and fast 
Fourier transform functions.

nsp_UsesFir Declares the finite impulse 
response filter functions.

nsp_UsesIir Declares the infinite impulse 
response filter functions.

                                 continued ☛ 
1-11
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Compiler Macros

Table 1-3 lists the macros which your compiler should define in accordan
with the ANSI C standard. These macros are used for the error handling 
functions (see Chapter 2, “Error Handling” for details). 

nsp_UsesLms Declares the least mean squares 
adaptive filter functions.

nsp_UsesMisc Declares the bit-reversal 
functions and twiddle factor 
functions. 

nsp_UsesConversion Declares vector data type and 
coordinate conversion functions.

nsp_UsesSampleGen Declares the tone- and 
triangle-generating functions. 

nsp_UsesWin Declares the windowing 
functions. 

nsp_UsesAll All functions.

Table 1-3 Compiler Macros

Macro Description

_ _DATE_ _ The date of compilation as a string literal in the 
form “mm dd yy”.

_ _FILE_  _ A string literal representing the name of the file 
being compiled.

_ _LINE_  _ The current line number as a decimal constant.

_ _STDC_ _ The constant 1 under ANSI C conformance 
dialect (-Xc ); for other dialects, 0 except for -Xk  
where this macro can be undefined.  

_ _TIME_ _ The time of compilation as a string literal in the 
form “hh:mm:ss”.

Table 1-2 Control Macros (continued)

Macro Name Description
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Data Type Defini tions

The nsp.h  header file contains the following definitions for complex data: 
single-precision real (SCplx ), double-precision real (DCplx ) and short 
integer (WCplx) data types. 

typedef struct _SCplx { 
float re; 

float im; 
} SCplx; 

typedef struct _DCplx { 
double re; 

double im; 
} DCplx; 

typedef struct _WCplx { 
short int re; 

short int im; 
} WCplx; 

Integer Scaling

Most integer functions in the Intel Signal Processing Library perform their
internal computations using a higher precision than the 16-bit integer data
types used for input and output. This higher precision can be long int  or 
float , depending on the implementation. 

In addition to the regular set of arguments, most of the library integer 
functions use two variables, ScaleMode  and ScaleFactor , which 
determine how the output vector is converted before function return.

A typical integer function for which the scaling of output is performed has 
the following format:

nspwdummy(..., int ScaleMode , int * ScaleFactor );

NOTE.  The Intel Signal Processing Library supports signed short 
integers only. The unsigned integer data type is not supported.
1-13



1-14

1 Intel Signal Processing Library Reference Manual

w 
 

to 
 

Scaling Arguments 

ScaleMode Indicates the scaling control options to be used in 
returning the output. There are two strategies to control 
scaling: output vector scaling control and integer 
overflow scaling control. These strategies are described 
below.

Output Vector Scaling Control

The output vector scaling control includes the following 
three modes:

NSP_NO_SCALE

No scaling is performed for the output vector. The 
output results can be erroneous if overflow or underflo
occurs. With this mode, the overflow is handled by the
overflow control option (see page 1-15 for integer 
overflow control). The ScaleFactor  is ignored and 
can be NULL. This mode provides the fastest 
performance.

NSP_FIXED_SCALE

Scaling is performed in accordance with the 
ScaleFactor  values (see page 1-15). The output is 
always multiplied by 2- ScaleFactor  before function 
return. ScaleFactor  is returned unchanged. The 
function will be implemented using a higher precision 
data type internally. The output then will be scaled 
according to the scale factor. If an overflow occurs 
during the translation, it is handled by the overflow 
control option (see page 1-15 for integer overflow 
control).

NSP_AUTO_SCALE

The output vector is automatically scaled up or down 
prevent from the overflow or underflow and to provide
the best precision. The scaling is accomplished by 
multiplying the output vector by 2- ScaleFactor , and the 
argument ScaleFactor  is returned. This is the most 
memory and time consuming, yet the safest mode.
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The integer overflow control includes the following two 
modes:

NSP_OVERFLOW

When overflow or undeflow occurs, the most significant 
bits of the output vectors are truncated, while the sign bit 
is preserved, in other words, the values are wrapped 
around. This is the default overflow mode.

NSP_SATURATE

When overflow or underflow occurs, the output for 
short int  data is clipped to NSP_MAX_SHORT_INT 
(=32767) or NSP_MIN_SHORT_INT (=-32768), 
respectively. 

ScaleFactor  The scale factor is defined as a pointer to an integer 
value. The scale mode dictates which scale factor must 
be used. 

With the NSP_NO_SCALE mode,  the ScaleFactor  
argument has no meaning and will be ignored. 

With the NSP_FIXED_SCALE mode, ScaleFactor  is 
an input argument. It points to the value to which the 
output vector should be scaled.

With the  NSP_AUTO_SCALE mode, ScaleFactor  is an 
output argument. It points to a variable in which the 
ScaleFactor  is returned. 

Upon function return, the actual output vector is defined 
as actual_output = output  * 2ScaleFactor .

Compatibility with the Recognition Pr imitive Library

If you are using the Intel Recognition Primitives Library (RPL), you can 
continue to use the RPL’s scale mode literals. The RPL scale modes ar
mapped to the signal processing library scale modes as follows:

#define RPL_NO_SCALE NSP_NO_SCALE  | NSP_OVERFLOW

#define RPL_SATURATE NSP_NO_SCALE  | NSP_SATURATE
1-15
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nly.
#define RPL_FIXED_SCALE NSP_FIXED_SCALE  | NSP_OVERFLOW

#define RPL_AUTO_SCALE NSP_AUTO_SCALE

Application Notes

Unless otherwise specified, the input data of the integer functions is treated 
as having no scaling. The value of the data is in the range of 
NSP_MAX_SHORT_INT to NSP_MIN_SHORT_INT. The application should 
track the input data scaling by maintaining the scale factors separately and 
doing additional scaling to adjust these data. In this release of the Intel 
Signal Processing Library, the scaling is performed for the output data o

With the NSP_FIXED_SCALE mode, if ScaleMode  is NULL, it is treated as 
a pointer to a value of zero. The main purpose of this condition is to 
simplify the coding.

NOTE.  To obtain the best performance results with the NSP_NO_SCALE  
mode, the code might not include any higher precision representation for 
the internal data. In this case, the overflow condition might occur during 
the intermediate calculations. Inaccuracy might then propagate in the 
consecutive calculations thus generating erroneous results. You should 
examine your application to see if this scaling mode is appropriate.
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Intel Signal Processing Library Functions 
Tables 1-4 through 1-18 describe the functions available in the Intel Signal
Processing Library. The table titles include the names of the macros (in
parentheses) that define the functions listed in the table. 

Table 1-4 Error Handler Functions (macro included by default)

Function Name Description

Error Performs basic error handling.

ErrStr Translates an error/status code into a textual 
description.

GetErrMode Gets the error mode which describes how the error 
is processed.

GetErrStatus Gets the error code which describes the type of 
error being reported.

GuiBoxReport Reports errors to Windows message box.

NulDevReport Reports absence of error messages.

RedirectError Assigns a new error handler to call when an error 
occurs.

SetErrMode Sets the error mode which describes how the error 
is processed.

SetErrStatus Sets the error code which describes the error that 
is being reported.

StdErrReport Returns error messages to stderr .

Table 1-5 Arithmetic and Vector Manipulation Functions 
(nsp_Uses Vector)

Function Name Description

Add Adds two complex values.

AutoCorr Estimates a normal, biased or unbiased 
auto-correlation of an input vector and stores the 
result in a second vector.

                                                              continued ☛

Error Handler 
Functions

Arithmetic 
and Vector 
Manipulation 
Functions
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bAbs1 Computes the absolute values of elements in a 
vector in-place.

bAbs2 Computes the absolute values of elements in a 
vector and stores the result in a second vector.

bAdd1 Adds a value to each element of a vector.

bAdd2 Adds the elements of two vectors.

bAdd3 Adds the elements of two vectors and stores the 
result in a third vector. 

bConj1 Computes the complex conjugate of a vector.

bConj2 Computes the complex conjugate of a vector and 
stores the result in a second vector. 

bConjExtend1 Computes the conjugate-symmetric extension of a 
vector in-place.

bConjExtend2 Computes the conjugate-symmetric extension of a 
vector and stores the result in a second vector.

bConjFlip2 Computes the conjugate-symmetric of a vector 
and stores the result, in reverse order, in a second 
vector.

bCopy Initializes a vector with the contents of a second 
vector.

bExp1 Computes e to the power of each element of a 
vector in-place.

bExp2 Computes e to the power of each element of a 
vector and stores the resuls in a second vector.

bInvThresh1 Computes the inverse of the elements of a vector 
in-place.

bInvThresh2 Computes the inverse of the elements of a vector 
and stores the result in a second vector.

bLn1 Computes the natural logarithm of each element of 
a vector in-place.

bLn2 Computes the natural logarithm of each element of 
a vector and stores the result in a second vector.

                                                              continued ☛

Table 1-5 Arithmetic and Vector Manipulation Functions 
(nsp_UsesVector) (continued)

Function Name Description
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bMpy1 Multiplies each element of a vector by a value.

bMpy2 Multiplies the elements of two vectors and stores 
the result in the multiplicand vector.

bMpy3 Multiplies the elements of two vectors and stores 
the result in a third vector.

bSet Initializes a vector to a specified value.

bSqr1 Computes the square of each element of a vector 
in-place.

bSqr2 Computes the square of each element of a vector 
and stores the result in a second vector.

bSqrt1 Computes the square root of each element of a 
vector in-place.

bSqrt2 Computes the square root of each element of a 
vector and stores the result in a second vector.

bSub1 Subtracts a value from each element of a vector.

bSub2 Subtracts the elements of two vectors.

bSub3 Subtracts the elements of two vectors and stores 
the result in a third vector.

bThresh1 Performs the threshold operation on a vector 
in-place.

bThresh2 Performs the threshold operation on a vector and 
places the result in a second vector.

bZero Initializes a vector to zero.

Conj Conjugates a complex value.

CrossCorr Estimates the cross-correlation of two vectors of 
different lengths and stores the result in a third 
vector.

Div Divides two complex values.

DotProd Computes a dot product of two vectors.

DownSample Down-samples a signal, conceptually decreasing 
its sampling rate by an integer factor.

                                                              continued ☛

Table 1-5 Arithmetic and Vector Manipulation Functions 
(nsp_Uses Vector) (continued)

Function Name Description
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Max Returns the maximum value of a vector.

Mean Computes the mean (average) of a vector.

Min Returns the minimum value of a vector.

Mpy Multiplies two complex values.

StdDev Computes the variance (standard deviation) of a 
vector.

Sub Subtracts two complex values.

UpSample Up-samples a signal, conceptually increasing its 
sampling rate by an integer factor.

Table 1-6 Vector Data Conversion Functions (n sp_UsesCon version) 

Function Name Description

b2RealToCplx Returns a complex vector constructed from the 
real and imaginary parts of an input vector.

bALawToLin Converts 8-bit A-law encoded samples to linear 
samples.

bCartToPolar Converts the elements of a complex vector to a 
polar coordinate form.

bCplxTo2Real Returns the real and imaginary parts of a complex 
vector in two respective vectors.

bFixToFloat Converts the fixed-point data of a vector to  
floating-point and stores the result in a second 
vector.

bFloatToFix Converts the floating-point data of a vector to  
fixed-point and stores the result in a second 
vector.

bFloatToInt Converts the floating-point data of a vector to  
integer format and stores the result in a second 
vector.

                                                              continued ☛

Table 1-5 Arithmetic and Vector Manipulation Functions 
(nsp_UsesVector) (continued)

Function Name Description

Vector Data 
Conversion 
Functions
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bFloatToS7Fix Converts the floating-point data of a vector to 
fixed-point and stores the result in a second 
vector, assuming a fixed-point format of S.7.

bFloatToS15Fix Converts the floating-point data of a vector 
outfoxed-point and stores the result in a second 
vector, assuming a fixed-point format of S.15.

bFloatToS1516Fix Converts the floating-point data of a vector to  
fixed-point and stores the result in a second 
vector, assuming a fixed-point format of S15.16.

bFloatToS31Fix Converts the floating-point data of a vector to  
fixed-point and stores the result in a second 
vector, assuming a fixed-point format of S.31.

bImag Returns the imaginary part of a complex vector in 
a second vector.

bIntToFloat Converts the integer data of a vector to 
floating-point and stores the result in a second 
vector.

bLinToALaw Encodes the linear samples in a vector using the 
8-bit A-law format and stores the result  in a 
second vector.

bLinToMuLaw Encodes the linear samples in a vector using the 
8-bit µ-law format and stores the result in a second 
vector.

bMag Computes the magnitudes of elements of a 
complex vector and stores the result in a second 
vector.

bMuLawToLin Converts samples from the 8-bit µ-law encoded 
format to linear samples.

bPhase Returns the phase angles of elements of a 
complex vector in a second vector.

bPolarToCart Converts the polar form magnitude/phase pairs 
stored in individual vectors into a complex vector 
and stores the result in one vector.

                                                              continued ☛

Table 1-6 Vector Data Conversion Functions (n sp_UsesCon version)  

Function Name Description
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brCartToPolar Converts the complex real/imaginary (cartesian 
coordinate X/Y) pairs of individual input vectors to 
polar coordinate form. The function stores the 
magnitude (radius) component of each element in 
one vector and the phase (angle) component of 
each element in another vector.

bReal Returns the real part of a complex vector in a 
second vector.

brMag Computes the magnitudes of elements of the 
complex vector whose real and imaginary 
components are specified in individual vectors. 
Stores the result in a third vector.

brPhase Computes the phase angles of elements of the 
complex input vector whose real and imaginary 
components are specified in real and imaginary 
vectors, respectively. The function stores the 
resulting phase angles in a third vector.

brPolarToCart Converts the polar form magnitude/phase pairs 
stored in the individual vectors into a complex 
vector. The function stores the real component of 
the result in a third vector and the imaginary 
component in a fourth vector.

bS7FixToFloat Converts the fixed-point data of a vector to  
floating-point and stores the result in a second 
vector, assuming a fixed-point format of S.7.

bS15FixToFloat Converts the fixed-point data of a vector to  
floating-point and stores the result in a second 
vector, assuming a fixed-point format of S.15.

bS1516FixToFloat Converts the fixed-point data of a vector to 
floating-point and stores the result in a second 
vector, assuming a fixed-point format of S15.16.

bS31FixToFloat Converts the fixed-point data of a vector to  
floating-point and stores the result in a second 
vector, assuming a fixed-point format of S.31.

Table 1-6 Vector Data Conversion Functions (n sp_UsesCon version)  

Function Name Description
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Table 1-7 Sample-Generating Functions (nsp _UsesS ampleGen)

Function Name Description

bRandGaus Computes pseudo-random samples with a 
Gaussian distribution and stores them in a vector.

bRandUni Computes pseudo-random samples with a uniform 
distribution and stores them in a vector.

bTone Produces a user-specified number of consecutive 
samples of a sinusoid.

bTrngl Produces a user-specified number of consecutive 
samples of a triangle.

RandGaus Computes the next pseudo-random sample  with a 
Gaussian distribution.

RandGausInit Initializes a state data structure required to 
generate pseudo-random samples with a 
Gaussian distribution.

RandUni Computes the next pseudo-random sample with a 
uniform distribution.

RandUniInit Initializes a state required to generate a structure 
of pseudo-random samples with a uniform 
distribution.

Tone Produces the next sample of a sinusoid.

ToneInit Initializes a sinusoid with a given frequency, 
phase, and magnitude. 

Trngl Produces the next sample of a triangle.

TrnglInit Initializes a triangle with a given frequency, phase, 
and magnitude.

Sample-
Generating  
Functions
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Table 1-8 Windowing Functions (n sp_Us esWin)

Function Name Description

WinBartlett Multiplies a vector by a Bartlett windowing 
function.

WinBlackman Multiplies a vector by a Blackman windowing 
function with a user-specified adjustable 
parameter.

WinBlackmanStd Multiplies a vector by a Blackman windowing 
function.

WinBlackmanOpt Multiplies a vector by a Blackman windowing 
function with a 30-dB roll-off.

WinHamming Multiplies a vector by a Hamming windowing 
function.

WinHann Multiplies a vector by a Hann windowing function.

WinKaiser Multiplies a vector by a Kaiser windowing function.

Table 1-9 C onvol ution Functions (n sp_UsesCon volution)

Function Name Description

Conv Performs finite, linear convolution of two 
sequences.

Conv2D Performs finite, linear convolution of two 
two-dimensional signals.

Filter2D Filters a two-dimensional signal similar to Conv2D, 
but with the input and output arrays of the same 
size.

Windowing  
Functions

Convolution
Functions
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Table 1-10 Discrete Four ier Transform Function (n sp_Us esTransform)

Function Name Description

Dft Computes a discrete Fourier transform in-place.

Table 1-11 DFT for a Given Frequency (Goertzel) Functions 
(nsp_Uses Transform)

Function Name Description

bGoertz Computes the DFT for a given frequency for a 
block of successive signal counts.

Goertz Computes the DFT for a given frequency for a 
single signal count.

GoertzInit Initializes the data used by Goertzel functions.

GoertzReset Resets the internal delay line.

Table 1-12 Fast Fourier Transform Funct ions (nsp_UsesTransf orm)

Function Name Description

Ccs2Fft Computes a forward or inverse fast Fourier 
transform of two conjugate-symmetric signals, 
in-place.  The results are stored in RCCcs format.

Ccs2FftNip Computes a forward or inverse fast Fourier 
transform of two conjugate-symmetric signals, 
not-in-place.  The results are stored in RCCcs 
format.

CcsFft Computes a forward or inverse fast Fourier 
transform of a conjugate-symmetric signal, 
in-place.  The results are stored in RCCcs format. 

CcsFftl Computes a forward or inverse low-level fast 
Fourier transform of a conjugate-symmetric signal, 
in-place.  The results are stored in RCPerm or 
RCPack format.

                                                              continued ☛

DFT 
Function

Goertzel 
Functions

FFT 
Functions
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CcsFftlNip Computes a forward or inverse low-level fast 
Fourier transform of a conjugate-symmetric signal, 
not-in-place.  The results are stored in RCPerm or 
RCPack format.

CcsFftNip Computes a forward or inverse fast Fourier 
transform of a conjugate-symmetric signal, 
not-in-place.  The results are stored in RCCcs 
format. 

Fft Computes a complex fast Fourier transform 
in-place.

FftNip Computes a complex fast Fourier transform 
not-in-place.

MpyRCPack2 Multiplies two vectors stored in RCPack format 
and stores the results in RCPack format.

MpyRCPack3 Multiplies two vectors stored in RCPack format, 
and stores the results in a third vector in RCPack 
format.

MpyRCPerm2 Multiplies two vectors stored in RCPerm format 
and stores the results in RCPerm format.

MpyRCPerm3 Multiplies two vectors stored in RCPerm format, 
and stores the results in a third vector in RCPerm 
format.

Real2Fft Computes a forward or inverse fast Fourier 
transform of two real signals, in-place.  The results 
are stored in RCCcs format.

RealFftNip Computes a forward or inverse fast Fourier 
transform of two real signals, not-in-place.  The 
results are stored in RCCcs format.

RealFft Computes a forward or inverse fast Fourier 
transform of a real signal, in-place.  The results are 
stored in RCCcs format. 

RealFftl Computes a forward or inverse low-level fast 
Fourier transform of a real signal, in-place.  The 
results are stored in RCPerm or RCPack format.

                                                              continued ☛

Table 1-12 Fast Fourier Transform Functions (nsp_UsesTransform) (continued)

Function Name Description
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RealFftlNip Computes a forward or inverse low-level fast 
Fourier transform of a real signal, not-in-place.  
The results are stored in RCPerm or RCPack 
format.

RealFftNip Computes a forward or inverse fast Fourier 
transform of a real signal, not-in-place.  The results 
are stored in RCCcs format. 

rFft Computes a complex fast Fourier transform 
in-place and places the real and imaginary parts 
into separate arrays.

rFftNip Computes a complex fast Fourier transform 
not-in-place.  On both input and output, the real 
and imaginary parts are placed in separate arrays.

Table 1-13 Low-Level Finite I mpulse Response Fil ter Functions 
(nsp_UsesFir) 

Function Name Description

bFirl Filters a block of samples through a low-level, 
finite impulse response filter.

Firl Filters a single sample through a low-level, finite 
impulse response filter.

FirlGetDlyl Gets the delay line values for a low-level, finite 
impulse response filter.

FirlGetTaps Gets the taps coefficients for a low-level, finite 
impulse response filter.

FirlInit Initializes a low-level, single-rate finite impulse 
response filter.

FirlInitDlyl Initializes a delay line for a low-level, finite impulse 
response filter.

FirlInitMr Initializes a low-level, multi-rate finite impulse 
response filter.

                                                              continued ☛

Table 1-12 Fast Fourier Transform Functions (nsp_UsesTransform) (continued)

Function Name Description

Low-Level 
FIR Filter 
Functions
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FirlSetDlyl Sets the delay line values for a low-level, finite 
impulse response filter.

FirlSetTaps Sets the taps coefficients for a low-level, finite 
impulse response filter.

Table 1-14 Fi nite Impulse R espo nse Fi lter Funct ions (nsp_UsesFir)

Function Name Description

bFir Filters a block of samples through a finite impulse 
response filter.

Fir Filters a single sample through a finite impulse 
response filter.

FirFree Frees dynamic memory associated with finite 
impulse response filters.

FirGetDlyl Gets the delay line values for a finite impulse 
response filter.

FirGetTaps Gets the taps coefficients for a finite impulse 
response filter.

FirInit Initializes a single-rate finite impulse response 
filter.

FirInitMr Initializes a multi-rate finite impulse response filter.

FirSetDlyl Sets the delay line values for a finite impulse 
response filter.

FirSetTaps Sets the taps coefficients for a finite impulse 
response filter.

Table 1-13 Low-Level Finite I mpulse Response Fil ter Functions 
(nsp_UsesFir)  (continued)

Function Name Description

FIR Filter  
Functions



Overview1

Table 1-15 Low-Level Least Mean S quares Adapt ation Filter 

Functions (ns p_Use sLms)

Function Name Description

bLmsl Filters samples through a low-level, multi-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm.

bLmslNa Filters samples through a low-level, multi-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm, but without adapting the 
filter for a secondary signal.

Lmsl Filters samples through a low-level, single-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm.

LmslGetDlyl Gets the delay line values for a low-level, adaptive 
FIR filter that uses the least mean squares (LMS) 
algorithm. 

LmslGetLeak Gets the leak values for a low-level, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslGetStep Gets the step values for a low-level, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslGetTaps Gets the taps coefficients for a low-level, adaptive 
FIR filter that uses the least mean squares (LMS) 
algorithm. 

LmslInit Initializes a low-level, single-rate, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslInitDlyl Initializes a delay line for a low-level, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslInitMr Initializes a low-level, multi-rate, adaptive FIR filter 
that uses the least mean squares (LMS) algorithm.

LmslNa Filters samples through a low-level, single-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm, but without adapting the 
filter for a secondary signal.

                                                              continued ☛

Low-Level 
LMS Filter  
Functions
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LmslSetDlyl Sets the delay line values for a low-level, adaptive 
FIR filter that uses the least mean squares (LMS) 
algorithm. 

LmslSetLeak Sets the leak values for a low-level, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslSetStep Sets the step values for a low-level, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

LmslSetTaps Sets the taps coefficients for a low-level, adaptive 
FIR filter that uses the least mean squares (LMS) 
algorithm. 

Table 1-16 Least Mean Squares Adaptation Filter Functions 
(nsp_UsesLms)

Function Name Description 

bLms Filters samples through a multi-rate, adaptive FIR 
filter that uses the least mean squares (LMS) 
algorithm.

bLmsDes Filters a block of samples through a single-rate, or 
multi-rate adaptive FIR filter that uses the least 
mean squares (LMS) algorithm.  The function uses 
a desired-output signal for adaptation instead of an 
error signal.

Lms Filters a single sample through a single-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm.

LmsDes Filters a single sample through a single-rate, 
adaptive FIR filter that uses the least mean 
squares (LMS) algorithm.  The function uses a 
desired-output signal for adaptation instead of an 
error signal.

                                                              continued ☛

Table 1-15 Low-Level Least Mean S quares Adapt ation Filter 
Functions (ns p_Use sLms) (continued)

Function Name Description

LMS Filter  
Functions
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LmsFree Frees dynamic memory associated with an 
adaptive FIR filter that uses the LMS algorithm.  

LmsGetDlyl Gets the delay line values for an adaptive FIR filter 
that uses the LMS algorithm. 

LmsGetErrVal Gets the error signal for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.  
The error signal must be computed from the 
desired signal by the Intel Signal Processing 
Library. 

LmsGetLeak Gets the leak values for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm. 

LmsGetStep Gets the step values for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.

LmsGetTaps Gets the taps coefficients for an adaptive FIR filter 
that uses the least mean squares (LMS) algorithm.

LmsInit Initializes a single-rate, adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.

LmsInitMr Initializes a multi-rate, adaptive FIR filter that uses 
the least mean squares (LMS) algorithm.

LmsSetDlyl Sets the delay line values for an adaptive FIR filter 
that uses the least mean squares (LMS) algorithm.

LmsSetErrVal Sets the error signal for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.  
The error signal must be computed from the 
desired signal by the Intel Signal Processing 
Library. 

LmsSetLeak Sets the leak values for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.

LmsSetStep Sets the step values for an adaptive FIR filter that 
uses the least mean squares (LMS) algorithm.

LmslSetTaps Sets the taps coefficients for an adaptive FIR filter 
that uses the least mean squares (LMS) algorithm.

Table 1-16 Least Mean Squares Adaptation Filter Functions 
(nsp_Uses Lms) (continued)

Function Name Description 
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Table 1-17 Low-Level Inf inite Impulse Res ponse Fil ter F unctions
(nsp_UsesIir)

Function Name Description

bIirl Filters a block of samples through a low-level, 
infinite impulse response filter.

Iirl Filters a single sample through a low-level, infinite 
impulse response filter.

IirlInit Initializes a low-level, infinite impulse response 
filter of a specified order.

IirlInitBq Initializes a low-level, infinite impulse response 
(IIR) filter to reference a cascade of biquads 
(second-order IIR sections).

IirlInitDlyl Initializes the delay line for a low-level, infinite 
impulse response (IIR) filter.

Table 1-18 Infinite I mpulse Response Fil ter Functions (nsp_UsesIir)

Function Name Description

bIir Filters a block of samples through an infinite 
impulse response filter.

Iir Filters a single sample through an infinite impulse 
response filter.

IirFree Frees dynamically allocated memory associated 
with an infinite impulse response filter.

IirInit Initializes an infinite impulse response filter of a 
specified order.

IirInitBq Initializes an infinite impulse response (IIR) filter to 
reference a cascade of biquads (second-order IIR 
sections).

Low-Level 
IIR Filter 
Functions

IIR Filter  
Functions
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Table 1-19 Library Information Function (nsp_UsesLibV ersion)

Function Name Description

GetLibVersion Returns information about the Signal Processing 
Library version.

Table 1-20 Memory Reclaim Functions (nsp_UsesTransform)

Function Name Description

FreeBitRevTbls Frees dynamic memory for tables of bit-reversed 
indices.

FreeTwdTbls Frees memory associated with all twiddle tables of 
a particular type.

Library 
Version  
Function

Memory 
Reclaim  
Functions
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This chapter describes the error handling facility supplied with the Intel 
Signal Processing Library.  The library functions report a variety of errors 
including bad arguments (NULL pointers and out-of-range parameters) and 
out of memory conditions.  When a function detects an error, instead of 
returning a status code, the function signals an error by calling 
nspSetErrStatus() .  This allows the error handling mechanism to be 
handled separately from the normal flow of the signal processing code. 
signal processing code is thus cleaner and more compact as shown in this
example. 

outputSample = nspdFir(&firSt, inputSample);
if(nspGetErrStatus()<0) 
// do error checking 

The error handling system is hidden within the function nspdFir() .  Thus, 
this statement is uncluttered by error handling code and results in a 
statement which closely resembles a mathematical formula. 

The errors that a function may signal are implementation-dependent.  You
application should assume that every library function call may result in 
some error condition.  The Intel Signal Processing Library performs 
extensive error checks (for example, NULL pointers, out-of-range 
parameters, corrupted states) for every library function.

Error macros are provided to simplify the coding for error checking and 
reporting.  You can modify the way your application handles errors by 
calling nspRedirectError()  with a pointer to your own error handling 
function.  For more information, see “Adding Your Own Error Handler” 

Library 
function lists
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later in this chapter.  For even more flexibility, you can replace the whole 
error handling facility with your own code.  The source code of the defau
error handling facility is provided.

The Intel Signal Processing Library does not process numerical exceptions 
(for example, overflow, underflow, and division by zero).  The underlying 
floating point library or processor has the responsibility for catching and 
reporting these exceptions.  A floating-point library is needed if a processor
that handles floating-point is not present.  You can attach an exception 
handler using an underlying floating-point library for your application, if 
your system supports such a library.

Error Functions
The following sections describe the error functions in the Intel Signal 
Processing Library. 

Error
Performs basic error handling. 

void nspError(NSPStatus status , const char * func , 
const char * context );

Discussion

The nspError()  function should be called whenever any of the library’s 
functions encounters an error.  The actual error reporting will be handled 
differently, depending on whether the program is running in Windows 
mode or in console mode.  Within each invocation mode, you can set the 
error mode flag to alter the behavior of the nspError()  function.  See 
page 2-4, “SetErrMode,” (for nspSetErrMode() ) for more information on 
the defined error modes.  
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To simplify the coding for error checking and reporting, the error handling 
system supplied by the Intel Signal Processing Library supports a set of 
error macros. See “Error Macros” for a detailed description of the error 
handling macros.

The nspError()  function calls the default error reporting function.  You 
can change the default error reporting function by calling 
nspRedirectError() .  For more information, see page 2-6, 
“RedirectError,” (for nspRedirectError() ). 

GetErrStatus, SetErrStatus
Gets and sets the error codes which 
describe the type of error being 
reported.

typedef int NSPStatus;
NSPStatus nspGetErrStatus();
void nspSetErrStatus(NSPStatus status);

status Code that indicates the type of error (see Table 2-1, 
“nspError() Status Codes” ).

Discussion

The nspGetErrStatus()  and nspSetErrStatus()  functions get and 
set the error status codes which describe the type of error being reported.  
See “Status Codes” for descriptions of each of the error status codes.  
2-3
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GetErrMode, SetErrMode
Gets and sets the error modes which 
describe how an error is processed.

#define NSP_ErrModeLeaf 0

#define NSP_ErrModeParent 1

#define NSP_ErrModeSilent 2

int nspGetErrMode();

void nspSetErrMode(int errMode);

errMode Indicates how errors will be processed.  The possible 
values for errMode  are NSP_ErrModeLeaf , 
NSP_ErrModeParent , or NSP_ErrModeSilent .

Discussion

The nspSetErrMode()  function sets the error modes which describe ho
errors are processed.  The defined error modes are NSP_ErrModeLeaf , 
NSP_ErrModeParent , and NSP_ErrModeSilent . 

If you specify NSP_ErrModeLeaf , errors are processed in the “leaves” of 
the function call tree.  The nspError()  function (in console mode) prints 
an error message describing status , func , and context .  It then 
terminates the program.

If you specify NSP_ErrModeParent , errors are processed in the “parents
of the function call tree.  When nspError()  is called as the result of 
detecting an error, an error message will print but the program will not 
terminate.  Each time a function calls another function, it must check to see

NOTE.  This section describes how the default error handler handles 
errors for applications which run in console mode.  If your application 
has a custom error handler, errors will be processed differently than 
described below. 
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if an error has occurred.  When an error occurs, the function should call 
nspError()  specifying NSP_StsBackTrace , and then return.  The macro
NSP_ERRCHK() may be used to perform both the error check and back trace 
call.  This passes the error “up” the function call tree until eventually some 
parent function (possibly main() ) detects the error and terminates the 
program.

NSP_ErrModeSilent  is similar to NSP_ErrModeParent , except that 
error messages are not printed.

NSP_ErrModeLeaf  is the default, and is the simplest method of processi
errors.  NSP_ErrModeParent  requires more programming effort, but 
provides more detailed information about where and why an error occurred.  
All of the functions in the library support both options (that is, they use 
NSP_ERRCHK() after function calls).  If an application uses the 
NSP_ErrModeParent  option, it is essential that it check for errors after a
library functions that it calls.

The status code of the last detected error is stored into the global variable 
NspLastStatus  and can be returned by calling nspGetErrStatus() . 
The value of this variable may be used by the application during the back 
trace process to determine what type of error initiated the back trace.

ErrorStr
Translates an error or status code into a 
textual description. 

const char* nspErrorStr(NSPStatus status );

status Code that indicates the type of error (see Table 2-1, 
“nspError() Status Codes” ).
2-5
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Discussion

The function nspErrorStr()  returns a short string describing status .  
Use this function to produce error messages for users.  The returned pointer 
is a pointer to an internal static buffer that may be over-written on the n
call to nspErrorStr() .

RedirectError
Assigns a new error handler to call 
when an error occurs.

NSPErrCallBack nspRedirectError(NSPErrCallBack func );

func Pointer to the function that will be called when an error 
occurs. 

Discussion

The nspRedirectError()  function assigns a new function to be called 
when an error occurs in the SP Library.  If func  is NULL, 
nspRedirectError() installs the Intel Signal Processing Library’s 
default error handler. 

The return value of nspRedirectError()  is a pointer to the previously 
assigned error handling function. 

For the definition of the function typedef NSPErrCallBack , see the 
include file nsperror.h .  See “Adding Your Own Error Handler” for more 
information on the nspRedirectError()  function. 

Error Macros
The error macros associated with the nspError()  function are described 
below.

#define NSP_ERROR( status , func , context ) \
nspError(( status ),( func ),( context );
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#define NSP_ERRCHK( func , context )\
( (nspGetErrStatus()>=0) ? NSP_StsOk \

: NSP_ERROR(NSP_StsBackTrace,( func ),( context )) )

#define NSP_ASSERT( expr , func , context )\
( ( expr ) ? NSP_StsOk\

: NSP_ERROR(NSP_StsInternal,( func ),( context )) )

#define NSP_RSTERR() (nspSetErrStatus(NSP_StsOk))

context Provides additional information about the context in 
which the error occurred.  If the value of context  is 
NULL or empty, this string will not appear in the error 
message.

expr An expression that checks for an error condition and 
returns FALSE if an error occurred. 

func Name of the function where the error occurred.

status Code that indicates the type of error (see Table 2-1, 
“nspError() Status Codes.”

Discussion

The NSP_ASSERT() macro checks for the error condition expr  and sets the 
error status NSP_StsInternal  if the error occurred. 

The NSP_ERRCHK() macro checks to see if an error has occurred by 
checking the error status.  If an error has occurred, NSP_ERRCHK() creates 
an error back trace message and returns a non-zero value.  This macro 
should normally be used after any call to a function that might have signaled 
an error.

The NSP_ERROR() macro simply calls the nspError()  function by 
default.  This macro is used by other error macros.  By changing 
NSP_ERROR() you can modify the error reporting behavior without 
changing a single line of source code. 

The NSP_RSTERR() macro resets the error status to NSP_StsOk, thus 
clearing any error condition.  This macro should be used by an applicat
when it decides to ignore an error condition.
2-7
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Status Codes
The status codes used by the Intel Signal Processing Library are described 
in Table 2-1.  Status codes are integers, not an enumerated type.  This 
allows an application to extend the set of status codes beyond those used
the library itself.  Negative codes indicate errors, while non-negative codes 
indicate success.    

Table 2-1 nspError() Status C odes

Status Code Value Description

NSP_StsOk  0 No error.  The nspError()  function 
will do nothing if called with this status 
code.

NSP_StsBackTrace -1 Implements a backtrace of the 
function calls that lead to an error.  If 
NSP_ERRCHK() detects that a 
function call resulted in an error, it 
calls NSP_ERROR() with this status 
code to provide further context 
information for the user. 

NSP_StsError -2 An error of unknown origin, or of an 
origin not correctly described by the 
other error codes.

NSP_StsInternal -3 An internal “consistency” error, often 
the result of a corrupted state 
structure.  These errors are typically 
the result of a failed assertion.

NSP_StsNoMem -4 A function attempted to allocate 
memory using malloc()  or a related 
function and was unsuccessful.  The 
message context  indicates the 
intended use of the memory.

NSP_StsBadArg -5 One of the arguments passed to the 
function is invalid.  The message 
context  indicates which argument 
and why.

                                        continued ☛
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Application Notes:  The global variable NspLastStatus  records the 
status of the last error reported.  Its value is initially NSP_StsOk.  The value 
of NspLastStatus  is not explicitly set by the library function detecting an 
error.  Instead, it is set by nspSetErrStatus() .  

If the application decides to ignore an error, it should reset 
NspLastStatus  back to NSP_StsOk  (see NSP_RSTERR() under  “Error 
Macros”).   An application-supplied error handling function must update 
NspLastStatus  correctly; otherwise the Intel Signal Processing Library
might fail.  This is because the macro NSP_ERRCHK(), which is used 
internally to the library, refers to the value of this variable. 

Error Handling Example
The following example describes the default error handling for a console 
application.  In the example program, test.c , assume that the function 
libFuncB()  represents a library function such as nsp?Fft() , and the 
function libFuncD()  represents a function that is called internally to the 
library such as nsp?GetFftTwdTbl() .  In this scenario, main()  and 
appFuncA()  represent application code. 

The value of the error mode is set to NSP_ErrModeParent .  The 
NSP_ErrModeParent  option produces a more detailed account of the er
conditions.

NSP_StsBadFunc -6 The function is not supported by the 
implementation, or the particular 
operation implied by the given 
arguments is not supported. 

NSP_StsNoConv -7 An iterative convergence algorithm 
failed to converge within a reasonable 
number of iterations.

Table 2-1 nspError() Status Codes (continued)

Status Code Value Description
2-9
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Example 2-1 Error Functions

/* application main function */

main() {

nspSetErrMode(NSP_ErrModeParent);

appFuncA(5, 45, 1.0);

if (NSP_ERRCHK("main","compute something"))

exit(1);

return 0;

}

/* application subroutine */

void appFuncA(int order1, int order2, double a) {

libFuncB(a, order1);

if (NSP_ERRCHK("appFuncA","compute using order1")) return;

libFuncB(a, order2);

if (NSP_ERRCHK("appFuncA","compute using order2"))  return;

/* do some more work */

}

continued ☛
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/* library function (e.g., nsp?Fft()) */

void libFuncB(double a, int order) {

double *vec;

if (order > 31) {

NSP_ERROR(NSP_StsBadArg, "libFuncB",

"order must be less than or equal to 31");

return;

}

if ((vec = libFuncD(a, order)) == NULL) {

NSP_ERRCHK("libFuncB", "compute using a");

return;

}

/* code to do some real work goes here */

free(vec);

}
/* library function called internally (e.g.,nsp?GetFftTwdTbl()) */

double *libFuncD(double a, int order) {

double *vec;

if ((vec=(double*)malloc(order*sizeof(double))) == NULL) {

NSP_ERROR(NSP_StsNoMem, "libFuncD",

"allocating a vector of doubles");

return NULL;

}

/* do something with vec */

return vec;

}

Example 2-1 Error Functions (continued)
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e to 
When the program is run, it produces the output illustrated in Example 2-2

If the program had run with the NSP_ErrModeLeaf  option instead of 
NSP_ErrModeParent , only the first line of the above output would have 
been produced before the program terminated. 

If the program in Example 2-1 had run out of heap memory while using the 
NSP_ErrModeParent  option, then the output illustrated in Example 2-3 
would be produced.

Again, if the program had been run with the NSP_ErrModeLeaf  option 
instead of NSP_ErrModeParent , only the first line would have been 
produced.

Adding Your Own Error Handler
The Intel Signal Processing Library allows you to define your own error
handler.  User-defined error handlers are useful if you want your application 
to send error messages to a destination other than the standard error outpu
stream.  For example, you can choose to send error messages to a dialog bo
if your application is running under a Windows system or you can choos
send error messages to a special log file. 

Example 2-2 Output for the Error Function Program (NSP_Err ModeP arent)

Intel Signal Processing Library Error: Invalid argument in function 
libFuncB: order must be less than or equal to 31

called from function appFuncA: compute using order2

called from function main: compute something

Example 2-3 Output for the Error Function Program (NSP_Err ModeP arent)

Intel Signal Processing Library Error: Out of memory in function 
libFuncD:

allocating a vector of doubles

called from function libFuncB: compute using a

called from function appFuncA: compute using order1

called from function main[]: compute something



Error Handling2

ls 
There are two methods of adding your own error handler.  In the first 
method, you can replace the nspError()  function or the complete error 
handling library with your own code.  Note that this method can only be 
used at link time. 

In the second method, you can use the nspRedirectError()  function to 
replace the error handler at run time.  The steps below describe how to 
create your own error handler and how to use the nspRedirectError()  
function to redirect error reporting.

1. Define a function with the function prototype, NSPErrCallBack , as 
defined by the Intel Signal Procesing Library. 

2. Your application should then call the nspRedirectError()  function 
to redirect error reporting for your own function.  All subsequent cal
to nspError()  will call your own error handler.  

3. To redirect the error handling back to the default handler, simply call 
nspRedirectError()  with a NULL pointer.

Example 2-4 illustrates a user-defined error handler function, ownError() , 
which simply prints an error message constructed from its arguments and 
exits.
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Example 2-4 A Simple Error Handler

NSPStatus ownError (NSPStatus status, const char *func,

 const char *context, const char *file, int line)

{

 fprintf(stderr, "SP Library error: %s, ", nspErrorStr(status));

 fprintf(stderr, "function %s, ", func ? func : "<unknown>");

 if (line > 0) fprintf(stderr, "line %d, ", line);

 if (file != NULL) fprintf(stderr, "file %s, ", file);

 if (context) fprintf(stderr, "context %s\n", context);

 NspSetErrStatus(status);

 exit(1);

}

main ()

{

    extern NSPErrCallBack ownError ;

    /* Redirect errors to your own error handler */

    nspRedirectError( ownError );

    /* Redirect errors back to the default error handler */

    nspRedirectError(NULL);

}



Arithmetic and Vector 
Manipulation Functions
 3
t 
The functions described in this chapter perform complex-valued arithmetic, 
vector initialization, vector arithmetic, and the following vector 
manipulation functions: measure, conjugation, sample manipulation, and 
correlation. 

Arithmetic Functions
This section describes the Intel Signal Processing Library functions tha
perform complex-valued arithmetic. 

Set 
Initializes a complex value to a 
specified value. 

SCplx nspcSet(const float re, const float im ); 
/* complex values; single precision */ 

DCplx nspzSet(const double re, const double  im ); 
/* complex values; double precision */ 

WCplx nspvSet(const short int re , const short int im); 
/* complex values; short integer */ 

re Real part of the complex value. 

im Imaginary part of the complex value. 

Library
function lists
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Discussion 

The function nsp?Set()  initializes a complex value with (re , im ).  

Add
Adds two complex values. 

SCplx nspcAdd(const SCplx a, const SCplx b);
/* complex values; single precision */

DCplx nspzAdd(const DCplx a, const DCplx b);
/* complex values; double precision */

WCplx nspvAdd(const WCplx a, const WCplx b, int  ScaleMode, 
int * ScaleFactor ); 
/* complex values; short integer */ 

a, b Complex values to be added. 

Discussion

The nsp?Add()  function adds two complex values (a + b).

Conj
Conjugates a complex value. 

SCplx nspcConj(const SCplx a);
/* complex values; single precision */

DCplx nspzConj(const DCplx a);
/* complex values; double precision */

WCplx nspvConj(const WCplx a); 
/* complex values; short integer */ 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

The nsp?Conj()  function conjugates a complex value (a*).

Div 
Divides two complex values. 

SCplx nspcDiv(const SCplx a, const SCplx b);
/* complex values; single precision */

DCplx nspzDiv(const DCplx a, const DCplx b);
/* complex values; double precision */

WCplx nspvDiv(const WCplx a, const WCplx b); 
/* complex values; short integer */ 

a, b Complex values: a is a dividend, b is a divisor. 

Discussion

The nsp?Div()  function divides two complex values (a / b). 

Mpy
Multiplies two complex values. 

SCplx nspcMpy(const SCplx a, const SCplx b);
/* complex values; single precision */

DCplx nspzMpy(const DCplx a, const DCplx b);
/* complex values; double precision */

WCplx nspvMpy(const WCplx a, const WCplx b, int  ScaleMode,  
int * ScaleFactor ); 
/* complex values; short integer */ 
3-3
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a, b Complex values to be multiplied. 

Discussion

The nsp?Mpy()  function multiplies two complex values (a * b).

Sub
Subtracts two complex values. 

SCplx nspcSub(const SCplx a, const SCplx b);
/* complex values; single precision */

DCplx nspzSub(const DCplx a, const DCplx b);
/* complex values; double precision */

WCplx nspvSub(const WCplx a, const WCplx b, int  ScaleMode,  
int * ScaleFactor ); 
/* complex values; short integer */ 

a, b Complex values: a is a minuend, b is a subtrahend. 

Discussion

The nsp?Sub()  function subtracts two complex values (a - b).

Vector Initialization Functions 
The functions described in this section initialize the values of the elements 
of a vector.  A vector’s elements can be initialized to zero or to another 
specified value.  They can also be initialized to the value of a second vector.

ScaleMode , 
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1. 

ScaleMode , 
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1. 



Arithmetic and Vector Manipulation Functions3

 

bCopy
Initializes a vector with the contents of a 
second vector.

void nspsbCopy(const float * src , float * dst , int n);
/* real values; single precision */

void nspcbCopy(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspdbCopy(const double * src , double * dst , int n);
/* real values; double precision */

void nspzbCopy(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

void nspwbCopy(const short * src , short * dst, int  n ); 
/* real values; short integer */ 

void nspvbCopy(const WCplx * src , WCplx * dst, int  n ); 
/* complex values; short integer */ 

dst Pointer to the vector to be initialized. 

n The number of elements to copy.

src Pointer to the source vector used to initialize dst[n] .

Discussion

The function nsp?bCopy()  copies the first n elements from a source vector
src[n]  into a destination vector dst[n] .

bSet
Initializes a vector to a specified value.

void nspsbSet(float val , float * dst , int n);
/* real values; single precision */
3-5
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void nspcbSet(float re , float im, SCplx * dst , int n);
/* complex values; single precision */

void nspdbSet(double val , double * dst , int n);
/* real values; double precision */

void nspzbSet(double re , double im , DCplx * dst , int n);
/* complex values; double precision */

void nspwbSet(short val , short * dst , int n); 
/* real values; short integer */ 

void nspvbSet(short re , short im, WCplx * dst , int n); 
/* complex values; short integer */ 

dst Pointer to the vector to be initialized. 

n The number of elements to initialize. 

re , im The complex value (re  + jim ) used to initialize the 
vector dst[n] . 

val The real value used to initialize the vector dst[n] .

Discussion

The function nsp?bSet()  initializes the first n elements of the vector 
dst[n]  to contain the same value: either val  (if dst[n]  is a real vector) or 
re  + j im  (if dst[n]  is a complex vector).

bZero
Initializes a vector to zero.

void nspsbZero(float * dst , int n);
/* real values; single precision */

void nspcbZero(SCplx * dst , int n);
/* complex values; single precision */

void nspdbZero(double * dst , int n);
/* real values; double precision */

void nspzbZero(DCplx * dst , int n);
/* complex values; double precision */
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ic 
void nspwbZero(short * dst , int n); 
/* real values; short integer */ 

void nspvbZero(WCplx * dst , int n); 
/* complex values; short integer */ 

dst Pointer to the vector to be initialized to zero.

n The number of elements to initialize. 

Discussion

The nsp?bZero()  function initializes the first n elements of the vector 
dst[n]  to 0.

Vector Arithmetic Functions
This section describes the Intel Signal Processing Library functions which 
perform vector arithmetic operations between the vectors. The arithmet
functions include basic, element-wise arithmetic operations between 
vectors as well as more complex calculations such as limiting vector 
elements by a specified threshold or computing absolute values, square and 
square root, natural logarithm and exponential of vector elements.

The library provides two versions of each function. One version performs 
the operation “in-place,” while the other stores the results of the operation 
in a third vector. 

bAdd1
Adds a value to each element of a 
vector.

void nspsbAdd1(const float val , float * dst , int n);
/* real values; single precision */

void nspcbAdd1(const SCplx val , SCplx * dst , int n);
/* complex values; single precision */
3-7
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void nspdbAdd1(const double val , double * dst , int n);
/* real values; double precision */

void nspzbAdd1(const DCplx val , DCplx * dst , int n);
/* complex values; double precision */

void nspwbAdd1(const short val , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbAdd1(const WCplx val , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

val The value used to increment each element of the vector 
dst[n] . 

dst Pointer to the vector dst[n] . 

n The number of values in the vector dst . 

Discussion

The nsp?bAdd1()  function adds a value val  to each element of a 
destination vector dst[n]  in-place.

bAdd2
Adds the elements of two vectors.

void nspsbAdd2(const float * src , float * dst , int n);
/* real values; single precision */

void nspcbAdd2(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspdbAdd2(const double * src , double * dst , int n);
/* real values; double precision */

void nspzbAdd2(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

ScaleMode , 
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1. 
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void nspwbAdd2(const short *src , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbAdd2(const WCplx *src , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

dst Pointer to the vector dst[n] .  The vector dst[n]  stores 
the result of the addition src[n]  + dst[n] . 

n The number of values in the vectors. 

src Pointer to the vector to be added to dst[n] . 

Discussion

The nsp?bAdd2()  function adds the elements of a source vector src[n]  
to the elements of a destination vector dst[n] , and stores the result in 
dst[n] .  The vectors src[n]  and dst[n]  must be of equal length.  If they
are not, the function will return unpredictable results. 

bAdd3
Adds the elements of two vectors and 
stores the result in a third vector.

void nspsbAdd3(const float * srcA , const float * srcB , float * dst , 
int n); /* real values; single precision */

void nspcbAdd3(const SCplx * srcA , const SCplx * srcB , SCplx * dst , 
int n); /* complex values; single precision */

void nspdbAdd3(const double * srcA , const double * srcB , double * dst ,
int n); /* real values; double precision */

void nspzbAdd3(const DCplx * srcA , const DCplx * srcB , DCplx * dst , 
int n); /* complex values; double precision */

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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void nspwbAdd3(const short *srcA , const short * srcB , short * dst ,  
int n, int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbAdd3(const WCplx *srcA , const WCplx * srcB , WCplx * dst ,  
int n, int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

dst Pointer to the vector dst[n] .  This vector stores the 
result of the addition srcA[n]  + srcB[n] . 

n The number of values in the vectors. 

srcA , srcB Pointers to the vectors whose elements are to be added 
together. 

Discussion

The nsp?bAdd3()  function adds the elements of a source vector srcA[n]  
to the elements of vector srcB[n] , and stores the result in dst[n] .  The 
vectors srcA[n] , srcB[n] , and dst[n]  must be of equal length.  If they 
are not, the function will return unpredictable results.

bMpy1
Multiplies each element of a vector by a 
value.

void nspsbMpy1(const float val , float * dst , int n);
/* real values; single precision */

void nspcbMpy1(const SCplx val , SCplx * dst , int n);
/* complex values; single precision */

void nspdbMpy1(const double val , double * dst , int n);
/* real values; double precision */

void nspzbMpy1(const DCplx val , DCplx * dst , int n);
/* complex values; double precision */

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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void nspwbMpy1(const short val , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbMpy1(const WCplx val , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

val The value used to multiply each element of the vector
dst[n] . 

dst Pointer to the vector dst[n] . 

n The number of values in the vector dst . 

Discussion

The function nsp?bMpy1()  multiplies each element of the destination 
vector dst[n] by the value val  in-place. 

bMpy2
Multiplies the elements of two vectors.

void nspsbMpy2(const float * src , float * dst , int n);
/* real values; single precision */

void nspcbMpy2(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspdbMpy2(const double * src , double * dst , int n);
/* real values; double precision */

void nspzbMpy2(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

void nspwbMpy2(const short *src , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1.
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void nspvbMpy2(const WCplx *src , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

dst Pointer to the vector dst[n] .  This vector stores the 
result of the multiplication (src[n]  * dst[n] ). 

n The number of values in the vectors. 

src Pointer to the vector to be multiplied with dst[n] . 

Discussion

The function nsp?bMpy2()  multiplies the elements of the vector src[n]  
by the elements of the vector dst[n] , and stores the result in dst[n] .  The 
vectors src[n]  and dst[n]  must be of equal length.  If they are not, the 
function will return unpredictable results.

bMpy3
Multiplies two vectors and stores the 
result in a third vector.

void nspsbMpy3(const float * srcA , const float * srcB , float * dst ,
int n); /* real values; single precision */

void nspcbMpy3(const SCplx * srcA , const SCplx * srcB , SCplx * dst ,
int n); /* complex values; single precision */

void nspdbMpy3(const double * srcA , const double * srcB , double * dst ,
int n); /* real values; double precision */

void nspzbMpy3(const DCplx * srcA , const DCplx * srcB , DCplx * dst ,
int n); /* complex values; double precision */

void nspwbMpy3(const short *srcA , const short * srcB , short * dst ,
int n, int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbMpy3(const WCplx *srcA , const WCplx * srcB , WCplx * dst ,
int n, int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 



Arithmetic and Vector Manipulation Functions3

dst Pointer to the vector dst[n] .  This vector stores the 

result of the multiplication (srcA[n]  * srcB[n] ). 

n The number of values in the vectors. 

srcA , srcB Pointers to the vectors whose elements are to be 
multiplied together. 

Discussion

The nsp?bMpy3()  function multiplies the elements of a vector srcA[n]  to 
the elements of a vector srcB[n] , and stores the result in dst[n] .  The 
vectors srcA[n] , srcB[n] , and dst[n]  must be of equal length.  If they 
are not, the function will return unpredictable results.

bSub1
Subtracts a value from each element of 
a vector.

void nspsbSub1(const float val , float * dst , int n);
/* real values; single precision */

void nspcbSub1(const SCplx val , SCplx * dst , int n);
/* complex values; single precision */

void nspdbSub1(const double val , double * dst , int n);
/* real values; double precision */

void nspzbSub1(const DCplx val , DCplx * dst , int n);
/* complex values; double precision */

void nspwbSub1(const short val , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbSub1(const WCplx val , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to “Scaling Arguments” in Chapter 1. 
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val The value used to decrement each element of the vector
dst[n] . 

dst Pointer to the vector dst[n] . 

n The number of values in the vector dst . 

Discussion

The nsp?bSub1()  function subtracts a value val  from each element of a 
destination vector dst[n]  in-place.

bSub2
Subtracts the elements of two vectors.

void nspsbSub2(const float * val , float * dst , int n);
/* real values; single precision */

void nspcbSub2(const SCplx * val , SCplx * dst , int n);
/* complex values; single precision */

void nspdbSub2(const double * val , double * dst , int n);
/* real values; double precision */

void nspzbSub2(const DCplx * val , DCplx * dst , int n);
/* complex values; double precision */

void nspwbSub2(const short *val , short * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbSub2(const WCplx *val , WCplx * dst , int n, 
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

val Pointer to the vector to be subtracted from dst[n] . 

dst Pointer to the vector dst[n] .  The vector dst[n]  stores 
the result of the subtraction dst[n]  - val[n] . 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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d 
n The number of values in the vectors. 

Discussion

The nsp?bSub2()  function subtracts the elements of a vector val[n]  
from the elements of a destination vector dst[n] , and stores the result in 
dst[n] .  The vectors val[n]  and dst[n]  must be of equal length.  If they
are not, the function will return unpredictable results. 

bSub3
Subtracts the elements of two vectors 
and stores the results in a third vector.

void nspsbSub3(const float * src , const float * val , float * dst , 
int n); /* real values; single precision */

void nspcbSub3(const SCplx * src , const SCplx * val , SCplx * dst , 
int n); /* complex values; single precision */

void nspdbSub3(const double * src , const double * val , double * dst ,
int n); /* real values; double precision */

void nspzbSub3(const DCplx * src , const DCplx * val , DCplx * dst , 
int n); /* complex values; double precision */

void nspwbSub3(const short *src , const short * val , short * dst ,
int n, int ScaleMode , int * ScaleFactor ); 
/* real values; short integer */ 

void nspvbSub3(const WCplx *src , const WCplx * val , WCplx * dst ,  
int n, int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */ 

src Pointer to the vector whose elements are to be decrease
by the elements of val[n] . 

val Pointer to the vector whose elements are subtracted 
from src[n] .

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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dst Pointer to the vector dst[n] .  This vector stores the 
result of the subtraction src[n]  – val[n] . 

n The number of values in the vectors. 

Discussion

The nsp?bSub3()  function subtracts the elements of a  vector val[n]  
from the elements of a source vector src[n] , and stores the result in 
dst[n] .  The vectors src[n] , val[n] , and dst[n]  must be of equal 
length.  If they are not, the function will return unpredictable results.

DotProd
Computes the dot product of two 
vectors.

float nspsDotProd(const float * vec1 , const float * vec2 , int n);
/* real values; single precision */

double nspdDotProd(const double * vec1 , const double * vec2 , int n);
/* real values; double precision */

SCplx nspcDotProd(const SCplx * vec1 , const Scplx * vec2 , int n);
/* complex values; single precision */

DCplx nspzDotProd(const DCplx * vec1 , const Dcplx * vec2 , int n);
/* complex values; double precision */

SCplx nspscDotProd(const float * vec1 , const Scplx * vec2 , int n);
/* real and complex values; single precision */

SCplx nspcsDotProd(const SCplx * vec1 , const float * vec2 , int n);
/* complex and real values; single precision */

DCplx nspdzDotProd(const double * vec1 , const Dcplx * vec2 , int n);
/* real and complex values; double precision */

DCplx nspzdDotProd(const DCplx * vec1 , const double * vec2 , int n);
/* complex and real values; double precision */

short nspwDotProd(const short * vec1 , const short * vec2 , int n, 
int  ScaleMode, int  *ScaleFactor ); 
/* real values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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WCplx nspvDotProd(const WCplx * vec1 , const WCplx * vec2 , int n,  
int ScaleMode , int * ScaleFactor ); 
/* complex values; short integer */  

WCplx nspwvDotProd(const short * vec1 , const WCplx * vec2 , int n, 
int  ScaleMode, int  *ScaleFactor ); 
/* real and complex values; short integer */ 

WCplx nspvwDotProd(const WCplx * vec1 , const short * vec2 , int n,  
int ScaleMode , int * ScaleFactor ); 
/* complex and real values; short integer */  

vec1 Pointer to the first vector to compute the dot product o
two vectors.

vec2 Pointer to the second vector to compute the dot produ
of two vectors.

n The number of elements in the vectors.

Discussion

The nsp?DotProd()  function computes the dot product (scalar value) of 
two vectors, vec1[n]  and vec2[n] . The vectors vec1[n]  and vec2[n]  
must be of equal length. If they are not, the function will return 
unpredictable results.

bThresh1
Performs the threshold operation on the 
elements of a vector in-place by limiting 
the element values by thresh .

void nspsbThresh1(float *vec , int n, float  thresh, int  relOp );
/* real values; single precision */

void nspcbThresh1(SCplx *vec , int n, float  thresh, int  relOP );
/* complex input vector; real threshold; single precision */

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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void nspdbThresh1(double *vec , int n, double  thresh, int  relOp );
/* real values; double precision */

void nspzbThresh1(DCplx *vec , int n, double  thresh, int  relOp );
/* complex input vector; real threshold; double precision */

void nspwbThresh1(short *vec , int n, short  thresh, int  relOp ); 
/* real values; short integer */ 

void nspvbThresh1(WCplx *vec , int n, short  thresh, int  relOp ); 
/* real values; short integer */ 

vec Pointer to the vector on whose elements the threshold 
operation is performed.  

n The number of elements in the vector. 

thresh A value used to limit each element of vec[n] . This 
argument must always be real. For complex flavors, it
must be positive and represent magnitude.

relOP The values of this argument specify which relational 
operator to use and whether thresh  is an upper or 
lower bound for the input. The relOP  must have one of 
the following values:

NSP_GT  Specifies the “greater than” operator and
       thresh is an upper bound.

NSP_LT    Specifies the “less than” operator and
                 thresh  is a lower bound.

Discussion

The nsp?bThresh1()  function performs the threshold operation on the  
input vector vec[n]  in-place by limiting the input vector by the threshold 
value thresh . The relOP  argument specifies which relational operator to 
use: “greater than” or “less than,” and determines whether thresh  is an 
upper or lower bound for the input, respectively.

For example, the formula for nsp?bThresh1()  called with the NSP_GT 
flag is:

vec k[ ]
vec k[ ] thresh, vec k[ ]>
thresh otherwise,





=
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Application Notes:  For s, d, c , and z flavors of nsp?bThresh1() , the 
thresh  argument is always real, even for the complex flavors. For w and v  
flavors, the thresh  argument is always integer, even for the complex 
flavor of this function. 

For all complex flavors, thresh  must be positive and represents a 
magnitude. The magnitude of the input is limited, but the phase remains 
unchanged. Zero-valued input is assumed to have zero phase.

bThresh2
Performs the threshold operation on a 
vector by limiting the vector element 
values by thresh  and places the results 
in a second vector.

void nspsbThresh2(const float *src , float *dst , int n, float  thresh,
int  relOp );  /* real values; single precision */

void nspcbThresh2(const SCplx *src , Scplx *dst , int n, float  thresh,
int  relOP );  
/* complex vectors; real threshold; single precision */

void nspdbThresh2(const double *src , double *dst , int n, 
double thresh, int  relOp );
/* real values; double precision */

void nspzbThresh2(const DCplx *src , Dcplx *dst , int n, 
double  thresh, int  relOp );
/* complex vectors; real threshold; double precision */

void nspwbThresh2(const short *src , short *dst , int n, short  thresh,
int  relOp );  /* real values; short integer */

void nspvbThresh2(const WCplx *src , WCplx *dst , int n, short  thresh,
int  relOp );  /* complex values; short integer */

src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

n The number of elements in the vectors. 
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thresh A value used to limit each element of src[n] . This 

argument must always be real. For complex flavors, it
must be positive and represent magnitude.

relOP The values of this argument specify which relational 
operator to use and whether thresh  is an upper or 
lower bound for the input, accordingly. The relOP  must 
have one of the following values:

NSP_GT  Specifies the “greater than” operator and
       thresh is an upper bound.

NSP_LT  Specifies the “less than” operator and
                  thresh  is a lower bound.

Discussion

The nsp?bThresh2()  function performs the threshold operation on the  
input vector src[n]  in-place. The function limits the input vector by the 
threshold value thresh . The relOP  argument specifies which relational 
operator to use: “greater than” or “less than,” and determines whether 
thresh  is an upper or lower bound for the input, respectively.

For example, the formula for the real versions of nsp?bThresh2()  called 
with the NSP_GT flag is:

Application Note:  For s, d, c, and z  flavors of nsp?bThresh1() , the 
thresh  argument is always real, even for the complex flavors. For w and v  
flavors, the thresh  argument is always integer, even for the complex 
flavor of this function. 

For all complex flavors, thresh  must be positive and represents 
magnitude. The magnitude of the input is limited, but the phase remains 
unchanged. Zero-valued input is assumed to have zero phase.

dst k[ ]
src k[ ] thresh, src k[ ]>
thresh otherwise,




=
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l 
bInvThresh1
Computes the inverse of vector elements 
in-place after limiting their magnitudes 
by the lower bound of thresh .

void nspsbInvThresh1(float *vec , int n, float  thresh );
/* real values; single precision */

void nspcbInvThresh1(SCplx *vec , int n, float  thresh );
/* complex input vector; real threshold; single precision */

void nspdbInvThresh1(double *vec , int n, double  thresh );
/* real values; double precision */

void nspzbInvThresh1(DCplx *vec , int n, double  thresh );
/* complex input vector; real threshold; double precision */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

thresh A value, the lower bound of which is used to limit each
element of vec[n] . This argument must always be rea
and positive.

Discussion

The nsp?bInvThresh1()  function computes the inverse of elements of 
the n-length input vector vec[n]  in-place.  The computation occurs after 
first limiting the magnitude of each element by the lower bound of thresh . 
The limiting operation is performed to avoid division by zero. Since 
thresh  represents a magnitude, it is always real and must always be 
positive. For complex versions, the magnitude of the input is limited, but 
the phase remains unchanged. Zero-valued input is assumed to have zero 
phase.

Application Note:  This function should skip the limiting step if thresh  
is zero. In this case, if the function encounters zero-valued vector elements, 
the value of the corresponding elements in the result is set to HUGE_VAL, 
and a division-by-zero error is flagged with a call to nspError()  after 
computation is complete.
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bInvThresh2
Computes the inverse of vector elements 
after limiting their magnitudes by the 
lower bound of thresh  and places the 
results in a second vector.

void nspsbInvThresh2(const float *src , float *dst , int n, float
thresh ); /* real values; single precision */

void nspcbInvThresh2(const SCplx *src , SCplx *dst , int n, float
thresh );
/* complex vectors; real threshold; single precision */

void nspdbInvThresh2(const double *src , double *dst , int n, double
thresh ); /* real values; double precision */

void nspzbInvThresh2(const DCplx *vec , DCplx *dst , int n, double
thresh );
/* complex vectors; real threshold; double precision */

src Pointer to the input vector src[n] . 

dst Pointer to the output vector dst[n] .

n The number of elements in the vectors. 

thresh A value, the lower bound of which is used to limit each
element of src[n] . This argument must always be rea
and positive.

Discussion

The nsp?bInvThresh2()  function computes the inverse of elements of 
the n-length input vector src[n]  and stores the results in the output vecto
dst[n] . The computation occurs after first limiting the magnitude of eac
element by the lower bound thresh . The limiting operation is performed to
avoid division by zero. Since thresh  represents a magnitude, it is always 
real and must always be positive. For complex versions, the magnitude of 
the input is limited, but the phase remains unchanged. Zero-valued inpu
assumed to have zero phase.
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Application Note:  This function should skip the limiting step if thresh  
is zero. In this case, if the function encounters zero-valued vector elements, 
the value of the corresponding elements in the result is set to HUGE_VAL, 
and a division-by-zero error is flagged with a call to nspError()  after 
computation is complete.

bAbs1
Computes the absolute values of  vector 
elements in-place.

void nspsbAbs1(float *vec , int n)
/* real values; single precision */

void nspdbAbs1(double *vec , int n)
/* real values; double precision */

void nspwbAbs1(short *vec , int n) 
/* real values; short integer */ 

vec Pointer to the vector vec[n] .  

n The number of elements in the vector.

Discussion

The nsp?bAbs1()  function computes the absolute values of the elements 
of the n-length vector in-place.
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bAbs2
Computes the absolute values of  vector 
elements and stores the results in a 
second vector.

void nspsbAbs2(const float *src , float *dst , int n)
/* real values; single precision */

void nspdbAbs2(const double *src , double *dst , int n)
/* real values; double precision */

void nspwbAbs2(const short *src , short *dst , int n) 
/* real values; short integer */ 

src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

n The number of elements in the vectors.

Discussion

The nsp?bAbs2()  function computes the absolute values of elements of 
the n-length input vector src[n]  and stores the results in the output vecto
dst[n] .

bSqr1
Computes a square of each element of  a 
vector in-place.

void nspsbSqr1(float *vec , int n);
/* real values; single precision */

void nspcbSqr1(SCplx *vec , int n);
/* complex values; single precision */

void nspdbSqr1(double *vec , int n);
/* real values; double precision */
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s:
void nspzbSqr1(DCplx *vec , int n);
/* complex values; double precision */

void nspwbSqr1(short *vec , int n, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */ 

void nspvbSqr1(WCplx *vec , int n, int  ScaleMode, int  *ScaleFactor );
/* complex values; short integer */ 

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

Discussion

The nsp?bSqr1()  function computes the square of each element in the 
n-length vector vec[n]  in-place. The computation is performed as follow

vec [k] = vec [k]2,  0 ≤ k  < n

bSqr2
Computes a square of each element of  a 
vector and stores the result in a second 
vector.

void nspsbSqr2(const float *src , float *dst  int n);
/* real values; single precision */

void nspcbSqr2(const SCplx *src , SCplx *dst , int n);
/* complex values; single precision */

void nspdbSqr2(const double *src , double *dst , int n);
/* real values; double precision */

void nspzbSqr2(const DCplx *src , DCplx *dst , int n);
/* complex values; double precision */

void nspwbSqr2(const short *src , short *dst  int n, int  ScaleMode, 
int  *ScaleFactor );  
/* real values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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void nspvbSqr2(const WCplx *src , WCplx *dst  int n, int  ScaleMode, 
int  *ScaleFactor );  
/* complex values; short integer */ 

src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

n The number of elements in the vectors. 

Discussion

The nsp?bSqr2()  function computes the square of each element in the 
n-length vector src[n] and stores the results in the vector dst[n] . The 
computation is performed as follows:

dst[k]  = src[k] 2,  0 ≤ k < n

bSqrt1
Computes a square root of each element 
of  a vector in-place.

void nspsbSqrt1(float *vec , int n);
/* real values; single precision */

void nspcbSqrt1(SCplx *vec , int n);
/* complex values; single precision */

void nspdbSqrt1(double *vec , int n);
/* real values; double precision */

void nspzbSqrt1(DCplx *vec , int n);
/* complex values; double precision */

void nspwbSqrt1(short *vec , int n); 
/* real values; short integer */ 

void nspvbSqrt1(WCplx *vec , int n); 
/* complex values; short integer */ 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

Discussion

The nsp?bSqrt1()  function computes the square root of each element in 
the n-length vector vec[n]  in-place. The computation is performed as 
follows:

Application Note: If the real version of the nsp?bSqrt1()  function 
encounters a negative value in the input, the value of the corresponding 
element in the output vector is undefined, and the error condition is signaled 
with a call to nspError()  after all elements have been computed. The 
complex versions of the nsp?bSqrt1()  function compute the square roots
of the complex numbers with the positive real parts.

bSqrt2
Computes a square root of each element 
of  a vector and stores the result in a 
second vector.

void nspsbSqrt2(const float *src , float *dst  int n);
/* real values; single precision */

void nspcbSqrt2(const SCplx *src , SCplx *dst , int n);
/* complex values; single precision */

void nspdbSqrt2(const double *src , double *dst , int n);
/* real values; double precision */

void nspzbSqrt2(const DCplx *src , DCplx *dst , int n);
/* complex values; double precision */

void nspwbSqrt2(const short *src , short *dst  int n); 
/* real values; short integer */ 

void nspvbSqrt2(const WCplx *src , WCplx *dst  int n); 
/* complex values; short integer */ 

vec k[ ] vec k[ ] 0 k≤ n<,=
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src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

n The number of elements in the vectors. 

Discussion

The nsp?bSqrt2()  function computes the square root of each element in 
the n-length vector src[n] and stores the results in the vector dst[n] . 
The computation is performed as follows:

Application Note: If the real version of the nsp?bSqrt2()  function 
encounters a negative value in the input, the value of the corresponding 
element in the output vector is undefined, and the error condition is 
signalled with a call to nspError()  after all elements have been computed. 
The complex versions of the nsp?bSqrt2()  function compute the square 
roots of the complex numbers with the positive real parts.

bExp1
Computes e to the power of each 
element of a vector in-place.

void nspsbExp1 (float *vec , int n);
/* real values; single precision */

void nspdbExp1(double *vec , int n);
/* real values; double precision */

void nspwbExp1 (short *vec , int n, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */

vec Pointer to the vector vec[n] .  

dst k[ ] src k[ ] 0 k≤ n<,=
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n The number of elements in the vector.

Discussion

The nsp?bExp1()  function computes e to the power of each element of 
the n-length vector vec[n]  in-place.

vec[k]  =  evec[k] ,    0 ≤ k < n

Application Note: For the nspwbExp1() , nspwbExp2() , nspwbLn1() , 
nspwbLn2()  functions, the result is rounded to the nearest integer after 
scaling.

bExp2
Computes e to the power of each 
element of a vector and stores the 
results in a second vector.

void nspsbExp2 (const float *src , float *dst , int n);
/* real values; single precision */

void nspdbExp2(const double *src , double *dst , int n);
/* real values; double precision */

void nspwbExp2 (const short *src , short *dst , int n, int  ScaleMode,
int  *ScaleFactor );
/* real values; short integer */

src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 

CAUTION.  Due to the nature of these functions, considerable 
overflows occur during intermediate calculations. To ensure accuracy, 
autoscaling is recommended.
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nt 
n The number of elements in the vectors.

Discussion

The nsp?bExp2()  function computes e to the power of each element of 
the  n-length input vector, src[n] , and stores the results in a second vecto
dst[n] .

dst[k]  =  esrc [k] ,    0 ≤ k < n

Application Note:  See “Application Note” for “bExp1”, page 3-29.

bLn1
Computes the natural logarithm of each 
element of a vector in-place.

void nspsbLn1 (float *vec , int n);
/* real values; single precision */

void nspdbLn1(double *vec , int n);
/* real values; double precision */

void nspwbLn1 (short *vec , int n);
/* real values; short integer */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector.

Discussion

The nsp?bLn1()  function computes the natural logarithm of each eleme
of the n-length vector vec[n]  in-place.

vec[k]  = loge (vec[k]) ,    0 ≤ k  < n

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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bLn2
Computes the natural logarithm of each 
element of a vector and stores the 
results in a second vector.

void nspsbLn2 (const float *src , float *dst , int n);
/* real values; single precision */

void nspdbLn2(const double *srs , double *dst , int n);
/* real values; double precision */

void nspwbLn2 (const short *src , short *dst , int n);
/* real values; short integer */

src Pointer to the vector scr[n] .  

dst Pointer to the vector dst[n] .

n The number of elements in the vectors.

Discussion

The nsp?bLn2()  function computes the natural logarithm of each eleme
of the n-length input vector, src[n] , and stores the results in a second 
vector, dst[n] .

dst[k]  = loge (src[k]) ,    0 ≤ k < n

Vector Measure F unctions
This section describes the Intel Signal Processing Library functions that 
compute the vector measure values: maximum, minimum, mean, and 
standard deviation.
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Max
Returns the maximum value of a vector.

float nspsMax(const float *vec , int n);
/* real values; single precision */

double nspdMax(const double *vec , int n);
/* real values, double precision */

short nspwMax(const short *vec , int n);
/* real values; short integer */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

Discussion

The nsp?Max()  function returns a maximum value of the n-length input 
vector vec[n] .

Min
Returns the minimum value of a vector.

float nspsMin(const float *vec , int n);
/* real values; single precision */

double nspdMin(const double *vec , int n);
/* real values, double precision */

short nspwMin(const short *vec , int n);
/* real values; short integer */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 
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Discussion

The nsp?Min()  function returns a minimum value of the n-length input 
vector vec[n] .

Mean
Computes the mean value of a vector.

float nspsMean(const float *vec , int n);
/* real values; single precision */

double nspdMean(const double *vec , int n);
/* real values, double precision */

short nspwMean(const short *vec , int n);
/* real values; short integer */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

Discussion

The nsp?Mean()  function computes the mean (average) of  the n-length 
input vector vec[n] . The mean of vec  is defined by the formula:

StdDev
Computes the standard deviation value 
of a vector.

float nspsStdDev(const float *vec , int n);
/* real values; single precision */

mean
1
n
--- vec k[ ]

k 0=

n 1–

∑=
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double nspdStdDev(const double *vec , int n);
/* real values; double precision */

short nspwStdDev(const short *vec , int n, int  ScaleMode, 
int  *ScaleFactor );
/* real values; short integer */

vec Pointer to the vector vec[n] .  

n The number of elements in the vector. 

Discussion

The nsp?StdDev()  function computes the standard deviation of  the 
n-length input vector, vec[n] . The standard deviation of vec[n]  is 
defined by the formula:

Vector Conjugation Functions
This section describes the Intel Signal Processing Library functions which 
perform complex conjugation of vectors.  Some of the functions, in addition 
to performing complex conjugation, extend the length of the output vector.  
Others store the results of the complex conjugation in reverse order.

The vector conjugation functions are often useful when working with the 
fast Fourier transform of real signals.  Because the fast Fourier transform
a real signal is complex conjugate-symmetric, the FFT function needs to 
generate only the first (N/2) + 1 output samples.  This allows rapid 
calculation of the FFT of real-valued signals.  You can calculate the 
remainder of the samples simply by conjugating these first samples.  The
functions described in this section can be used for this purpose, especially 
nsp?bConjExtend1()  and nsp?bConjExtend2() .  For more 
information, see page 7-38, “RealFft” (for nsp?RealFft() ) and 
Example 7-10 in Chapter 7. 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 

stdDev
1
n
--- vec k[ ]2

k 0=

n 1–

∑=
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bConj1
Computes the complex conjugate of a 
vector.

void nspcbConj1(SCplx * vec , int n);
/* complex values; single precision */

void nspzbConj1(DCplx * vec , int n);
/* complex values; double precision */

void nspvbConj1(WCplx * vec , int n);
/* complex values; short integer */

vec Pointer to the vector whose complex conjugate is to b
computed. 

n The number of values in the vector vec[n] .

Discussion

The function nsp?bConj1()  conjugates the n-length array vec[n]  
in-place.  The vector conjugation is defined as follows:

vec[k]  = vec[k] *, 0 ≤ k  < n 

bConj2
Computes the complex conjugate of a 
vector and stores the result in a second 
vector.

void nspcbConj2(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspzbConj2(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

void nspvbConj2(const WCplx * src , WCplx * dst , int n);
/* complex values; short integer */
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src Pointer to the vector whose complex conjugate is to b
computed. 

dst Pointer to the vector which stores the complex conjuga
of the vector src[n] . 

n The number of values in the vectors. 

Discussion

The function nsp?bConj2()  computes the element-wise conjugation of 
the vector src[n]  and stores the result in the vector dst[n] .  The 
element-wise conjugation of the vector is defined as follows:

dst[k]  = src[k] *, 0 ≤ k  < n 

The vectors dst[n]  and src[n]  must be of equal length.

bConjExtend1
Computes the conjugate-symmetric 
extension of a vector in-place. 

void nspcbConjExtend1(SCplx * vec , int n);
/* complex values; single precision */

void nspzbConjExtend1(DCplx * vec , int n);
/* complex values; double precision */

void nspvbConjExtend1(WCplx * vec , int n);
/* complex values; short integer */

n The number of values in the vector vec[n] . 

vec Pointer to the vector whose conjugate-symmetric 
extension is to be computed and stored in-place. 
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Discussion

The function nsp?bConjExtend1()  computes the conjugate-symmetric 
extension of the vector vec[n]  in-place.  The conjugate-symmetric 
extension is defined as follows:

  

If n is odd, the element vec[n  - 1]  should be real, but this is neither 
verified nor enforced by this function.

The length of the output vector is N + n, where N = n if n is even or N = n - 1 
if n is odd. 

The nsp?bConjExtend1()  function can be used to extend the length of
the output arrays produced by the FFT of a real signal.  For more 
information, see page 7-38, “RealFft” (for nsp?RealFft() ) in Chapter 7.

bConjExtend2
Computes the conjugate-symmetric 
extension of a vector and stores the 
result in a second vector. 

void nspcbConjExtend2(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspzbConjExtend2(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

void nspvbConjExtend2(const WCplx * src , WCplx * dst , int n);
/* complex values; short integer */

src Pointer to the vector whose conjugate-symmetric 
extension is to be computed. 

dst Pointer to the vector which stores the 
conjugate-symmetric extension of the vector src[n] . 

N 2 n
2---

= vec k[ ]
vec k[ ]

vec N n 1– k–+[ ]∗



=
0 k n<≤,

n k N n+<≤,
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n The number of values in the vector src[n] . 

Discussion

The function nsp?bConjExtend2()  computes the conjugate-symmetric 
extension of the n-length vector src[n] .  The result is stored in the vector
dst[n] .  The conjugate-symmetric extension is defined as follows:

  

The vector dst[n]  must be N + n in length.  If n is odd, src[n  - 1]  should 
be real, but this is neither verified nor enforced by this function.

The nsp?bConjExtend2()  function can be used to extend the length of
the output arrays produced by the FFT of a real signal.  For more 
information, see page 7-38, “RealFft” (for nsp?RealFft() ) in Chapter 8.

bConjFlip2
Computes the complex conjugate of a 
vector and stores the result, in reverse 
order, in a second vector.

void nspcbConjFlip2(const SCplx * src , SCplx * dst , int n);
/* complex values; single precision */

void nspzbConjFlip2(const DCplx * src , DCplx * dst , int n);
/* complex values; double precision */

void nspvbConjFlip2(const WCplx * src , WCplx * dst , int n);
/* complex values; short integer */

src Pointer to the vector whose complex conjugate is to b
computed and stored in reverse order. 

dst Pointer to the vector which stores the complex conjuga
of the vector src[n]  in reverse order. 

n The number of values in the vectors. 

N 2 n
2---

= dst k[ ]
src k[ ]

src N n 1– k–+[ ]∗



=
0 k n<≤,

n k N n+<≤,
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Discussion

The nsp?bConjFlip2()  function computes the conjugate of the vector 
src[n]  and stores the result, in reverse order, in the vector dst[n] .  The 
vectors dst[n]  and src[n]  must be of equal length.  The complex 
conjugate, stored in reverse order, is defined as follows:

dst[k]  = src[n  - k - 1] *, 0 ≤ k  < n 

If the memory locations of src[n]  and dst[n]  overlap, this function will 
fail. 

The nsp?bConjFlip2()  function is useful when working with the FFT of 
a real signal.  For more information, see page 7-38, “RealFft” (for 
nsp?RealFft() ) in Chapter 7.

Sample Manipulation Functions
The functions described in this section manipulate signal samples.  The
functions perform the following operations:

• Insert zero-valued samples between neighboring samples of a signal 
(up-sample).

• Remove samples from between neighboring samples of a signal 
(down-sample).

These functions are used by finite impulse response (FIR) filter functions 
described in Chapter 9.

UpSample
Up-samples a signal, conceptually 
increasing its sampling rate by an 
integer factor.

void nspsUpSample(const float * src , float * dst , int srcLen , 
int factor , int phase );
/* real values; single precision */
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void nspcUpSample(const SCplx * src , SCplx * dst , int srcLen , 
int factor , int phase );
/* complex values; single precision */

void nspdUpSample(const double * src , double * dst , int srcLen ,
int factor , int phase );
/* real values; double precision */

void nspzUpSample(const DCplx * src , DCplx * dst , int srcLen ,
int factor , int phase );
/* complex values; double precision */

void nspwUpSample(const short * src , short * dst , int srcLen , 
int factor , int phase );
/* real values; short integer */

void nspvUpSample(const WCplx * src , WCplx * dst , int srcLen , 
int factor , int phase );
/* complex values; short integer */

dst Pointer to the array that holds the output of the 
nsp?UpSample()  function.  The length of the array is 
equal to the product (srcLen  * factor ).

factor The factor by which the signal is up-sampled.  That is, 
factor  - 1 zeros are inserted between each sample o
src[n] . 

phase A parameter which determines where each sample fro
src[n] lies within each output block of factor  
samples.  The value of phase  is required to be 
0 ≤ phase  < factor .

src Pointer to the array holding the signal samples to be 
up-sampled.

srcLen The number of samples in the array src[n] . 

Discussion

The nsp?UpSample()  function up-samples the array src[n]  by factor 
factor  with phase phase , and stores the result in the array dst[n] . 

Up-sampling inserts factor  - 1 zeros between each sample of src[n] .  
The phase  argument determines where each sample from the src[n]  array 
lies within each output block of factor  samples.  It is required that 
0 ≤ phase  < factor .
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The values of the output array dst[n]  are defined as follows:

so that:

Conceptually, phase  = 0 places each source sample at the oldest 
time-slot (closest to the start of the array) within each block, while 
phase  = factor  - 1 places each source sample at the newest time-slot 
(closest to the end of the array) within each block.

To better understand the phase  argument, consider the continuous-time 
analogs of the src[n]  and dst[n]  signals.  Assume src[n]  was sampled 
every T seconds.  After up-sampling, dst[n]  is sampled every T/factor  
seconds.  Assuming that both src [0] and dst [0] correspond to time t  = 0 
then:

Thus,

with the two signals identical when phase  = 0.  With this interpretation, a 
phase  > 0 results in a non-causal operation, but the non-causality is les
than T seconds.

For example, if factor  = 3 and the source array src(x)  is defined as 

src(x)  = {x 1, x 2, x 3}, 

then for phase  = 0, the destination array dst(x)  is defined as

dst k[ ]
src

k phase–
factor

------------------------------ 0 k factor srcLen×<≤,

0 otherwise,






=

dst factor k ×( ) phase+[ ] src k[ ] 0 k srcLen<≤,=

s t( ) δ t nT–( ) src n[ ]⋅
n 0=

srcLen 1–

∑=

d t( ) δ t
nT

factor
------------------------– 

  dst n[ ]⋅
n 0=

srcLen factor×( ) 1–

∑=

d t( ) s t
phase T×
factor

------------------------------– 
 =
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s 
dst(x)  = {x 1, 0, 0, x 2, 0, 0, x 3, 0, 0}, 

and for phase  = 2, the destination array dst(x)  is defined as

dst(x)  = {0, 0, x 1, 0, 0, x 2, 0, 0, x 3}.

Interpolation and up-sampling are closely related.  Here, up-sampling refers
to inserting zero samples, while interpolation refers to up-sampling 
followed by filtering.  The filtering is intended to give the inserted sample
a value close to the values of their neighboring samples in the original 
signal.

Application Notes:  The conventions for the phase  arguments to the 
nsp?UpSample()  and nsp?DownSample()  functions are chosen so that 
up-sampling followed by down-sampling with the same phase  and factor  
arguments result in the original signal.  Up-sampling followed by 
down-sampling with equal factor  arguments but unequal phase  
arguments result in a zero signal.

Related Topics

DownSample Down-samples a signal, conceptually decreasing its 
sampling rate by an integer factor. 

DownSample
Down-samples a signal, conceptually 
decreasing its sampling rate by an 
integer factor.

void nspsDownSample(const float * src , float * dst , int srcLen , 
int factor , int phase );
/* real values; single precision */

void nspcDownSample(const SCplx * src , SCplx * dst , int srcLen , 
int factor , int phase );
/* complex values; single precision */

void nspdDownSample(const double * src , double * dst , int srcLen ,
int factor , int phase );
/* real values; double precision */



Arithmetic and Vector Manipulation Functions3

void nspzDownSample(const DCplx * src , DCplx * dst , int srcLen ,

int factor , int phase );
/* complex values; double precision */

void nspwDownSample(const short * src , short * dst , int srcLen , 
int factor , int phase );
/* real values; short integer */

void nspvDownSample(const WCplx * src , WCplx * dst , int srcLen , 
int factor , int phase );
/* complex values; short integer */

dst Pointer to the array that holds the output of the 
nsp?DownSample()  function. 

factor The factor by which the signal is down sampled.  That 
is, factor  - 1 samples are discarded from src[n] . 

phase A parameter which determines which of the samples 
within each block is not discarded.  The value of phase  
is required to be 0 ≤ phase  < factor .

src Pointer to the array holding the signal samples to be 
down-sampled.  The length, srcLen , of the array is 
required to be a multiple of factor .

srcLen The number of samples in the array src[n] .  The 
length, srcLen , is required to be a multiple of factor .

Discussion

The nsp?DownSample()  function down-samples the srcLen  length array 
src[n]  by factor factor  with phase phase , storing the result in the array 
dst[n] . 

Down-sampling discards factor  - 1 samples from src[n] , copying one 
sample from each block of factor  samples from src[n]  to dst[n] .  The 
phase  argument determines which of the samples in each block is not 
discarded.  It is required that srcLen  be a multiple of factor  and that 
0 ≤ phase  < factor .  The values in the output array dst[n]  are defined as 
follows:

dst k[ ] src factor k ×( ) phase+[ ]= 0 k
srcLen
factor
------------------------<≤,
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Conceptually, phase  = 0 extracts the oldest sample within each block 
(closest to the start of the array), and phase  = factor  - 1 extracts the 
newest sample within each block (closest to the end of the array).

Down-sampling and decimation are closely related.  Here, down-sampling 
refers to discarding samples, while decimation refers to filtering followed 
by down-sampling.  The filtering is intended to prevent aliasing distortion 
in the subsequent down-sampling.

Application Notes:  The conventions for the phase  arguments to the 
nsp?UpSample()  and nsp?DownSample()  functions are chosen so that 
up-sampling followed by down-sampling with the same phase  and factor  
arguments result in the original signal.  Up-sampling followed by 
down-sampling with equal factor  arguments but unequal phase  
arguments result in a zero signal.

Related Topics

UpSample Up-samples a signal, conceptually increasing its 
sampling rate by an integer factor.  

Vector Correlation Functions
This section describes the Intel Signal Processing Library functions which 
perform correlation of a vector or two vectors. The nsp?AutoCorr  
functions estimate the normal, biased, and unbiased auto-correlation of a 
vector. The nsp?CrossCorr  function estimates the cross-correlation of 
two vectors.
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AutoCorr
Estimates normal, biased, and 
unbiased auto-correlation of a vector 
and stores the result in a second vector.

void nspsAutoCorr(const float *src , int len , float *dst ,
int nLags, int  flag );
/* real values; single precision; */

void nspcAutoCorr(const SCplx *src , int len , SCplx *dst , 
int nLags, int  flag ); 
/* complex values; single precision; */

void nspdAutoCorr(const double *src , int len , double *dst , 
int nLags, int  flag ); /* real values; double precision; */

void nspzAutoCorr(const DCplx *src , int len , DCplx *dst , 
int nLags, int  flag ); /* complex values; double precision; */

void nspwAutoCorr(const short *src , int len , short *dst ,
int nLags, int  flag, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer; */

void nspvAutoCorr(const WCplx *src , int len , WCplx *dst ,
int nLags, int  flag, int  ScaleMode, int  *ScaleFactor );
/* complex values; short integer; */

src Pointer to the vector to be estimated for an 
auto-correlation.  

len The number of values in the src  vector.

dst Pointer to the vector which stores the estimated 
auto-correlation results of the vector src[len] . 

nLags The number of lags to compute, starting with a lag of 
zero. The lags are stored in the dst[len]  vector. 

flag Indicates the kind of auto-correlation to be computed:
normal, biased, or unbiased.

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 
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Discussion

The nsp?AutoCorr()  function estimates normal, biased, or unbiased 
auto-correlation of the len -length vector src[len]  and stores the results 
in the vector dst[len] . The flag  argument indicates what kind of 
auto-correlation is to be computed. Table 3-1 lists the flag argument values

The auto-correlation is defined by the following equations:

      (normal)

   (biased)

 (unbiased)

Application Note:  The auto-correlation estimates are computed only for 
positive lags, since the auto-correlation for a negative lag value is the 
complex conjugate of the auto-correlation for the equivalent positive lag.

Related Topics

CrossCorr Estimates the cross-correlation of two vectors.

Table 3-1 Value for the flag Argument for A uto-Correlation Function

Value Description

NSP_AutoNormal Specifies that the normal auto-correlation to be 
computed.

NSP_AutoBiased Specifies that the biased auto-correlation to be 
computed.

NSP_AutoUnBiased Specifies that the unbiased auto-correlation to be 
computed.

dst n[ ] src k[ ]∗ src k n+( ) 0 n nLag<≤,⋅
k 0=

len 1–

∑=

dst n[ ] 1
len
------------ src k[ ]∗ src k n+( ) 0 n nLag<≤,⋅

k 0=

len 1–

∑=

dst n[ ] 1
len n–
------------------------ src k[ ]∗ src k n+( ) 0 n nLag<≤,⋅

k 0=

len 1–

∑=

src k( )
src k[ ] 0 k len<≤,

0 otherwise,



=



Arithmetic and Vector Manipulation Functions3

CrossCorr
Estimates the cross-correlation of two 
vectors.

void nspsCrossCorr(const float *srcA , int lenA , const float *srcB , 
int lenB , float *dst , int loLag , int hiLag );
/* real values; single precision */

void nspcCrossCorr(const SCplx *srcA , int lenA , const SCplx *srcB , 
int lenB , SCplx *dst , int loLag , int hiLag );
/* complex values; single precision */

void nspscCrossCorr(const float *srcA , int lenA , const SCplx *srcB , 
int lenB , SCplx *dst , int loLag , int hiLag );
/* real and complex input vectors; complex output; 
   single precision */

void nspcsCrossCorr(const SCplx *srcA , int lenA , const float *srcB , 
int lenB , SCplx *dst , int loLag , int hiLag );
/* complex and real input vectors; complex output; 
   single precision */

void nspdCrossCorr(const double *srcA , int lenA , const double *srcB ,
int lenB , double *dst , int loLag , int hiLag );
/* real values; double precision */

void nspzCrossCorr(const DCplx *srcA , int lenA , const DCplx *srcB ,
int lenB , DCplx *dst , int loLag , int hiLag );
/* complex values; double precision */

void nspdzCrossCorr(const double *srcA , int lenA , const DCplx *srcB ,
int lenB , DCplx *dst , int loLag , int hiLag );
/* real and complex input vectors; complex output; 
   double precision */

void nspzdCrossCorr(const DCplx *srcA , int lenA , const double *srcB ,
int lenB , DCplx *dst , int loLag , int hiLag );
/* complex and real input vectors; complex output; 
   double precision */

void nspwCrossCorr(const short *srcA , int lenA , const short *srcB , 
int lenB , short *dst , int loLag , int hiLag, int  ScaleMode, 
int  *ScaleFactor );
/* real values; short integer */
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void nspvCrossCorr(const WCplx *srcA , int lenA , const WCplx *srcB , 
int lenB , WCplx *dst , int loLag , int hiLag, int  ScaleMode, 
int  *ScaleFactor );
/* complex values; short integer */

void nspwvCrossCorr(const short *srcA , int lenA , const short *srcB , 
int lenB , WCplx *dst , int loLag , int hiLag, int  ScaleMode, 
int  *ScaleFactor );
/* real inputs; complex output; short integer */

void nspvwCrossCorr(const WCplx *srcA , int lenA , const WCplx *srcB , 
int lenB , short *dst , int loLag , int hiLag, int  ScaleMode, 
int  *ScaleFactor );
/* complex inputs; real output; short integer */

srcA Pointer to the vector srcA[lenA] .

lenA The number of values in the srcA  vector.

srcB Pointer to the vector srcB[lenB] .

lenB The number of values in the srcB  vector.

dst Pointer to the vector which stores the results of the 
estimated cross-correlation of the vectors srcA[lenA]  
and srcB[lenB] . 

loLag The bottom of the range of lags at which the correlation
estimates should be computed.

hilag The top of the range of lags at which the correlation 
estimates should be computed.

Discussion

The nsp?CrossCorr()  function estimates the cross-correlation of the 
lenA -length vector srcA  and the lenB -length vector srcB  and stores the 
results in the array dst[n] . The resulting array dst[n]  is defined by the 
equation:

 

ScaleMode , 
ScaleFactor

Refer to  “Scaling Arguments” in Chapter 1. 

dst n[ ] srcA k[ ]∗ srcB k n loLag+ +( ) 0 n hiLag loLag–≤ ≤,⋅
k 0=

lenA 1–

∑=



Arithmetic and Vector Manipulation Functions3

n 
Application Note:  The number of result elements is hiLag  -  loLag  + 1, 
ranging from the estimate at a lag of loLag  in dst [0] to the estimate at a 
lag of hiLag  in dst [hiLag-loLag ].

Related Topics

AutoCorr Estimates normal, biased, or unbiased auto-correlatio
of a vector and stores the result in a second vector.

srcB k( )
srcB k[ ] 0 k lenB<≤,

0 otherwise,



=
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The functions described in this chapter perform the following conversion 
operations for vectors:

• Extracting components from and constructing a complex vector
• Floating-point to integer and integer to floating point
• Floating-point to fixed-point and fixed-point to floating-point
• Floating-point to fixed-point and fixed-point to floating-point 

Optimized for specific fixed-point formats
• Cartesian to polar and polar to cartesian coordinate conversion
• 8-bit µ-law or 8-bit A-law encoded format to linear or vice-versa 

conversions of signal samples (companding functions).

Complex Vector Structure Functions
This section describes the Intel Signal Processing Library functions wh
extract real and imaginary components from a complex vector or construct a
complex vector using its real and imaginary components.

The nsp?bReal() , nsp?bImag()  functions return the real and imaginary 
parts of a complex vector in two separate vectors.

The nsp?2RealToCplx() , nsp?CplxTo2Real()  functions construct a 
complex vector from real and imaginary components stored in two 
respective vectors.

The nsp?bImag() , nsp?brImag() , nsp?bPhase() , nsp?brPhase()  
functions compute the magnitude and phase of a complex vector elements.

Library
function lists
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bReal
Returns the real part of a complex 
vector in a second vector.

nspcbReal(const SCplx *src , float *dst , int n);
/* complex input; real output; single precision */

nspzbReal(const DCplx *src , double *dst , int n);
/* complex input; real output; double precision */

nspvbReal(const WCplx *src , short *dst , int n);
/* complex input; real output; short integer */

src Pointer to the vector src[n] .  

dst Pointer to the vector dst[n] .

n The number of values in the vectors.

Discussion

The nsp?bReal()  function returns the real part of the complex input 
vector src[n]  in the vector dst[n] .

bImag
Returns the imaginary part of  a 
complex vector in a second vector.

nspcbImag(const SCplx *src , float *dst , int n);
/* complex input; real output; single precision */

nspzbImag(const DCplx *src , double *dst , int n);
/* complex input; real output; double precision */

nspvbImag(const WCplx *src , short *dst , int n);
/* complex input; real output; short integer */

src Pointer to the vector src[n] .  
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dst Pointer to the vector dst[n] .

n The number of values in the vectors.

Discussion

The nsp?bImag()  function returns the imaginary part of the complex  
input vector src[n]  in the vector dst[n] .

b2RealToCplx
Returns a complex vector constructed 
from the real and imaginary parts of 
two real vectors.

nspcb2RealToCplx(const float *srcReal , const float *srcImag , 
SCplx  *dst , int n);
/* real inputs; complex output; single precision */

nspzb2RealToCplx(const double *srcReal , const double *srcImag , 
DCplx *dst , int n);
/* real inputs; complex output; double precision */

nspvb2RealToCplx(const short *srcReal , const short *srcImag , 
WCplx *dst , int n);
/* real inputs; complex output; short integer */

srcReal Pointer to the vector srcReal[n] .  

srcImag Pointer to the vector srcImag[n] .

dst Pointer to the vector dst[n] .

n The number of values in the vectors.

Discussion

The nsp?b2RealToCplx()  function returns the complex vector dst  
constructed from the real and imaginary parts of the input vectors 
srcReal[n]  and srcImag[n] . If srcReal[n]  is NULL, the real 
component of the vector is set to zero. If srcImag[n]  is NULL, the 
imaginary component of the vector is set to zero.
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bCplxTo2Real
Returns the real and imaginary parts of 
a complex vector in two respective 
vectors.

nspcbCplxTo2Real(const SCplx *src , float *dstReal , float *dstImag , 
 int n);
/* complex input; real outputs; single precision */

nspzbCplxTo2Real(const DCplx *src , float *dstReal , 
float *dstImag , int n);
/* complex input; real outputs; double precision */

nspvbCplxTo2Real(const WCplx *src , short *dstReal , short *dstImag , 
 int n);
/* complex input; real outputs; short integer */

src Pointer to the vector src[n] .  

dstReal Pointer to the vector dstReal[n] .

dstImag Pointer to the vector dstImag[n] .

n The number of values in the vectors.

Discussion

The nsp?bCplxTo2Real()  function returns the real and imaginary parts 
of the complex input vector src[n] in two output vectors dstReal[n]  
and dstImag[n] .

bMag
Returns the magnitudes of elements of a 
complex vector in a second vector.

nspcbMag(const SCplx *src , float *mag, int n);
/* complex input; real output; single precision */
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nspzbMag(const DCplx *src , double *mag, int n);

/* complex input; real output; double precision */

nspvbMag(const WCplx *src , short *mag, int n, int  ScaleMode, 
int  *ScaleFactor );
/* complex input; real output; short integer */

src Pointer to the vector src[n] .  

mag Pointer to the vector mag[n] .

n The number of values in the vectors. 

Discussion

The nsp?bMag()  function  returns the magnitudes of elements of the 
complex input vector src[n]  in the vector mag[n] .

brMag
Computes the magnitudes of elements of 
a complex vector whose real and 
imaginary components are specified in 
two vectors and stores the results in a 
third vector.

nspsbrMag(const float *srcReal , const float *srcImag , 
float *mag, int n); /* real values; single precision */

nspdbrMag(const double *srcReal , const double *srcImag ,
double *mag, int n); /* real values; double precision */

nspwbrMag(const short *srcReal , const short *srcImag , 
short *mag, int n, int  ScaleMode, int  *ScaleFactor ); 
/* real values; short integer */

srcReal Pointer to the vector srcReal[n] .  

srcImag Pointer to the vector srcImag[n] .

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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mag Pointer to the vector mag[n] .

n The number of values in the vectors.

Discussion

The nsp?brMag()  computes the magnitudes of elements of the complex 
input vector whose real and imaginary components are specified in the 
vectors srcReal[n]  and SrcImag[n] , respectively. It returns the results 
in the vector mag[n] .

bPhase
Returns the phase angles of elements of 
complex input vector in a second vector.

nspcbPhase(const SCplx *src , float *phase , int n);
/* complex input; real output; single precision */

nspzbPhase(const DCplx *src , double *phase , int n);
/* complex input; real output; double precision */

nspvbPhase(const WCplx *src , short *phase , int n, int  ScaleMode, 
int  *ScaleFactor );
/* complex input; real output; short integer */

src Pointer to the vector src[n] .  

phase Pointer to the vector phase[n] .

n The number of values in the vectors.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

The nsp?bPhase()  function returns the phase angles of elements of the 
complex input vector src[n]  in the array phase[n] . Phase values are 
returned in radians and are in the range (-π, π].

brPhase
Computes the phase angles of elements 
of a complex vector whose real and 
imaginary components are specified in 
two vectors and stores the results in a 
third vector.

nspsbrPhase(const float *srcReal , const float *srcImag , 
float *phase , int n);
/* real values; single precision */

nspdbrPhase(const double *srcReal , const double *srcImag ,
double *phase , int n);
/* real values; double precision */

nspwbrPhase(const short *srcReal , const short *srcImag , 
short *phase , int n, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */

srcReal Pointer to the vector srcReal[n] .  

srcImag Pointer to the vector srcImag[n] .

phase Pointer to the vector phase[n] .

n The number of values in the vectors.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

The nsp?brPhase()  function computes the phase angles of elements of 
the complex input vector whose real and imaginary components are 
specified in the vectors srcReal[n]  and srcImag[n] , respectively. It 
returns the result in the vector phase[n] . Phase values are returned in 
radians and are in the range (-π, π].

Data Type Conversion Functions
This section describes the Intel Signal Processing Library functions that 
perform floating point to integer (and reverse) and floating-point to 
fixed-point (and reverse) data type conversion for vectors.

Flags Argument

The data type conversion functions require you to specify the conditions of 
conversion of the floating-point data to the resulting integer or fixed-poi
data.  Specify these conditions in the flags  argument.  The flags  
argument is evaluated as the bitwise-OR of the values you supply.  The
values you can use for the flags  argument are listed in Table 4-1. 

Table 4-1 Value for the flags A rgument for Data T ype Conversion Functions

Value Description

NSP_Round Specifies that floating-point values must be 
rounded to the nearest integer.

NSP_TruncZero Specifies that floating-point values must be 
truncated toward zero.

NSP_TruncNeg Specifies that floating-point values must be 
truncated toward negative infinity.

NSP_Unsigned Specifies that integer or fixed-point values are 
unsigned. If this flag is not present, signed integer 
or fixed-point format is assumed.

                                                              continued ☛
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Table 4-2 lists the allowable integer and fixed-point value ranges 
corresponding to the floating-point values to be converted. The fractBits  
variable used in Table 4-2 corresponds to the number of fractional bits.

The table presents approximate values. The precise values depend on 
flags  settings and may differ by a value that corresponds to 1 or 1/2 of
lowest bit.

NSP_Clip Specifies that floating-point values outside the 
allowable integer or fixed-point range are 
“clipped.” The allowable range is derived from the 
number of bits for integer data or the numbers of 
integer and fractional bits for the fixed-point data 
and the NSP_Unsigned flag described above. 
Clipping the floating-point values means that they 
are saturated to the maximum (or minimum) 
possible integer or fixed-point value. If this flag is 
not present, the values returned for floating-point 
numbers outside the allowable range are 
undefined.

NSP_OvfErr Specifies that an overflow error should be 
signaled with a call to nspError() after conversion 
is complete, if floating-point values outside the 
allowable integer or fixed-point range are 
encountered. Note that the error is detected 
regardless of whether the offending values are 
clipped with the NSP_Clip flag (see the 
NSP_Clip  value discussion above).

Table 4-1 Value for the flags A rgument for Data T ype Conversion Functions 

Value Description
4-9
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bFloatToInt
Converts the floating-point data of a 
vector to integer data and stores the 
results in a second vector.

void nspsbFloatToInt(const float *src , void *dst , int len ,
int wordSize , int flags );
/* real values; single precision */

void nspdbFloatToInt(const double *src , void *dst , int len ,
int wordSize , int flags );
/* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector. 

dst Pointer to the vector which stores the results of the 
conversion to integer data. The type of the vector 
dst[len]  is void  to support different integer word 
sizes.

Table 4-2 Allowable Integer and Fixed-Point Value Ranges for Floating-Point 
Conversion

Function
Word
 Size Minimum Value Maximum Value

bFloatToInt 8
16
32

MINCHAR
MINSHRT
MINLONG

MAXCHAR
MAXSHRT
MAXLONG

bFloatToFix 8

16
32

MINCHAR/
  pow(2, fractBits )
MINSHRT/
  pow(2, fractBits )
MINLONG/
  pow(2, fractBits )

MAXCHAR/
  pow(2, fractBits )
MAXSHRT/
  pow(2, fractBits )
MAXLONG/
  pow(2, fractBits )
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wordSize The size of an integer word in bits; must be 8, 16, or 3

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.

Discussion

The nsp?bFloatToInt()  function converts the floating-point data in the
src[len]  to integer data, and stores the results in the vector dst[len] .

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1. One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Application Note:  Internally, the 8-, 16-, and 32-bit conversions should
each be implemented separately for maximum performance.

Related Topic

bIntToFloat Converts the integer data of a vector to the 
floating-point data. Stores the results in a second vec

 bFloatToFix Converts the floating-point data to fixed-point data. If in 
the floating-point value the number of fractional bits is 
equal to 0, this function produces the same result as 
bFloatToInt .

bIntToFloat
Converts the integer data of a vector to 
floating-point data and stores the 
results in a second vector.

void nspsbIntToFloat(const void *src , float *dst , int len ,
int wordSize , int flags );
/* real values; single precision */

void nspdbIntToFloat(const void *src , double *dst , int len ,
int wordSize , int flags );
/* real values; double precision */
4-11
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src Pointer to the vector src[len] . The type of the vector 
src[len]  is void  to support different integer word 
sizes.

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the  results of the 
conversion to the floating-point data. 

wordSize The size of an integer in bits; must be 8, 16, or 32.

flags A flag which can be NSP_Unsigned  or Nsp_Noflags :

NSP_Unsigned Specifies that integer values are
unsigned. If this flag is not present,
signed integer format is assumed.

NSP_Noflags Self-explanatory.

Discussion

The nsp?IntToFloat()  function converts the integer data in the  vector
src[n]  to the floating-point data and stores the results in the vector 
dst[len] .

Application Note:  Internally, the 8-, 16-, and 32-bit conversions should
each be implemented separately for maximum performance.

Related Topic

bFloatToInt Converts the floating-point data in a vector to integer  
and stores the results in a second vector.

bFixToFloat Converts the fixed-point data to floating-point data. If i
the floating-point value the number of fractional bits is 
equal to 0, this function produces the same result as 
bIntToFloat .
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bFloatToFix
Converts the floating-point data of a 
vector to fixed-point data and stores the 
results in a second vector.

void nspsbFloatToFix(const float *src , void *dst , int len ,
int wordSize , int fractBits , int flags );
/* real values; single precision */

void nspdbFloatToFix(const double *src , void *dst , int len ,
int wordSize , int fractBits , int flags );
/* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len]  vector.

dst Pointer to the vector which stores the results of the 
conversion to fixed-point data. The type of the vector 
dst[len]  is void  to support different fixed-point word 
sizes.

wordSize The size of a fixed-point word in bits; must be 8, 16, or 
32.

fractBits The number of fractional bits in the desired fixed-point
format. It can have a maximum value of wordSize  for 
unsigned fixed-point format or wordSize  -1 for signed 
fixed-point format (see the description of the value 
NSP_Unsigned  in the flags  argument discussion) and
a minimum value of zero. When fractBits  is zero, the 
fixed-point format reduces to integer format. In this 
case, the nsp?bFloatToInt()  must be used to ensure
a better performance.

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.
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Discussion

The nsp?bFloatToFix()  function converts the floating-point data in the 
vector src[len]  to the fixed-point data, and stores the results in the vec
dst[len] .

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1.  One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Application Notes:  Internally, the 8-, 16-, and 32-bit conversions shou
each be implemented separately for maximum performance.

For signed, purely fractional fixed-point formats, and for S15.16 format 
(that is, sign bit, 15 integer bits, and 16 fractional bits), special optimize
functions are available and should be used instead of 
nsp?bFloatToFix()  for maximum performance. See the “Related 
Topics” section that follows.

Related Topics 

bFixToFloat Converts the fixed-point data of a vector to 
floating-point data. Stores the results in a second 
vector.

bFloatToS31Fix , 
bFloatToS15Fix , 
bFloatToS7Fix , 
bFloatToS1516Fix

Perform the optimized functions used for signed, 
purely fractional fixed-point formats
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bFixToFloat
Converts the fixed-point data of a vector 
to the floating-point data and stores the 
results in a second vector.

void nspsbFixToFloat(const void *src , float *dst , int len ,
int wordSize , int fractBits , int flags );
/* real values; single precision */

void nspdbFixToFloat(const void *src , double *dst , int len ,
int wordSize , int fractBits , int flags );
/* real values; double precision */

src Pointer to the vector src[len] . The type of the vector 
src[len]  is void  to support different fixed-point word 
sizes.

len The number of values in the src[len]  vector.

dst Pointer to the vector which stores the results of the 
conversion to the floating-point data.

wordSize The bit size of a fixed-point word; must be 8, 16, or 32.

fractBits The number of fractional bits in the desired fixed-point
format. It can have a maximum value of wordSize  for 
unsigned fixed-point format or wordSize  -1 for signed 
fixed-point format (see the description of the value 
NSP_Unsigned  in the flags  argument discussion) and
a minimum value of zero. When fractBits  is zero, the 
fixed-point format reduces to integer format. In this 
case, the nsp?bIntToFloat()  must be used to ensure
a better performance.

flags A flag which can be NSP_Unsigned  or NSP_Noflags .

NSP_Unsigned Specifies that fixed-point values are
unsigned. If this flag is not present,
signed fixed-point format is
assumed.
4-15



4-16

4 Intel Signal Processing Library Reference Manual

ld 

d 

tor.
Discussion

The nsp?FixToFloat()  function converts the fixed-point data in the 
vector src[len]  to the floating-point data and stores the results in the 
vector dst[len] .

Application Notes:  Internally, the 8-, 16-, and 32-bit conversions shou
each be implemented separately for maximum performance.

For signed, purely fractional fixed-point formats, and for S15.16 format 
(that is, sign bit, 15 integer bits, and 16 fractional bits), special optimize
functions are available and should be used instead of 
nsp?bFixToFloat()  for maximum performance. See the “Related 
Topics” section that follows.

Related Topics 

Optimized Data Type Conversion Functions
This section describes the Intel Signal Processing Library functions that 
perform floating-point to fixed-point (and reverse) data type conversion. 
These conversion operations are optimized for signed, purely fractional 
fixed-point vector formats.

The fixed-point formats assumed for these functions are:

• S.31—a sign bit and 31 fractional bits
• S15.16—a sign bit, 15 integer bits, and 16 fractional bits
• S.15—a sign bit and 15 fractional bits
• S.7—a sign bit and 7 fractional bits

bFloatToFix Converts the floating-point data of a vector to 
fixed-point data. Stores the results in a second vec

bS31FixToFloat , 
bS15FixToFloat , 
bS7FixToFloat , 
bS1516FixToFloat

Perform the optimized functions used for signed, 
purely fractional fixed-point formats.
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Flags Argument

The optimized data type conversion functions require you to specify the 
conditions of conversion of the floating-point data to the resulting 
fixed-point data.  Specify these conditions in the flags  argument.  The 
flags  argument is evaluated as the bitwise-OR of the values you supp
The values you can use for the flags  argument are listed in Table 4-3. 

Table 4-4 lists the allowable integer and fixed-point value ranges 
corresponding to the floating-point values to be converted. 

Table 4-3 Value for the flags A rgument for Optimized Data Type Conversion 
Functions

Value Description

NSP_Round Specifies that floating-point values must be 
rounded to the nearest integer.

NSP_TruncZero Specifies that floating-point values must be 
truncated toward zero.

NSP_TruncNeg Specifies that floating-point values must be 
truncated toward negative infinity.

NSP_Clip Specifies that floating-point values outside the 
allowable fixed-point range are “clipped.” The 
allowable range is derived from the numbers of 
integer and fractional bits for the optimized 
fixed-point formats described above. Clipping the 
floating-point values means that they are 
saturated to the maximum (or minimum) possible 
fixed-point value. If this flag is not present, the 
values returned for floating-point numbers outside 
the allowable range are undefined.

NSP_OvfErr Specifies that an overflow error should be 
signaled with a call to nspError() after conversion 
is complete, if floating-point values outside the 
allowable integer or fixed-point range are 
encountered. Note that the error is detected 
regardless of whether the offending values are 
clipped with the NSP_Clip flag (see the 
NSP_Clip  value discussion above).
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 the 

Table 4-4 presents approximate values. The precise values depend on the 
flags  settings and may differ by a value that corresponds to 1 or 1/2 of
lowest bit.

bFloatToS31Fix
Converts the floating-point data of a 
vector to S.31 fixed-point data and 
stores the results in a second vector.

void nspsbFloatToS31Fix(const float *src , long *dst , int len , 
int flags ); /* real values; single precision */

void nspdbFloatToS31Fix(const double *src , long *dst , int len , 
int flags ); /* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to fixed-point data.

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.

Table 4-4 Allowable Integer and Fixed-Point Value Ranges for Floating-Point 
Optimized Conversion

Function
Minimum 

Value
Maximum 

Value

bFloatToS7Fix -1.0 1.0

bFloatToS15Fix -1.0 1.0

bFloatToS31Fix -1.0 1.0

bFloatToS1516Fix MINSHRT MAXSHRT
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Discussion

The nsp?bFloatToS31Fix()  function converts the floating-point data in
the vector src[len]  to the fixed-point data, and stores the results in the 
vector dst[len] . This function assumes a fixed-point format of S.31, that 
is, a sign bit and 31 fractional bits.

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1. One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Related Topics

bS31FixToFloat
Converts the S.31 fixed-point data of a 
vector to floating point and stores the 
result in a second vector.

void nspsbS31FixToFloat(const long *src , float *dst , int len );
/* real values; single precision */

void nspdbS31FixToFloat(const long *src , double *dst , int len );
/* real values; double precision */

src Pointer to the vector src[len] . 

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to floating-point data.

bFloatToS15Fix Converts the floating-point data of a vector to S.15
fixed-point data. Stores the results in a second vec

bFloatToS7Fix Converts the floating-point data of a vector to S.7 
fixed-point data. Stores the results in a second vec

bFloatToS1516Fix Converts the floating-point data of a vector to S15.16
fixed-point data. Stores the results in a second vec
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Discussion

The nsp?bS31FixToFloat()  function converts the fixed-point data in the  
vector src[len]  to the floating-point data, and stores the results in the 
vector dst[len] . This function assumes a fixed-point format of S.31, that 
is, a sign bit and 31 fractional bits.

Related Topics

bFloatToS1516Fix
Converts the floating-point data of a 
vector to S15.16 fixed-point data and 
stores the results in a second vector.

void nspsbFloatToS1516Fix(const float *src , long *dst , int len ,
int flags ); /* real values; single precision */

void nspdbFloatToS1516Fix(const double *src , long *dst , int len ,
int flags ); /* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to fixed-point data.

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.

bS15FixToFloat Converts the S.15 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS7FixToFloat Converts the S.7 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS1516FixToFloat Converts the S15.16 fixed-point data of a vector to
floating-point. Stores the results in a second vecto
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The nsp?bFloatToS1516Fix()  function converts the floating-point data
in the vector src[len]  to the fixed-point data, and stores the results in th
vector dst[len] . This function assumes a fixed-point format of S15.16, 
that is, a sign bit, 15 integer bits, and 16 fractional bits.

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1. One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Related Topics

bS1516FixToFloat
Converts the S15.16 fixed-point data of 
a vector to floating point and stores the 
result in a second vector.

void nspsbS1516FixToFloat(const long *src , float *dst , int len );
/* real values; single precision */

void nspdbS1516FixToFloat(const long *src , double *dst , int len );
/* real values; double precision */

src Pointer to the vector src[len] . 

len The number of values in the src[len]  vector.

dst Pointer to the vector which stores the results of the 
conversion to floating-point data.

bFloatToS31Fix Converts the floating-point data of a vector to S.31
fixed-point data. Stores the results in a second vec

bFloatToS7Fix Converts the floating-point data of a vector to S.7 
fixed-point data. Stores the results in a second vec

bFloatToS15Fix Converts the floating-point data of a vector to S.15
fixed-point data. Stores the results in a second vec
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The nsp?bS1516FixToFloat()  function converts the fixed-point data in 
the vector src[len]  to the floating-point data, and stores the results in th
vector dst[len . This function assumes a fixed-point format of S15.16, that 
is, a sign bit, 15 integer bits, and 16 fractional bits.

Related Topics

bFloatToS15Fix
Converts the floating-point data of a 
vector to S.15 fixed-point data and 
stores the results in a second vector.

void nspsbFloatToS15Fix(const float *src , short *dst , int len , 
int flags ); /* real values; single precision */

void nspdbFloatToS15Fix(const double *src , short *dst , int len , 
int flags ); /* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to fixed-point data.

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.

bS31FixToFloat Converts the S.31 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS7FixToFloat Converts the S.7 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS15FixToFloat Converts the S.15 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto
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The nsp?bFloatToS15Fix()  function converts the floating-point data in
the vector src[len]  to the fixed-point data, and stores the results in the 
vector dst[len] . This function assumes a fixed-point format of S.15, that 
is, a sign bit and 15 fractional bits.

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1. One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Related Topics

bS15FixToFloat
Converts the S.15 fixed-point data of a 
vector to floating point and stores the 
result in a second vector.

void nspsbS15FixToFloat(const short *src , float *dst , int len );
/* real values; single precision */

void nspdbS15FixToFloat(const short *src , double *dst , int len );
/* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to floating-point data.

bFloatToS31Fix Converts the floating-point data of a vector to S.31
fixed-point data. Stores the results in a second vec

bFloatToS7Fix Converts the floating-point data of a vector to S.7 
fixed-point data. Stores the results in a second vec

bFloatToS1516Fix Converts the floating-point data of a vector to S15.16
fixed-point data. Stores the results in a second vec
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The nsp?bS15FixToFloat()  function converts the fixed-point data in the  
vector src[len]  to the floating-point data, and stores the results in the 
vector dst[len] . This function assumes a fixed-point format of S.15, that 
is, a sign bit and 15 fractional bits.

Related Topics

bFloatToS7Fix
Converts the floating-point data of a 
vector to S.7 fixed-point data and stores 
the results in a second vector.

void nspsbFloatToS7Fix(const float *src , char *dst , int len , 
int flags ); /* real values; single precision */

void nspdbFloatToS7Fix(const double *src , char *dst , int len , 
int flags ); /* real values; double precision */

src Pointer to the vector src[len] .

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to fixed-point data. 

flags Specifies how conversion must be performed. 
See Table 4-1 for the flags  values.

bS31FixToFloat Converts the S.31 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS7FixToFloat Converts the S.7 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS1516FixToFloat Converts the S15.16 fixed-point data of a vector to
floating-point. Stores the results in a second vecto
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The nsp?bFloatToS7Fix()  function converts the floating-point data in 
the vector src[len]  to the fixed-point data, and stores the results in the 
vector dst[len] . This function assumes a fixed-point format of S.7, that 
is, a sign bit and 7 fractional bits.

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 4-1. One of the NSP_Round, NSP_TruncZero , or 
NSP_TruncNeg  flags must be specified.

Related Topics

bS7FixToFloat
Converts the S.7 fixed-point data of a 
vector to floating point and stores the 
result in a second vector.

void nspsbS7FixToFloat(const char *src , float *dst , int len );
/* real values; single precision */

void nspdbS7FixToFloat(const char *src , double *dst , int len );
/* real values; double precision */

src Pointer to the vector src[len] . 

len The number of values in the src[len] vector.

dst Pointer to the vector which stores the results of the 
conversion to floating-point data.

bFloatToS15Fix Converts the floating-point data of a vector to S.15
fixed-point data. Stores the results in a second vec

bFloatToS31Fix Converts the floating-point data of a vector to S.31
fixed-point data. Stores the results in a second vec

bFloatToS1516Fix Converts the floating-point data of a vector to S15.16
fixed-point data. Stores the results in a second vec
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The nsp?bS7FixToFloat()  function converts the fixed-point data in the  
src[len]  to the floating-point data, and stores the results in the vector 
dst[len] . This function assumes a fixed-point format of S.7, that is, a sign 
bit and 7 fractional bits.

Related Topics

Coordinate Conversion Functions
This section describes the Intel Signal Processing Library functions that 
perform cartesian to polar and polar to cartesian coordinate conversion for 
vectors.

bCartToPolar
Converts the elements of a complex 
vector to polar coordinate form.

void nspcbCartToPolar(const SCplx *src , float *mag, float *phase ,
int len ); /* complex input; real output; single precision */

void nspzbCartToPolar(const DCplx *src , double *mag, double *phase ,
int len ); /* complex input; real output; double precision */

bS15FixToFloat Converts the S.15 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS31FixToFloat Converts the S.31 fixed-point data of a vector to  
floating-point. Stores the results in a second vecto

bS1516FixToFloat Converts the S15.16 fixed-point data of a vector to
floating-point. Stores the results in a second vecto
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src Pointer to the vector src[len] .

mag Pointer to the vector mag[len]  which stores the 
magnitude (radius) components of the elements of 
vector src[len] .

phase Pointer to the vector phase[len]  which stores the 
phase (angle) components of the elements of vector 
srclen] . Phase values are in the range (-π,π].

len The number of values in the vectors.

Discussion

The nsp?bCartToPolar()  function converts the elements of a complex 
input vector src[len]  to polar coordinate form, storing the magnitude 
(radius) component of each element in the vector mag[len]  and the phase 
(angle) component of each element in the vector phase[len] .

Related Topics

bPolarToCart Converts the polar form magnitude/phase pairs stored in 
input vectors into a complex vector. Stores the result in
third vector.

brCartToPolar Converts the complex real/imaginary pairs of input 
vectors to polar coordinate form. Stores the magnitude 
and phase components of each element in two respective
vectors.

brPolarToCart Converts the polar form magnitude/phase pairs stored in 
two input vectors into a complex vector. Stores the re
and imaginary components of the result in two 
respective vectors.
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brCartToPolar
Converts the complex real/imaginary 
pairs of input vectors to polar 
coordinate form.

void nspsbrCartToPolar(const float *srcReal , const float *srcImag ,
float *mag, float *phase , int len );
/* real values; single precision */

void nspdbrCartToPolar(const double *srcReal , const double *srcImag ,
double *mag, double *phase , int len );
/* real values; double precision */

srcReal Pointer to the vector srcReal[len]  which stores the 
real components of cartesian X/Y pairs. 

srcImag Pointer to the vector srcImag[len]  which stores the 
imaginary  components of cartesian X/Y pairs.

mag Pointer to the vector mag[len]  which stores the 
magnitude (radius) components of the elements in polar 
coordinate form.

phase Pointer to the vector phase[len]  which stores the 
phase (angle) components of the elements in polar 
coordinate form. Phase values are in the range (-π,π].

len The number of values in the vectors.

Discussion

The nsp?brCartToPolar()  function converts the complex 
real/imaginary (cartesian coordinate X/Y) pairs of the input vectors 
srcReal[len]  and srcImag[len]  to polar coordinate form, storing the 
magnitude (radius) component of each element in the vector mag[len]  and 
the phase (angle) component of each element in the vector phase[len] .
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Related Topics

brPolarToCart Converts the polar coordinate form magnitude/phase 
pairs stored in two input vectors into a complex vector
Stores the real and imaginary components of the result 
in two respective vectors.

bCartToPolar Converts the elements of the complex vector to polar 
coordinate form. Stores the magnitude and phase 
components of each element in two respective vectors.

bPolarToCart Converts the polar coordinate form magnitude/phase 
pairs stored in input vectors into a complex vector. 
Stores the result in a third vector.

bPolarToCart
Converts the polar form 
magnitude/phase pairs stored in input 
vectors to polar coordinate form.

void nspcbPolarToCart(const float *mag, const float *phase , 
SCplx *dst , int len );
/* real input; complex output; single precision */

void nspzbPolarToCart(const double *mag, const double *phase , 
DCplx *dst , int len );
/* real input; complex output; double precision */

mag Pointer to the vector mag[len]  which stores the 
magnitude (radius) components of the elements.

phase Pointer to the vector phase[len]  which stores the 
phase (angle) components of the elements.

dst Pointer to the resulting vector dst[len]  which stores 
the complex values consisting of magnitude (radius) a
phase (angle).

len The number of values in the vectors.
4-29



4-30

4 Intel Signal Processing Library Reference Manual

 

al 
Discussion

The nsp?bPolarToCart()  function converts the polar form 
magnitude/phase pairs stored in the input vectors mag[len]  and 
phase[len]  into a complex vector and stores the result in the vector 
dst[len] .

Related Topics

bCartToPolar Converts the elements of the complex vector to polar 
coordinate form. Stores the magnitude and phase 
components of each element in two respective vectors.

brCartToPolar Converts the complex real/imaginary pairs of input 
vectors to polar coordinate form. Stores the magnitude 
and phase components of each element in two respective
vectors.

brPolarToCart Converts the polar form magnitude/phase pairs stored in 
two input vectors into a complex vector. Stores the re
and imaginary components of the result in two 
respective vectors.

brPolarToCart
Converts the polar form 
magnitude/phase pairs of input vectors 
to cartesian coordinate form.

void nspsbrPolarToCart(const float *mag, const float *phase ,
float * dstReal , float *dstImag , int len );
/* real values; single precision */

void nspdbrPolarToCart(const double *mag, const double *phase ,
double *dstReal , double *dstImag , int len );
/* real values; double precision */
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mag Pointer to the vector mag[len]  which stores the 
magnitude (radius) components of the elements in polar 
coordinate form.

phase Pointer to the vector phase[len]  which stores the 
phase (angle) components of the elements in polar 
coordinate form. Phase values are in the range (-π,π].

dstReal Pointer to the vector dstReal[len]  which stores the 
real components of cartesian X/Y pairs. 

dstImag Pointer to the vector dstImag[len]  which stores the 
imaginary  components of cartesian X/Y pairs.

len The number of values in the vectors.

Discussion

The nsp?brPolarToCart()  function converts the polar form 
magnitude/phase pairs stored in the input vectors mag[len]  and 
phase[len] into a complex vector  and stores the real component of the 
result in the vector dstReal[len]  and the imaginary component in the 
vector dstImag[len] .

Related Topics

brCartToPolar Converts the complex real/imaginary pairs of input 
vectors to polar coordinate form. Stores the magnitude 
and phase components of each element in two respective
vectors.

bCartToPolar Converts the elements of the complex vector to polar 
coordinate form. Stores the magnitude and phase 
components of each element in two respective vectors.

bPolarToCart Converts the polar form magnitude/phase pairs stored in 
input vectors into a complex vector. Stores the result in
third vector.
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Companding Functions
The functions described in this section perform an operation of data 
compression by using a logarithmic encoder-decoder,  referred to as 
companding. Companding allows you to maintain a constant percentage 
error by logarithmically spacing the quantization levels [Rab78].

The Intel Intel Signal Processing Library companding functions perform the
following conversion operations of signal samples:

• From 8-bit µ-law encoded format to linear or vice-versa.
• From 8-bit Α-law encoded format to linear or vice-versa.

Samples encoded in µ-law or A-law format are non-uniformly quantized. 
The quantization functions used by these formats are designed to reduce the
dependency of signal-to-noise ratio on the magnitude of the encoded signal. 
This is achieved by quantizing (companding) at a finer resolution near zero, 
and at a coarse resolution at larger positive or negative levels. The output 
values are normalized to be in the range of -1 to +1. 

These functions perform the µ-law and Α-law companding in compliance 
with the CCITT G.711 specification, [CCITT]. For the conversion rules a
more details, refer to [CCITT].

bMuLawToLin
Decodes samples from 8-bit µ-law 
encoded format to linear samples.

void nspsbMuLawToLin (const unsigned char * src , float * dst , 
int len ); 
/* real values; single precision */

void nspdbMuLawToLin (const unsigned char * src , double * dst , 
int len ); 
/* real values; double precision */

void nspwbMuLawToLin (const unsigned char * src , short * dst , 
int len ); 
/* real values; short integer */
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src Pointer to the input unsigned char vector, which stores 
8-bit µ-law encoded signal samples to be decoded.

dst Pointer to the output vector, which stores the linear 
sample results.

len The number of samples in the vector src[len] . 

Discussion

The nsp?bMuLawToLin()  function decodes the 8-bit µ-law encoded 
samples in the input vector src[len]  to linear samples and stores them in
the vector dst[len] . 

The formula for µ-law companding is as follows:

where x is the linear signal sample and Cµ(x) is the µ-law encoded 
sample. The formula is shown in terms of absolute values of both the 
original and compressed signals since positive and negative values are 
compressed in an identical manner. The sign of the input is preserved in th
output.

Application Notes:  The formula shown above should not be 
implemented directly, since such an implementation would be slow. 
Encoding or decoding of µ-law format is usually performed using look-up 
Tables 2a/G.711 and 2b/G.711 shown in the CCITT specification G.711. 
Refer to the G.711 specification for details.

Related Topics

bLinToMuLaw Encodes the linear samples using 8-bit µ-law format.

bALawToLin Decodes the 8-bit A-law encoded samples to linear 
samples.

bLinToALaw Encodes the linear samples using 8-bit A-law format.

bMuLawToALaw Converts samples from 8-bit µ-law encoded format to 
8-bit A-law encoded format. 

bALawToMuLaw Converts samples from 8-bit A-law encoded format to
8-bit µ-law encoded format.

C x( )µ
1 255 x⋅+( )ln

256( )ln
---------------------------------------- 128 1– x 1≤ ≤,⋅=
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bLinToMuLaw
Encodes the linear samples using 8-bit 
µ-law format and stores them in a 
vector.

void nspsbLinToMuLaw (const float * src , unsigned char * dst , 
int len ); 
/* real values; single precision */

void nspdbLinToMuLaw (const double * src , unsigned char * dst , 
int len ); 
/* real values; double precision */

void nspwbLinToMuLaw (const short char * src , unsigned char * dst , 
int len ); 
/* real values; short integer */

dst Pointer to the vector that holds the output of the 
nsp?bLinToMuLaw()  function. 

src Pointer to the vector that holds the signal samples to 
encoded.

len The number of samples in the vector src[len] . 

Discussion

The nsp?bLinToMuLaw()  function encodes the linear samples in the input 
vector src[len]  using 8-bit µ-law format and stores them in the vector 
dst[len] .

Related Topics

bMuLawToLin Decodes samples from the 8-bit µ-law encoded format 
to linear samples.

bALawToLin Decodes samples from the 8-bit A-law encoded forma
to linear samples.

bLinToALaw Encodes the linear samples using 8-bit A-law format.
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bMuLawToALaw Converts samples from 8-bit µ-law encoded format to 
8-bit A-law encoded format. 

bALawToMuLaw Converts samples from 8-bit A-law encoded format to
8-bit µ-law encoded format.

bALawToLin
Decodes the 8-bit Α-law encoded 
samples to linear samples.

void nspsbALawToLin (const unsigned char * src , float * dst , int len );
/* real values; single precision */

void nspdbALawToLin (const unsigned char * src , double * dst , 
int len ); 
/* real values; double precision */

void nspwbALawToLin (const unsigned char * src , short * dst , 
int len); 
/* real values; short integer */

dst Pointer to the vector that holds the output of the 
nsp?bALawToLin()  function. 

src Pointer to the vector that holds the signal samples to 
converted.

len The number of samples in the vector src[len] . 

Discussion

The nsp?bALawToLin()  function decodes the 8-bit Α-law encoded 
samples in the input vector src[len]  to linear samples and stores them in
the vector dst[len] . 

The formula for A-law companding is as follows:

CA x( )

87.56x
1 87.56ln+---------------------------- 128⋅ 0 x

1
87.56-------------≤ ≤,

1 87.56x( )ln+
1 87.56ln+---------------------------------------- 128⋅

1
87.56------------- x 1≤<,









=
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where x is the linear signal sample and CΑ(x)  is the Α-law encoded 
sample. The formula is shown in terms of absolute values of both the 
original and compressed signals since positive and negative values are 
compressed in an identical manner. The sign of the input is preserved in th
output.

Application Notes:  The formula shown above should not be 
implemented directly, since such an implementation would be slow. 
Encoding or decoding of Α-law format is usually performed using look-up 
Tables 1a/G.711 and 1b/G.711 shown in the CCITT specification G.711. 
Refer to the G.711 specification for details.

Related Topics

bLinToALaw Encodes the linear samples using 8-bit Α-law format.

bMuLawToLin Decodes the 8-bit µ-law encoded samples to linear 
samples.

bLinToMuLaw Encodes the linear samples using 8-bit µ-law format.

bMuLawToALaw Converts samples from 8-bit µ-law encoded format to 
8-bit A-law encoded format. 

bALawToMuLaw Converts samples from 8-bit A-law encoded format to
8-bit µ-law encoded format.

bLinToALaw
Encodes the linear samples using 8-bit 
A-law format and stores them in an 
array.

void nspsbLinToALaw (const float char * src , unsigned char * dst , int 
len );

/* real values; single precision */
void nspdbLinToALaw (const double * src , unsigned char * dst , 

int len ); 
/* real values; double precision */
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void nspwbLinToALaw (const short * src , unsigned char * dst , 
int len); 
/* real values; short integer */

dst Pointer to the vector that holds the output of the 
nsp?bLinToALaw()  function. 

src Pointer to the vector that holds the signal samples to 
encoded.

len The number of samples in the vector src[len] . 

Discussion

The nsp?bLinToALaw()  function encodes the linear samples  in the inp
vector src[len]  using 8-bit Α-law format  and stores them in the vector 
dst[len] .

Related Topics

bALawToLin Decodes the 8-bit A-law encoded samples to linear 
samples.

bMuLawToLin Decodes the 8-bit µ-law encoded samples to linear 
samples.

bLinToMuLaw Encodes the linear samples using 8-bit µ-law format.

bMuLawToALaw Converts samples from 8-bit µ-law encoded format to 
8-bit A-law encoded format. 

bALawToMuLaw Converts samples from 8-bit A-law encoded format to
8-bit µ-law encoded format.
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bMuLawToALaw
Converts samples from 8-bit µ-law 
encoded format to 8-bit A-law encoded 
format.

void nspbMuLawToALaw (const unsigned char * src , unsigned char * dst , 
int len ); 

src Pointer to the input unsigned char vector, which stores 
8-bit µ-law encoded signal samples.

dst Pointer to the output unsigned char vector, which stor
the 8-bit A-law encoded samples.

len The number of samples in the vector src[len] . 

Discussion

The nspbMuLawToALaw()  function converts signal samples from 8-bit 
µ-law encoded format in the input vector src[len]  to 8-bit A-law encoded 
format and stores them in the vector dst[len] . 

Application Notes:  The conversion of µ-law format to A-law format is 
usually performed using look-up Table 3/G.711shown in the CCITT 
specification G.711. Refer to the G.711 specification for details.

Related Topics

bMuLawToLin Decodes the 8-bit µ-law encoded samples to linear 
samples.

bLinToMuLaw Encodes the linear samples using 8-bit µ-law format.

bALawToLin Decodes the 8-bit A-law encoded samples to linear 
samples.

bLinToALaw Encodes the linear samples using 8-bit A-law format.

bALawToMuLaw Converts samples from 8-bit A-law encoded format to
8-bit  m-law encoded format.
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bALawToMuLaw
Converts samples from 8-bit A-law 
encoded format to 8-bit µ-law encoded 
format.

void nspbALawToMuLaw (const unsigned char * src , unsigned char * dst , 
int len ); 

src Pointer to the input unsigned char vector, which stores 
8-bit Α-law encoded signal samples.

dst Pointer to the output unsigned char vector, which stor
the 8-bit µ-law encoded samples.

len The number of samples in the vector src[len] . 

Discussion

The nspbMuLawToALaw()  function converts signal samples from 8-bit 
Α-law encoded format in the input vector src[len]  to 8-bit µ-law format 
and stores them in the vector dst[len] . 

Application Notes:  The conversion of Α-law format to µ-law format is 
usually performed using look-up Table 4/G.711 shown in the CCITT 
specification G.711. Refer to the G.711 specification for details.

Related Topics

bMuLawToLin Decodes the 8-bit µ-law encoded samples to linear 
samples.

bLinToMuLaw Encodes the linear samples using 8-bit µ-law format.

bALawToLin Decodes the 8-bit A-law encoded samples to linear 
samples.

bLinToALaw Encodes the linear samples using 8-bit A-law format.

bMuLawToALaw Converts samples from 8-bit µ-law encoded format to 
8-bit A-law encoded format.
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This chapter describes the Intel Signal Processing library functions which 
generate the tone samples, triangle samples,  pseudo-random samples with 
uniform distribution, and pseudo-random samples with Gaussian 
distribution.

Tone-Generating Functions
The functions described in this section generate a tone (or “sinusoid”) of a 
given frequency, phase, and magnitude.  Tones are fundamental building 
blocks for analog signals.  This makes sampled tones extremely useful in 
signal processing systems as test signals and as building blocks for mo
complex signals.  The tone functions are preferable to the C math library’s 
sin()  function for many applications because they can use knowledge
retained from the computation of the previous sample to compute the n
sample much faster than sin()  or cos() .

The Intel Signal Processing Library provides functions for initializing a 
tone generator and functions for generating single or multiple samples from 
a previously initialized tone. 

nsp?bTone () Returns a specified number of consecutive samples o
the tone.

nsp?Tone () Returns one sample of the tone each time the function
called.

nsp?ToneInit () Initializes the NSP?ToneState  structure with a given 
frequency, phase, and magnitude for the tone. 

Library 
function lists
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NSP?ToneState Structure which contains the specified parameters for 
the tone. 

Figure 5-1 illustrates the order of use of the tone-generating functions.

The nsp?ToneInit()  function initializes the NSP?ToneState  structure 
with a specified frequency, phase, and magnitude for the tone.  The 
structure can then be passed to either the nsp?bTone()  function, the 
nsp?Tone()  function, or both.  The nsp?Tone()  function returns a 
sample of the tone each time it is called.  The nsp?bTone()  function 
returns a specified number of consecutive samples.  These functions are 
described in more detail below. 

Example 5-1 shows the code for generating a tone and taking its FFT. 

Figure 5-1 Order of Use of the Tone-Generating Functions

Example 5-1 Generating a Tone and Taking its FFT

/* generate a tone 
 * and take its FFT 
 */
NSPZToneState ts;

DCplx tone[256];

DCplx tonefft[256];

nspzToneInit(0.11, NSP_DegToRad(30), 5.0, &ts);

nspzbTone(&ts, tone, 256);

nspzFftNip(tone, tonefft, 8, NSP_Forw);

Tone

ToneInit

bTone
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Example 5-2 shows the code for using a tone for primary demodulation in a 
passband modem. 

Application Notes : The contents of the structures NSP?ToneState  
and the particular equations used to calculate the tone are 
implementation-dependent.  The tone is calculated using a structure tha
implements the following second-order transfer function:

This system has two complex conjugate poles on the unit circle.  The angle
of the poles is determined by rfreq .  There are several possible equations 
to implement this system.  The particular equation used is 
implementation-dependent because the relative speed and harmonic 
distortion depends on the particular processor.

Complex tones (nspcTone()  and nspzTone() ) are generated by using 
two real-valued tone oscillators that are ninety degrees out of phase. 

Example 5-2 Using Gener ated Tones

/* Use a tone for primary demodulation 
 * in passband modem 
 */

NSPDToneState prim_osc;

nspdToneInit(0.35, 0, 1.0, &prim_osc);

for(;;) {

DCplx samp;

samp = ...; /* get analytic sample (after Hilbert filter) */

samp = nspzMpy( nspdTone( &prim_osc), samp);

...

}

X z( )
z 1–

1 αz 1–– z 2–+
--------------------------------------= α 2 2π rfreq⋅( )cos=,
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bTone
Produces consecutive samples of a tone.

void nspsbTone(NSPSToneState * statePtr , float * samps, int sampsLen );
/* real values; single precision */

void nspcbTone(NSPCToneState * statePtr , SCplx * samps, int sampsLen );

/* complex values; single precision */

void nspdbTone(NSPDToneState * statePtr , double * samps, 
int sampsLen );
/* real values; double precision */

void nspzbTone(NSPZToneState * statePtr , DCplx * samps, int sampsLen );
/* complex values; double precision */

void nspwbTone(NSPWToneState * statePtr , short * samps, int sampsLen );
/* real values; short integer */

void nspvbTone(NSPVToneState * statePtr , WCplx * samps, int sampsLen );

/* complex values; short integer */

samps Pointer to the array which stores the samples. 

sampsLen The number of samples of the tone to be computed. 

statePtr Pointer to the NSP?ToneState  structure. 

Discussion

The nsp?bTone()  function references the NSP?ToneState  structure, 
computes sampsLen  samples of the tone, and stores them in the array 
samps[n] .  The first call to nsp?bTone()  returns the n = 0 sample of 
x(n) .  For real tones, x(n)  is defined as:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase ) 

For complex tones, x(n)  is defined as:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase )+j  ⋅ sin(2π ⋅ rfreq  ⋅ n + phase )

Calls to nsp?Tone()  and nsp?bTone()  can be combined on the same 
statePtr .



Sample-Generating Functions5

Related Topics

Tone  Produces the next sample of a tone.

ToneInit  Initializes a tone with a given frequency, phase, and 
magnitude.

Tone
Produces the next sample of a tone. 

float nspsTone(NSPSToneState * statePtr );
/* real values; single precision */

SCplx nspcTone(NSPCToneState * statePtr );
/* complex values; single precision */

double nspdTone(NSPDToneState * statePtr );
/* real values; double precision */

DCplx nspzTone(NSPZToneState * statePtr );
/* complex values; double precision */

short nspwTone(NSPWToneState * statePtr ); 
/* real values; short integer */ 

WCplx nspvTone(NSPVToneState * statePtr ); 
/* complex values; short integer */ 

statePtr Pointer to the NSP?ToneState  structure. 

Discussion

The nsp?Tone()  function references the NSP?ToneState  structure and 
returns the next sample of the tone.  The first call to nsp?Tone()  returns 
the n = 0 sample of x(n) .  For real tones, x(n)  is defined as:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase ) 

For complex tones, x(n)  is defined as:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase )+j  ⋅ sin(2π ⋅ rfreq  ⋅ n + phase ) 

Calls to nsp?Tone()  and nsp?bTone()  can be mixed on the same 
statePtr .
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Related Topics 

bTone Produces consecutive samples of a tone.

ToneInit Initializes a tone with a given frequency, phase, and 
magnitude.

ToneInit
Initializes a tone with a given frequency, 
phase, and magnitude.

void nspsToneInit(float rfreq , float phase , float mag,
NSPSToneState * statePtr );
/* real values; single precision */

void nspcToneInit(float rfreq , float phase , float mag,
NSPCToneState * statePtr );
/* complex values; single precision */

void nspdToneInit(double rfreq , double phase , double mag,
NSPDToneState * statePtr );
/* real values; double precision */

void nspzToneInit(double rfreq , double phase , double mag,
NSPZToneState * statePtr );
/* complex values; double precision */

void nspwToneInit(float rfreq , float phase , short mag, 
NSPWToneState * statePtr ); 
/* real values; single precision */ 

void nspvToneInit(float rfreq , float phase , short mag, 
NSPVToneState * statePtr ); 
/* complex values; short integer */ 

mag The magnitude of the tone; that is, the maximum valu
attained by the wave.

phase The phase of the tone relative to a cosine wave.  It m
be between 0.0 and 2π. 

rfreq The frequency of the tone relative to the sampling 
frequency.  It must be between 0.0 and 0.5.
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statePtr Pointer to the NSP?ToneState  structure.

Discussion

The nsp?ToneInit()  function initializes the given NSP?ToneState  
structure pointed to by statePtr  with the specified frequency, phase, and
magnitude.  These parameters are used to generate the tone.  The 
NSP?ToneState  structure is later passed to the nsp?Tone()  and/or 
nsp?bTone()  functions to generate samples of the tone.

For real tones, the arguments to nsp?ToneInit()  specify the following 
signal:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase ) 

For complex tones, the arguments to nsp?ToneInit()  specify the 
following signal:

x(n)  = mag ⋅ cos(2π ⋅ rfreq  ⋅ n + phase )+j  ⋅ sin(2π ⋅ rfreq  ⋅ n + phase ) 

Related Topics

bTone  Produces consecutive samples of a tone.

Tone Produces the next sample of a tone.

Triangle-Generating Functions 
This section describes functions that generate a periodic signal with a 
triangular wave form (referred to as “triangle”) of a given frequency, phase, 
magnitude, and asymmetry.

The Intel Signal Processing Library  provides functions for initializing a 
triangle generator and functions for generating single or multiple samples 
from a previously initialized triangle. 

nsp?bTrngl () Returns a specified number of consecutive samples o
the triangle.

nsp?Trngl () Returns one sample of the triangle each time the 
function is called.

nsp?TrnglInit () Initializes the NSP?TrnglState  structure with a given 
frequency, phase, magnitude, and asymmetry for the 
triangle. 
5-7
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NSP?TrnglState Structure which contains the specified parameters for 
the triangle.

Figure 6-2 illustrates the order of use of the triangle-generating functions.

The nsp?TrnglInit()  function initializes the NSP?TrnglState  
structure with a specified frequency, phase, magnitude, and asymmetry fo
the triangle.  The structure can then be passed to either the nsp?bTrngl()  
function, the nsp?Trngl()  function, or both.  The nsp?Trngl()  function 
returns a sample of the triangle each time it is called.  The nsp?bTrngl()  
function returns a specified number of consecutive samples.

Example 5-3 shows the code for generating periodic signals with triangular 
waves.

Figure 5-2 Order of Use of the Triangle-Generating Functions

Trngl

TrnglInit

bTrngl
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Example 5-3 Generating Triangles

/* generate triangles 

 * with different 
 * wave forms 
 */

float x[258], y[128];

NSPSTrnglState ct, saw_sheer_back, saw_sheer_fore, rect;

int i=128;

float eps=0.00001, float large_mag=1000000.;

/* initialize symmetric triangle wave */

nspsTrnglInit(0.1, 0.03, 3.0, 0.0, &ct);

nspsbTrngl(&ct, x, 128);

/* now generate a single sample 
 * then continue generating the same wave */

while (i--) {

    nspsTrngl(&ct, x[129]);

}

/* generate a “saw” sheer-back wave 

 * with asymmetry near - π */

nspsTrnglInit(0.09, 0.0, 1.0, eps-NSP_PI, &saw_sheer_back);

nspsbTrngl(&saw_sheer_back, y, 128);

/* generate a “saw” sheer fore-part wave

 * with asymmetry near π */

nspsTrnglInit(0.09, 0.0, 1.0, NSP_PI-eps, &saw_sheer_fore);

nspsbTrngl(&saw_sheer_fore, y, 128);

/* generate a rectangular wave from a triangle

 * using a large magnitude and asymmetry = 0 */

nspsTrnglInit(0.08, 1.5*NSP_PI, large_mag, 0.0, &rect);

nspsbTrngl(&rect, y, 128);

/* you can generate other signal shapes; for example, by using
/* Thresh and other SP functions */
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Application Notes:  A real periodic signal with triangular wave form 
x[n]  (a real triangle, in short)  of a given frequency rfreq , phase phase , 
magnitude mag, and asymmentry h is defined as follows:

A complex periodic signal with triangular wave form x[n]  (a complex 
triangle, in short) of a given frequency rfreq , phase phase , magnitude 
mag, and asymmetry h is defined as follows:

The ct h()  function is determined as follows:

H = π + h

When H = π, asymmetry h = 0, and function ct h()  is symmetric and a 
triangular analog of the cos() function. Note the following equations:

The st h()  function is determined as follows:

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( ) n,⋅ 0 1 2 …, , ,= =

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( )
j st h 2π rfreq n phase+⋅⋅( )⋅

+(
) n,

⋅
0 1 2 …, , ,

=
=

ct h α( )
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2-----------------≤ ≤,

2
H
---– α π–( )⋅

2π H–
2---------------- α 2π H+

2-----------------≤≤,

2
2π H–
---------------- α 2π–( )⋅

2π H+
2

----------------- α 2π≤ ≤,










=

st h α k 2π⋅+( ) st h α( ) k, 0 1 2 …,±,±,= =
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. 
When H = π, asymmetry h = 0, and function st h()  is a triangular analog of 
a sine function. Note the following equations:

bTrngl
Produces consecutive samples of a 
triangle.

void nspsbTrngl(NSPSTrnglState * statePtr , float * samps, 
int sampsLen );
/* real values; single precision */

void nspcbTrngl(NSPCTrnglState * statePtr , SCplx * samps, 
int sampsLen );

/* complex values; single precision */

void nspdbTrngl(NSPDTrnglState * statePtr , double * samps, 
int sampsLen );
/* real values; double precision */

void nspzbTrngl(NSPZTrnglState * statePtr , DCplx * samps, 
int sampsLen );
/* complex values; double precision */

void nspwbTrngl(NSPWTrnglState * statePtr , short * samps,
int sampsLen ); 
/* real values; short integer */ 

void nspvbTrngl(NSPVTrnglState * statePtr , WCplx * samps,  
int sampsLen ); 

/* complex values; short integer */ 

samps Pointer to the array which stores the samples. 

sampsLen The number of samples of the triangle to be computed

statePtr Pointer to the NSP?TrnglState  structure. 

st h α( ) ct h α 3π h+( ) 2⁄+( )=
st h πk( ) 0 k, 0 1 2 …,±,±,= =

st h π h–( ) 2 2πk+⁄( ) 1 k, 0 1 2 …,±,±,= =
st h 3π h+( ) 2 2π+⁄ k( ) 1 k,– 0 1 2 …,±,±,= =
5-11
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Discussion

The nsp?bTrngl()  function references the NSP?TrnglState  structure, 
computes sampsLen  samples of the triangle, and stores them in the array 
samps[n] .  The first call to nsp?bTrngl()  returns the n = 0 sample of 
x(n) .  For real triangle, x(n)  is defined as:

For complex triangles, x(n)  is defined as:

See page 5-10, “Application Notes,” for the definition of functions ct h()  
and st h()  . Calls to nsp?Trngl()  and nsp?bTrngl()  can be combined 
on the same statePtr .

Related Topics

Trngl Produces the next sample of a triangle.

TrnglInit Initializes a triangle with a given frequency, phase,  
magnitude, and asymmetry.

Trngl
Produces the next sample of a triangle.

float nspsTrngl(NSPSTrnglState * statePtr );
/* real values; single precision */

SCplx nspcTrngl(NSPCTrnglState * statePtr );
/* complex values; single precision */

double nspdTrngl(NSPDTrnglState * statePtr );
/* real values; double precision */

DCplx nspzTrngl(NSPZTrnglState * statePtr );
/* complex values; double precision */

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( ) n,⋅ 0 1 2 …, , ,= =

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( )
j st h 2π rfreq n phase+⋅⋅( )⋅

+(
) n,

⋅
0 1 2 …, , ,

=
=
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d 
float nspwTrngl(NSPWTrnglState * statePtr );
/* real values; short integer */

WCplx nspvTrngl(NSPVTrnglState * statePtr ); 
/* complex values; short integer */

statePtr Pointer to the NSP?TrnglState  structure. 

Discussion

The nsp?Trngl()  function references the NSP?TrnglState  structure and 
returns the next sample of the triangle.  The first call to nsp?Trngl()  
returns the n = 0 sample of x(n) .  

For real triangles, x(n)  is defined as:

For complex triangles, x(n)  is defined as:

See page 5-10, “Application Notes,” for the definition of functions ct h()  
and st h()  . Calls to nsp?Trngl()  and nsp?bTrngl()  can be mixed on 
the same statePtr .

Related Topics 

bTrngl Produces consecutive samples of a triangle.

TrnglInit Initializes a triangle with a given frequency, phase, an
magnitude.

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( ) n,⋅ 0 1 2 …, , ,= =

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( )
j st h 2π rfreq n phase+⋅⋅( )⋅

+(
) n,

⋅
0 1 2 …, , ,

=

=
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t 
TrnglInit
Initializes a triangle with a given 
frequency, phase, and magnitude.

void nspsTrnglInit(float rfreq , float phase , float mag, float asym,
NSPSTrnglState * statePtr );
/* real values; single precision */

void nspcTrnglInit(float rfreq , float phase , float mag, float asym,
NSPCTrnglState * statePtr );
/* complex values; single precision */

void nspdTrnglInit(double rfreq , double phase , double mag, 
double asym, NSPDTrnglState * statePtr );
/* real values; double precision */

void nspzTrnglInit(double rfreq , double phase , double mag,
double asym, NSPZTrnglState * statePtr );
/* complex values; double precision */

void nspwTrnglInit(float rfreq , float phase , short mag, float asym,
NSPWTrnglState * statePtr ); 
/* real values; short integer */ 

void nspvTrnglInit(float rfreq , float phase , short mag, float asym,
NSPVTrnglState * statePtr ); 
/* complex values; short integer */ 

rfreq The frequency of the triangle relative to the sampling 
frequency.  It must be between 0.0 and 0.5.

phase The phase of the triangle relative to a cosine triangular 
analog wave. It must be between 0.0 and 2π. 

mag The magnitude of the triangle; that is, the maximum 
value attained by the wave.

asym The asymmetry h of a triangle. It must be between -π 
and π. If h=0, then the triangle is symmetric and a direc
analog of a tone.

statePtr Pointer to the NSP?TrngleState  structure.
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Discussion

The nsp?TrnglInit()  function initializes the given NSP?TrnglState  
structure pointed to by statePtr  with the specified frequency, phase, and
magnitude.  These parameters are used to generate the triangle.  The  
NSP?TrnglState  structure is later passed to the nsp?Trngl()  and/or 
nsp?bTrngl()  functions to generate samples of the triangle.

For real triangles, x(n)  is defined as:

For complex triangles, x(n)  is defined as:

See page 5-10, “Application Notes,” for the definition of functions ct h()  
and st h()  . Calls to nsp?Trngl()  and nsp?bTrngl()  can be mixed on 
the same statePtr .

Related Topics

bTrngl  Produces consecutive samples of a triangle.

Trngl Produces the next sample of a triangle.

Pseudo-Random Samples Generation
The Intel Signal Processing Library provides functions for initializing a 
random-sample generator and functions for generating single or multiple 
pseudo-random samples from a previously initialized sample with uniform 
or Gaussian distribution.

This section describes the functions that generate pseudo-random samples 
with uniform or Gaussian distribution.

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( ) n,⋅ 0 1 2 …, , ,= =

x n[ ] mag ct h 2π rfreq n phase+⋅⋅( )
j st h 2π rfreq n phase+⋅⋅( )⋅

+(
) n,

⋅
0 1 2 …, , ,

=

=
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Uniform Distri bution Functions
The pseudo-random samples with uniform distribution functions include: 

nsp?RandUniInit () 

Initializes the NSP?RandUniState  structure required 
to generate the pseudo-random samples. 

nsp?RandUni () Returns consecutive samples, one at a time. 

nsp?bRandUni () Computes samples and stores them in an array. 

Figure 5-3 illustrates the order of use of the pseudo-random sample- 
generating functions with a uniform distribution.

The nsp?RandUniInit()  function initializes the given 
NSP?RandUniState  structure, and the application can pass it to the 
nsp?RandUni()  and/or nsp?bRandUni()  functions to generate 
consecutive samples. Example 5-4 shows a simulation of a noisy digital 
transmission with 7% bit-error rate. 

Figure 5-3 Order of Use of the Uniform Distribut ion Functions

RandUni

RandUniInit

bRandUni
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Example 5-4 Simulation of a Noisy Digital Transition

/* Simulate noisy digital transmission  
 * with 7% bit-error rate  
 */ 

NSPSRandUniState  rstate; 

char             data; 

int              i; 

nspsRandUniInit(0.1, 0.0, 100.0, &rstate); 

for(;;) { 

      /* insert code here to put next eight bits of signal in data  */ 

      for (i=0; i<8; i++) 

            if (nspsRandUni (&rstate) < 7.0) 

                 data = data ^(1<<i); 

      /* each bit now has a 7% probability of being corrupted */ 

         } 

/* dither a signal and quantize to eight bits */ 

NSPDRandUniState rstate; 

double           samps[256]; 

double           dither[256]; 

char             output[256]; 

nspdRandUniInit (0.1, -0.25, 0.25, &rstate); 

for (;;) { 

      /* insert code here to fill samps[] with samples */ 

      nspdbRandUni(&rstate, dither, 256); 

      nspdbAdd2(dither, samps, 256); 

      nspdbFloat2Int(samps, output, 256, 8, NSP_Round | NSP_Clip); 

      } 

... 

} 
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es. 
bRandUni
Computes pseudo-random samples 
with a uniform distribution and stores 
them in an array.

void nspsbRandUni(NSPSRandUniState *statePtr , float *samps , 
int sampsLen ); 
/* real values; single precision */ 

void nspcbRandUni(NSPCRandUniState *statePtr , SCplx *samps , 
int sampsLen ); 
/* complex values; single precision */ 

void nspdbRandUni(NSPDRandUniState *statePtr , double *samps , 
int sampslen ); 
/* real values; double precision */ 

void nspzbRandUni(NSPZRandUniState *statePtr , DCplx *samps , 
int sampsLen ); 
/* complex values; double precision */ 

void nspwbRandUni(NSPWRandUniState *statePtr , short *samps , 
int sampsLen ); 
/* real values; short integer */ 

void nspvbRandUni(NSPVRandUniState *statePtr , WCplx *samps , 
int sampsLen ); 
/* complex values; short integer */ 

statePtr Pointer to the NSP?RandUniState  structure. 

samps Pointer to the array containing pseudo-random sampl

sampsLen The number of elements (samples) in the samps array. 

Discussion

The nsp?bRandUni function computes sampsLen  pseudo-random 
samples with a uniform distribution and stores them in the samps array.

Calls to nsp?RandUni()  and nsp?bRandUni()  can be mixed on the same 
statePtr . 
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s 
Related Topics 

RandUniInit Initializes the state required to generate the 
pseudo-random samples.

RandUni Returns consecutive samples, one at a time.

RandUni 
Returns consecutive pseudo-random 
samples with a uniform distribution, one 
at a time. 

float nspsRandUni(NSPSRandUniState *statePtr ); 
/* real values; single precision */ 

SCplx nspcRandUni(NSPCRandUniState *statePtr ); 
/* complex values; single precision */ 

double nspdRandUni(NSPDRandUniState *statePtr ); 
/* real values; double precision */ 

DCplx nspzRandUni(NSPZRandUniState *statePtr ); 
/* complex values; double precision */  

short nspwRandUni(NSPWRandUniState *statePtr ); 
/* real values; short integer */ 

WCplx nspvRandUni(NSPVRandUniState *statePtr ); 
/* complex values; short integer */ 

statePtr Pointer to the NSP?RandUniState  structure. 

Discussion 

The nsp?RandUni function returns consecutive pseudo-random sample
with a uniform distribution, one at a time.

Related Topics

RandUniInit Initializes the state required to generate the 
pseudo-random samples.

bRandUni Computes pseudo-random samples and stores them in 
an array.
5-19
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RandUniInit
Initializes the state required to generate 
the pseudo-random samples with a 
uniform distribution.

void nspsRandUniInit(float seed , float low , float high , 
NSPSRandUniState * statePtr ); 
/* real values; single precision */ 

void nspcRandUniInit(float seed , float low , float high , 
NSPCRandUniState * statePtr ); 
/* complex values; single precision */ 

void nspdRandUniInit(double seed , double low , double high , 
NSPDRandUniState * statePtr ); 
/* real values; double precision */ 

void nspzRandUniInit(double seed , double low , double high , 
NSPZRandUniState * statePtr ); 
/* complex values; double precision */ 

void nspwRandUniInit(short seed , short low , short high , 
NSPWRandUniState * statePtr ); 
/* real values; short integer */ 

void nspvRandUniInit(short seed , short low , short high , 
NSPVRandUniState * statePtr ); 
/* complex values; short integer */ 

seed The seed value used by the pseudo-random number 
generation algorithm.

low The lower bounds of the uniform distribution’s range.

high The upper bounds of the uniform distribution’s range.

statePtr Pointer to the NSP?RandUniState  structure.

Discussion

The nsp?RandUniInit function initializes the state required to generate 
the pseudo-random samples with a uniform distribution.
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de: 
Related Topics

bRandUni Computes pseudo-random samples and stores them in 
an array.

RandUni Returns consecutive samples, one at a time.

Gaussian Distri bution Functions
The pseudo-random samples with Gaussian distribution functions inclu

nsp?RandGausInit () 

Initializes the NSP?RandGausState  structure required 
to generate the pseudo-random samples. 

nsp?RandGaus () Returns consecutive samples, one at a time. 

nsp?bRandGaus () Computes samples and stores them in an array. 

Figure 5-4 illustrates the order of use of the pseudo-random sample- 
generating functions with a Gaussian distribution.

The nsp?RandGausInit()  function initializes the given 
NSP?RandGausState  structure, and the application can pass it to the 
nsp?RandGaus()  and/or nsp?bRandGaus()  functions to generate 
consecutive samples. Calls to nsp?RandGaus()  and nsp?bRandGaus()  
may be mixed on the same statePtr . 

Figure 5-4 Order of Use of the Gaussian Distribution Functions

RandGaus

bRandGaus

RandGausInit
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. 
bRandGaus 
Computes pseudo-random samples 
with a Gaussian distribution and stores 
them in an array.

void nspsbRandGaus(NSPSRandGausState *statePtr , float *samps , 
int sampsLen ); 
/* real values; single precision */ 

void nspcbRandGaus(NSPCRandGausState *statePtr , SCplx *samps , 
int sampsLen ); 
/* complex values; single precision */ 

void nspdbRandGaus(NSPDRandGausState *statePtr , double *samps , 
int sampslen ); 
/* real values; double precision */ 

void nspzbRandGaus(NSPZRandGausState *statePtr , DCplx *samps , 
int sampsLen ); 
/* complex values; double precision */

void nspwbRandGaus(NSPWRandGausState *statePtr , short *samps , 
int sampsLen ); 
/* real values; short integer */ 

void nspvbRandGaus(NSPVRandGausState *statePtr , WCplx *samps , 
int sampsLen ); 
/* complex values; short integer */ 

statePtr Pointer to the NSP?RandGausState  structure. 

samps Pointer to the array containing pseudo-random samples

sampsLen The number of elements (samples) in the samps array.

Discussion

The nsp?bRandGaus function computes sampsLen  pseudo-random 
samples with a Gaussian distribution and stores them in the samps array.

Related Topics

RandGausInit Initializes the state required to generate the 
pseudo-random samples.

RandGaus Returns consecutive samples, one at a time. 
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les 
RandGaus
Returns consecutive pseudo-random 
samples with a Gaussian distribution, 
one at a time. 

float nspsRandGaus(NSPSRandGausState *statePtr ); 
/* real values; single precision */ 

SCplx nspcRandGaus(NSPCRandGausState *statePtr ); 
/* complex values; single precision */ 

double nspdRandGaus(NSPDRandGausState *statePtr ); 
/* real values; double precision */ 

DCplx nspzRandGaus(NSPZRandGausState *statePtr ); 
/* complex values; double precision */

short nspwRandGaus(NSPWRandGausState *statePtr ); 
/* real values; short integer */ 

WCplx nspwRandGaus(NSPVRandGausState *statePtr ); 
/* complex values; short integer */ 

statePtr Pointer to the NSP?RandGausState  structure.

Discussion

The nsp?RandGaus function returns consecutive pseudo-random samp
with a Gaussian distribution, one at a time. 

Related Topics

RandGausInit Initializes the state required to generate the 
pseudo-random samples. 

bRandGaus Computes pseudo-random samples and stores them in 
an array.
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te 
RandGausInit
Initializes the state required to generate 
the pseudo-random samples with a 
Gaussian distribution.

void nspsRandGausInit(float seed , float mean, float stdDev , 
NSPSRandGausState * statePtr ); 
/* real values; single precision */ 

void nspcRandGausInit(float seed , float mean, float stdDev , 
NSPCRandGausState * statePtr ); 
/* complex values; single precision */ 

void nspdRandGausInit(double seed , double mean, double stdDev , 
NSPDRandGausState * statePtr ); 
/* real values; double precision */ 

void nspzRandGausInit(double seed , double mean, double stdDev , 
NSPZRandGausState * statePtr ); 
/* complex values; double precision */ 

void nspwRandGausInit(short seed , short mean, short stdDev , 
NSPWRandGausState * statePtr ); 
/* real values; short integer */ 

void nspvRandGausInit(short seed , short mean, short stdDev , 
NSPVRandGausState * statePtr ); 
/* complex values; short integer */ 

seed The seed value used by the pseudo-random number 
generation algorithm.

mean The mean of the Gaussian distribution.

stdDev The standard deviation of the Gaussian distribution.

statePtr Pointer to the NSP?RandUniState  structure.

Discussion

The nsp?RandGausInit function initializes the state required to genera
the pseudo-random samples with a Gaussian distribution.
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Related Topics

bRandGaus Computes pseudo-random samples and stores them in 
an array.

RandGaus Returns consecutive samples, one at a time. 
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This chapter describes several of the windowing functions commonly used 
in signal processing.  A window is a mathematical function by which a 
signal is multiplied to improve the characteristics of some subsequent 
analysis.  Windows are commonly used in FFT-based spectral analysis. 

Understanding Window Functions
The Intel Signal Processing Library provides the following functions to 
generate window samples. 

• Bartlett windowing function
• Blackman family of windowing functions
• Hamming windowing function
• Hann windowing function
• Kaiser windowing function

These functions generate the window samples and multiply them into an 
existing signal.  To obtain the window samples themselves, initialize the 
vector argument to the unity vector before calling the window function. 

Example 6-1 shows the code for windowing a time-domain signal and 
taking its FFT.

Library 
function lists
6-1
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If you want to multiply different frames of a signal by the same window 
multiple times, it is better to first calculate the window by calling one of the 
windowing functions (nsp?WinBlackmanStd() , for example) on a vector 
with all elements set to 1.0.  Then use one of the vector multiplication 
functions (nsp?bMpy2() , for example) to multiply the window into the 
signal each time a new set of input samples is available.  This avoids 
repeatedly calculating the window samples.  This is illustrated in
Example 6-2.

Example 6-1 Window and FFT a Single Frame of a Signal 

/* window and FFT a single 
 * frame of a signal 
 */

double xTime[128];

DCplx xFreq[65];

/* insert code here to put time-domain samples in xTime */

nspdWinHamming(xTime, 128);

nspdRealFftNip(xTime, xFreq, 7, NSP_Forw);

/* FFT samples are now in xFreq */
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Related Topics

For more information on windows, see: [Jac89], section 7.3, Windows in 
Spectrum Analysis; [Jac89], section 9.1, Window-Function Technique; and 
[Mit93], section 16-2, Fourier Analysis of Finite-Time Signals.  For more 
information on these references, see the Bibliography at the end of this 
manual.

Example 6-2 Window and FFT Many Frames of a Signal 

/* window and FFT many 
 * frames of a signal 
 */

double  xTime[128], win[128];

DCplx xFreq[65];

nspdbSet(1.0, win, 128);

nspdWinBlackmanStd(win, 128);

for (;;) {

/* insert code here to put 
 * time-domain samples in xTime
 */
nspdbMpy2(win, xTime, 128);

nspdRealFftNip(xTime, xFreq, 7, NSP_Forw);

/* FFT samples are now in xFreq */

}
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WinBartlett
Multiplies a vector by a Bartlett 
windowing function.

void nspsWinBartlett(float * vec , int N);
/* real values; single precision */

void nspcWinBartlett(SCplx * vec , int N);
/* complex values; single precision */

void nspdWinBartlett(double * vec , int N);
/* real values; double precision */

void nspzWinBartlett(DCplx * vec , int N);
/* complex values; double precision */

void nspwWinBartlett(short * vec , int N);
/* real values; short integer */

void nspvWinBartlett(WCplx * vec , int N);
/* complex values; short integer */

N The length of the vector vec[n] .

vec Pointer to the vector to be multiplied by the chosen 
windowing function.

Discussion

The nsp?WinBartlett()  function multiplies a vector by the Bartlett 
(triangle) window.  The complex types (that is, nspcWinBartlett()  and 
nspzWinBartlett() ) multiply both the real and imaginary parts of the 
vector by the same window. 

The Bartlett window is defined as follows:

wbar tlett n( )

2n
N 1–
------------- 0 n

N 1–
2

------------≤ ≤,

2
2n

N 1–
------------–

N 1–
2

------------ n N 1–≤<,





=
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WinBlackman
Multiplies a vector by a Blackman 
windowing function.

void nspsWinBlackman(float * vec , int N, float alpha );

void nspsWinBlackmanStd(float * vec , int N);

void nspsWinBlackmanOpt(float * vec , int N);
/* real values; single precision */

void nspcWinBlackman(SCplx * vec , int N, float alpha );

void nspcWinBlackmanStd(SCplx * vec , int N);

void nspcWinBlackmanOpt(SCplx * vec , int N);
/* complex values; single precision */

void nspdWinBlackman(double * vec , int N, double alpha );

void nspdWinBlackmanStd(double * vec , int N);

void nspdWinBlackmanOpt(double * vec , int N);
/* real values; double precision */

void nspzWinBlackman(DCplx * vec , int N, double alpha );

void nspzWinBlackmanStd(DCplx * vec , int N);

void nspzWinBlackmanOpt(DCplx * vec , int N);
/* complex values; double precision */

void nspwWinBlackman(short * vec , int N, float alpha );

void nspwWinBlackmanStd(short * vec , int N);

void nspwWinBlackmanOpt(short * vec , int N);
/* real values; short integer */

void nspvWinBlackman(WCplx * vec , int N, float alpha );

void nspvWinBlackmanStd(WCplx * vec , int N);

void nspvWinBlackmanOpt(WCplx * vec , int N);
/* complex values; short integer */

alpha An adjustable parameter associated with the Blackman 
windowing equation.

N The number of samples in the vector vec[n] . 
6-5
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vec Pointer to the vector to be multiplied by the chosen 
windowing function.

Discussion

The nsp?WinBlackman()  family of functions multiply a vector by a 
Blackman window.  The complex types (for example, 
nspcWinBlackman()  and nspzWinBlackman() ) multiply both the real 
and imaginary parts of the vector by the same window.  The functions for 
the Blackman family of windows are defined below. 

nsp?WinBlackman().   The nsp?WinBlackman()  function allows the 
application to specify alpha . 

nsp?WinBlackmanStd().   The traditional, standard Blackman window is
provided by the nsp?WinBlackmanStd()  function, which simply calls 
nsp?WinBlackman()  with the value of alpha_std  shown below. 

alpha_std  = -0.16

nsp?WinBlackmanOpt().   The nsp?WinBlackmanOpt()  function 
provides a modified window that has a 30-dB/octave roll-off by calling 
nsp?WinBlackman()  with the value of alpha_opt  shown below. 

For large N, alpha_opt  converges asymptotically to alpha_asym ; the 
application can use this value with nsp?WinBlackman() .

alpha_asym  = -0.25

wblackman n( )
alpha 1+

2
----------------------------- 0.5

2πn
N 1–
------------ 

 cos
alpha

2--------------------
4πn
N 1–
------------ 

 cos––=

0 n N<≤

alpha_opt = 

sin
N - 1

2π

sin
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WinHamming
Multiplies a vector by a Hamming 
windowing function.

void nspsWinHamming(float * vec , int N);
/* real values; single precision */

void nspcWinHamming(SCplx * vec , int N);
/* complex values; single precision */

void nspdWinHamming(double * vec , int N);
/* real values; double precision */

void nspzWinHamming(DCplx * vec , int N);
/* complex values; double precision */

void nspwWinHamming(short * vec , int N);
/* real values; short integer */

void nspvWinHamming(WCplx * vec , int N);
/* complex values; short integer */

N The number of samples in the vector vec[n] . 

vec Pointer to the vector to be multiplied by the windowing 
function.

Discussion

The nsp?WinHamming()  function multiplies a vector by the Hamming 
window.  The complex types (that is, nspcWinHamming()  and 
nspzWinHamming() ) multiply both the real and imaginary parts of the 
vector by the same window.  The Hamming window is defined as follows:

whamming n( ) 0.54 0.46
2πn
N 1–
------------ 

 cos–= 0 n N<≤,
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WinHann
Multiplies a vector by a Hann 
windowing function.

void nspsWinHann(float * vec , int N);
/* real values; single precision */

void nspcWinHann(SCplx * vec , int N);
/* complex values; single precision */

void nspdWinHann(double * vec , int N);
/* real values; double precision */

void nspzWinHann(DCplx * vec , int N);
/* complex values; double precision */

void nspwWinHann(short * vec , int N);
/* real values; short integer */

void nspvWinHann(WCplx * vec , int N);
/* complex values; short integer */

N The number of samples in the vector vec[n] .

vec Pointer to the vector to be multiplied by the windowing 
function.

Discussion

The nsp?WinHann()  function multiplies a vector by the Hann window.  
The complex types (that is, nspcWinHann()  and nspzWinHann() ) 
multiply both the real and imaginary parts of the vector by the same 
window.  The Hann window is defined as follows:

whann n( ) 0.5 0.5
2πn
N 1–
------------ 

 cos–= 0 n N<≤,
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WinKaiser
Multiplies a vector by a Kaiser 
windowing function.

void nspsWinKaiser(float * vec , int N, float beta );
/* real values; single precision */

void nspcWinKaiser(SCplx * vec , int N, float beta );
/* complex values; single precision */

void nspdWinKaiser(double * vec , int N, double beta );
/* real values; double precision */

void nspzWinKaiser(DCplx * vec , int N, double beta );
/* complex values; double precision */

void nspwWinKaiser(short * vec , int N, float beta );
/* real values; short integer */

void nspvWinKaiser(WCplx * vec , int N, float beta );
/* complex values; short integer */

beta An adjustable parameter associated with the Kaiser 
windowing equation.

N The number of samples in the vector vec[n] .

vec Pointer to the vector to be multiplied by the windowing 
function.

Discussion

The nsp?WinKaiser()  function multiplies a vector by the Kaiser window.  
The complex types (that is, nspcWinKaiser()  and nspzWinKaiser() ) 
multiply both the real and imaginary parts of the vector by the same 
window.  The Kaiser family of windows are defined as follows:

where I 0()  is the modified zero-order Bessel function of the first kind.

wkaise r n( )
I 0 beta

N 1–
2------------ 

 
2

n
N 1–

2------------ 
 – 

 
2

– 
 

I 0 beta
N 1–

2
------------ 

 
 
 

---------------------------------------------------------------------------------------------- 0 n N<≤,=
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This chapter describes the Fourier transform functions in the Intel Signa
Processing Library.  The library contains functions which perform the 
discrete Fourier transform (DFT) and the fast Fourier transform (FFT) of 
signal samples. The library also includes variations of the basic functions to 
support different application requirements.

The basic Fourier Transform functions are described in these sections:

DFT Function .  This section describes the nsp?Dft()  function.  This 
function performs the complex Fourier transform of a finite-length signal.  
That is, the signal can be represented as a sequence of finite duration.

DFT for a Given Frequency (Goertzel) Functions . This section 
describes the GoertzInit() , GoertzReset() , bGoertz() , and 
Goertz()  functions based on Goertzel algorithm.  These functions 
compute discrete Fourier transforms for individual frequencies.

Basic FFT Functions .  This section describes the nsp?Fft() , 
nsp?FftNip() , nsp?rFft() , and nsp?rFftNip()  functions.  These 
functions compute the complex fast Fourier transform of a signal.  The fas
Fourier transform produces identical results as the discrete Fourier 
transform (provided the length of the DFT is a power of 2) but is faster.

The variations of the basic functions described in the sections that follow 
are significantly faster than the standard complex FFT functions describe
in “Basic FFT Functions”:

Low-Level FFTs of Real Signals .  This section describes the 
nsp?RealFftl()  and nsp?RealFftlNip()  functions.  These functions 
are optimized for real-valued input and provide a low-level interface to 

Library 
function lists
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compute the FFT of real signals.  The nsp?RealFftl()  and 
nsp?RealFftlNip()  functions exploit symmetry properties of the basic
Fourier transform.

Low-Level FFTs of Conjugate-Symmetric Signals .  This section 
describes the nsp?CcsFftl()  and nsp?CcsFftlNip()  functions.  These 
functions are optimized for conjugate-symmetric input and provide a 
low-level interface to compute the FFT of conjugate-symmetric signals.  
The nsp?CcsFftl()  and nsp?CcsFftlNip()  functions exploit 
symmetry properties of the basic Fourier transform.

FFTs of Real Signals .  This section describes the nsp?RealFft()  and 
nsp?RealFftNip()  functions.  These functions are optimized for 
real-valued input.  The nsp?RealFft()  and nsp?RealFftNip()  
functions exploit symmetry properties of the basic Fourier transform.

FFTs of Conjugate-Symmetric Signals .  This section describes the 
nsp?CcsFft()  and nsp?CcsFftNip()  functions.  These functions are 
optimized for conjugate-symmetric input.  The nsp?CcsFft()  and 
nsp?CcsFftNip()  functions exploit symmetry properties of the basic 
Fourier transform.

FFTs of Two Real Signals .  This section describes the 
nsp?Real2Fft()  and nsp?Real2FftNip()  functions.  These functions 
simultaneously compute two real FFTs using a single complex FFT. 

FFTs of Two Conjugate-Symmetric Sig nals .  This section describes 
the nsp?Ccs2Fft()  and nsp?Ccs2FftNip()  functions.  These functions 
simultaneously compute two conjugate-symmetric FFTs using a single 
complex FFT. 

The variations of the basic FFT include normal bit order versus bit-reversed 
order, real versus complex signals, and complex arrays versus paired real 
arrays. 

Memory Reclaim Functions . This section describes the 
nspFreeBitrevTbls()  and nsp?FreeTwdTbls()  functions. These 
functions free the memory allocated for bit-reversed indices tables and for 
twiddle tables, respectively.
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The library also contains specialized functions which perform the Fourier 
transform of real signals and conjugate-symmetric signals.  These functions 
are divided into three groups. 

• Low-level functions store their output in RCPack or RCPerm format.  
See “Low-Level FFTs of Real Signals” for a description of the 
nsp?RealFftl()  and nsp?RealFftlNip() functions.  See 
“ Low-Level FFTs of Conjugate-Symmetric Signals” for a description 
of the nsp?CcsFftl()  and nsp?CcsFftlNip()  functions.  These 
sections also describe RCPack and RCPerm formats, as well as vector 
multiplication in RCPack or RCPerm format. 

• Higher-level functions store their output in RCCcs format.  See “FFTs 
of Real Signals” for a description of the nsp?RealFft()  and 
nsp?RealFftNip() functions.  See “FFTs of Conjugate-Symmetric 
Signals” for a description of the nsp?CcsFft()  and 
nsp?CcsFftNip()  functions.  These sections also describe the RCCcs 
format.

• The library contains functions which simultaneously compute the 
Fourier transform of two real signals or two conjugate-symmetric 
signals using a single complex FFT.  The results are stored in RCCcs 
format.  See “FFTs of Two Real Signals” for a description of the 
nsp?Real2Fft()  and nsp?Real2FftNip() functions.  See “FFTs of 
Two Conjugate-Symmetric Signals” for a description of the 
nsp?Ccs2Fft()  and nsp?Ccs2FftNip()  functions.

Figure 7-1 contains a matrix which lists the names of the Fourier transf
functions in the Intel Signal Processing Library. The functions are arranged 
according to input and output format. The left-most column lists the 
possible input format, while the header lists the possible output format. 
example, if you have one real array to use as input for an FFT function, find 
“1 real array” in the left-most column and read horizontally.  You can use
either nsp?RealFftl()  or nsp?RealFftlNip()  to obtain one output 
array in RCPerm or RCPack format or you can use either nsp?RealFft()  
or nsp?RealFftNip()  to obtain one output array in RCCcs format.

The arrows in the matrix indicate inverse functions.  For example, the 
inverse function of nsp?CcsFftl()  is nsp?RealFftl() ; the inverse 
function of nsp?Real2FftNip()  is nsp?Ccs2FftNip() .  

For the purposes of clarity in the matrix, the nsp?  prefix is not included in 
the function names. 
7-3
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DFT Function

This section describes the function which calculates the discrete Fourier 
transform of a signal. 

Dft
Computes the forward or inverse 
discrete Fourier transform (DFT) of a 
signal.

void nspcDft(const SCplx * inSamps , SCplx * outSamps , int length , 
int flags );  /*complex values; single precision */

void nspzDft(const DCplx * inSamps , DCplx * outSamps , int length , 
int flags ); /*complex values; double precision */

void nspvDft(const WCplx * inSamps , WCplx * outSamps , int length , 
int flags , int ScaleMode , int * ScaleFactor );
/*complex values; short integer */

flags Specifies how the DFT should be performed. 

inSamps Pointer to the complex-valued input array. 

length The number of samples in the arrays inSamps[n]  and 
outSamps[n] . 

outSamps Pointer to the complex-valued output array. 

Discussion

The nsp?Dft()  function computes the forward and inverse discrete 
Fourier transform (DFT).  Note that the FFT (see “Fft” in page 7-17 for a 
description of nsp?Fft() ) performs the equivalent function for certain 
length DFTs, but is much faster. 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
7-5
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s 
In the following definition of the discrete Fourier transform, N = length .  
Also, in the forward direction, x(n)  is inSamps[n]  and X(k)  is 
outSamps[k] ; in the inverse direction, x(n)  is outSamps[n]  and X(k)  is 
inSamps[k] . 

The definition of the inverse discrete Fourier transform is:

The argument flags  consists of the bitwise-OR of one or more of the flag
described in Table 7-1. 

One and only one of the values NSP_Forw, NSP_Inv , and NSP_Init  can 
be specified in the flags  argument.

Example 7-1 illustrates the use of the nsp?Dft()  function.

Table 7-1 Value for the flags A rgument for the DFT Function

Value Description

NSP_Forw Specifies a forward DFT with the inSamps[n]  
array providing x(n)  and the outSamps[n]  
array containing X(k) .

NSP_Init Specifies that the function should initialize the 
twiddle table (if required), but perform no other 
computation.

NSP_Inv Specifies an inverse DFT with the inSamps[n]  
array providing X(k)  and the outSamps[n]  
array containing x(n) .

NSP_NoScale Specifies that when performing an inverse 
transform, the 1/N normalization should not be 
performed.

X k( ) x n( ) j 2πkn
N

-------– 
 exp⋅

n 0=

N 1–

∑=

x n( )
1
N
--- X k( ) j 2πkn

N
------- 

 exp⋅
k 0=

N 1–

∑=
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Application Notes:  The complex twiddle factors are calculated using 
nsp?GetDftTwdTbl() , or by using an internal recurrence relation. 

Use the nsp?Dft()  function when the number of samples (length ) is not 
a power of 2.  The DFT algorithm is generally less efficient than the FFT.  If 
your application is concerned with speed, you should use the FFT algorithm 
instead.

Related Topics

See [Mit93], section 8-2, Fast Computation of the DFT, for more 
information on the fast computation of the discrete Fourier transform. 

DFT for a Given Frequency (Goertzel) Functions
The functions described in this section compute a single or a number o
discrete Fourier transforms for a given frequency. These functions use a 
Goertzel algorithm and are more efficient when a small number of DFTs is
needed. The Goertzel functions perform a primary initialization of the 
required data, repeated initialization to apply the algorithm for a new sign
and unchanged frequency, a DFT computation for a single input signal, and
a number of DFT computations for a block of input signals.

Figure 7-2 illustrates the order of use of the Goertzel functions.

Example 7-1 Using nsp?Dft() to Perf orm the DFT

/* 
 * Calculate 100 point DFT of an input signal.
 * Input signal is in xTime, output is in xFreq.
 */

DCplx    xTime[100], xFreq[100];

/* insert code here to put time domain 
samples in xTime */

nspzDft(xTime, xFreq, 100, NSP_Forw);

/* xFreq now has frequency-domain samples */
7-7
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.  
is, 
Depending on the application, two modes of processing Goertzel signals 
can be implemented:

batch The signal to be processed is finite and stored entirely in
memory.  Such a signal can be processed in “batch” 
mode, that is, all at once in a single (large) operation.

cyclic The signal to be processed is not stored entirely in 
memory, either because it is too large, infinite in length, 
or the output is required before input is entirely known
Such a signal can be processed in “cyclic” mode, that 
in small pieces.  In this case, a portion of the signal is 
read into memory, processed, and output. Then the 
process is repeated with the next portion.

The functions described in this section process a signal in the cyclic mode.

Figure 7-2 Order of Use of the Goertzel F unctions

Goertz

bGoertz

GoertzInit

GoertzReset
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bGoertz
Computes the DFT for a block of 
successive samples for a given 
frequency.

Scplx nspsbGoertz(NSPSGoertzState * stPtr , float * src , int len );
/* real values; single precision */

Dcplx nspcbGoertz(NSPCGoertzState * stPtr , SCplx * src , int len );

/* complex values; single precision */

Scplx nspdbGoertz(NSPDGoertzState * stPtr , double * src , int len );
/* real values; double precision */

Dcplx nspzbGoertz(NSPZGoertzState * stPtr , DCplx * srcs , int len );
/* complex values; double precision */

Scplx nspwbGoertz(NSPWGoertzState * stPtr , short * src , int len,
int ScaleMode , int * ScaleFactor );
/* real values; short integer */

Scplx nspvbGoertz(NSPVGoertzState * stPtr , WCplx * src , int len,
int ScaleMode , int * ScaleFactor );
/* complex values; short integer */

src Pointer to the array which stores the block of successive 
input samples. 

len The number of input samples in the src  array. 

stPtr Pointer to the NSP?GoertzState  structure. 

Discussion

The nsp?bGoertz()  function references the NSP?GoertzState 

structure for frequency, delay line and constants, and computes len  DFTs  
for a block of successive input samples contained in the array src . 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
7-9
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Related Topics

Goertz  Computes the DFT for a single signal count for a given 
frequency (see page 7-10).

CoertzInit  Initializes the frequency, delay line, and constants 
required for Goertzel functions (see page 7-11).

GoertzReset  Resets the internal delay line (see page 7-12).

Goertz
Computes the DFT for a given 
frequency for a single signal sample.

SCplx nspsGoertz(NSPSGoertzState * stPtr , float * sample );
/* real values; single precision */

DCplx nspcGoertz(NSPCGoertzState * stPtr , SCplx * sample );

/* complex values; single precision */

SCplx nspdGoertz(NSPDGoertzState * stPtr , double * sample );
/* real values; double precision */

DCplx nspzGoertz(NSPZGoertzState * stPtr , DCplx * sample );
/* complex values; double precision */

WCplx nspwGoertz(NSPWGoertzState * stPtr , short * sample,
int ScaleMode , int * ScaleFactor );
/* real values; short integer */

WCplx nspvGoertz(NSPVGoertzState * stPtr , WCplx * sample,
int ScaleMode , int * ScaleFactor );
/* complex values; short integer */

sample The input sample to process. 

stPtr Pointer to the NSP?GoertzState  structure. 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

The nsp?Goertz()  function  computes a DFT  for an single signal 
sample . 

Related Topics

bGoertz  Computes the DFT for a block of signal counts for a 
given frequency (see page 7-9).

GoertzInit  Initializes the frequency, delay line, and constants 
required for Goertzel functions (see page 7-11).

GoertzReset  Resets the internal delay line (see page 7-12).

GoertzInit
Initializes the frequency, delay line, and 
constants for Goertzel functions.

void nspsGoertzInit(float freq , NSPSGoertzState * stPtr );
/* real signal; single precision */

void nspcGoertzInit(float freq , NSPCGoertzState * stPtr );

/* complex signal; single precision */

void nspdGoertzInit(double freq , NSPDGoertzState * stPtr );
/* real signal; double precision */

void nspzGoertzInit(double freq , NSPZGoertzState * stPtr );
/* complex signal; double precision */

void nspwGoertzInit(float freq , NSPWGoertzState * stPtr );
/* real signal; short integer */

void nspvGoertzInit(float freq , NSPVGoertzState * stPtr );
/* complex signal; short integer */

freq Normalized frequency value (0 < freq  < 0.5), for which 
the DFT is computed. 

stPtr Pointer to the NSP?GoertzState  structure.
7-11
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Discussion

The nsp?GoertzInit()  function initializes the NSP?GoertzState data 
structure which is used by other Goertzel functions. The function saves the 
frequency freq  value and all required constants, and resets the internal
delay line.

Related Topics

bGoertz  Computes the DFT for a block of successive samples for
a given frequency (see page 7-9).

Goertz Computes the DFT for a single signal and a given 
frequency (see page 7-10).

GoertzReset Resets the internal delay line (see page 7-12).

GoertzReset
Resets the internal delay line.

void nspsGoertzReset(NSPSGoertzState * stPtr );
/* real signal; single precision */

void nspcGoertzReset(NSPCGoertzState * stPtr );

/* complex signal; single precision */

void nspdGoertzReset(NSPDGoertzState * stPtr );
/* real signal; double precision */

void nspzGoertzReset(NSPZGoertzState * stPtr );
/* complex signal; double precision */

void nspwGoertzReset(NSPWGoertzState * stPtr );
/* real signal; short integer */

stPtr Pointer to the NSP?GoertzState  structure. 
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Discussion

The nsp?GoertzReset()  function resets the internal delay line contained 
in the NSP?GoertzState  data structure. Resetting the delay line is 
necessary in order to repeat the algorithm execution without any change of 
frequency for which the DFT is to be computed.

Related Topics

bGoertz  Computes the DFT for a block of successive samples for
a given frequency (see page 7-9).

Goertz  Computes the DFT for a single signal and a given 
frequency (see page 7-10).

GoertzInit  Initializes the frequency, delay line, and constants 
required for Goertzel functions (see page 7-11).

Example 7-2 illustrates the use of Goertzel functions for selecting the 
magnitudes of a given frequency when computing DFTs.
7-13
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Application Notes.  Each value of the DFT computed by the Goertzel 
algorithm takes 2N+2 real multiplications and 4N real additions. You can 
then use an FFT to compute the total DFT of the Nlog2(N) order of real 
multiplications and additions. Therefore, the Goertzel algorithm is efficient 
only if less then log2(N) input counts are necessary.

Example 7-2 Using Goertzel Functions for Selecting Magnitudes of a Given 
Frequency

/* Compute DFT for selected frequency = 0.125 */

NSPSGoertz gs;

/* initialize and process sample-by-sample */

nspsGoertzInit(0.125, &gs);

for (n=0; n<2000; n++) {
     xval = /* insert code here to get the next input
               sample */
     x[n] = xval;
     dftval1 = nspsGoertz(&gs, xval);
}

/* re-initialize and process the whole block */

nspsGoertzReset(&gs);
dftval2 = nspsbGoertz(&gs, x, 2000);

/* dftval1 and dftval2 must be equal */
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Basic FFT Functions
The functions described in this section compute the forward (or inverse
complex fast Fourier transform of a signal.  The FFT produces identical
results as the discrete Fourier transform (provided the length of the DFT
power of 2), but is faster (see “Dft” in page 7-5 for a description of 
nsp?Dft() ).  The length of the vector transformed by the FFT must be 
power of 2. 

If your application takes the FFTs of real signals or complex conjugate 
signals, you should consider using the FFT functions optimized for this 
purpose.  For example, see “RealFft” in page 7-38 and “CcsFft” in 
page 7-44 for a description of the nsp?RealFft()  and nsp?CcsFft()  
functions.

For more information on the fast Fourier transform, see Appendix A.

Flags Argument 

The Fourier transform functions require you to specify the direction of the 
FFT and whether the input or output of the function is in bit-reversed order.  
Specify these items in the flags  argument.  The flags  argument is 
evaluated as the bitwise-OR of the values you enter.  The values you c
enter for the flags  argument are listed in Table 7-2. 

Table 7-2 Values for the flags A rgument for the FFT F unctions

Value Description

NSP_Forw Specifies a forward FFT with inSamps[n]  (or 
samps[n] ) providing x(n)  on entry and 
outSamps[k]  (or samps[k] ) containing X(k)  on 
exit.

NSP_InBitRev Specifies that the input is in bit-reversed order and 
that the output should be generated in normal order.

NSP_Init Specifies that the twiddle table and bit reversal table 
for this order  FFT should be initialized; no other 
computation is performed and the other arguments 
(inSamps , outSamps , samps) are not 
referenced.  If other flags are specified, they are 
disregarded.

                                                              continued ☛
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8. 
  
You must specify one and only one of the NSP_Forw, NSP_Inv  and 
NSP_Init  values in the flags  argument. 

You have the option of specifying none of the bit-reversal flag values, 
(NSP_NoBitRev , NSP_InBitRev , and NSP_OutBitRev ) or you can 
specify, at most, one of them.  For example, it is not legal to specify bot
NSP_InBitRev  and NSP_OutBitRev .  The default is no bit-reversal 
(NSP_NoBitRev ).  The bit-reversal flags provide low-level access to the 
FFT algorithm.

The NSP_UseMMX and NSP_UseFastMMX values are only valid for integer  
w and v data  types. For any other data types they will be ignored.

Application Note:   The current threashold for switching is of the order 
You are advised to maintain the maximum value of the vector when setting
either the NSP_UseMMX or NSP_UseFastMMX.

NSP_Inv Specifies an inverse FFT with inSamps[k]  (or 
samps[k] ) providing X(k)  on entry and 
outSamps[n]  (or samps[n] ) containing x(n)  on 
exit.

NSP_NoBitRev Specifies that the input is in normal order and that 
the output should be generated in normal order.  This 
is the default if neither NSP_InBitRev  nor 
NSP_OutBitRev  are specified.

NSP_NoScale Specifies that when performing an inverse transform, 
the 1/N normalization should not be calculated.

NSP_OutBitRev Specifies that the input is in normal order and that 
the output should be generated in bit-reversed order.

NSP_UseMMX Specifies that regardless of the FFT order value, 
the   MMX code will be used. Normally, the 
floating-point  code will be used if the order of the  
vector exceeds the predefined threashold order.  See 
Application Note below. 

NSP_UseFastMMX Specifies that the fast MMX algorithm will be used.  
This mode can lower the accuracy. 

Table 7-2 Values for the flags A rgument for the FFT F unctions (continued)

Value Description
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Fft, FftNip, rFft, rFftNip
Computes the forward or inverse fast 
Fourier transform (FFT) of a signal.

void nspcFft(SCplx * samps, int order , int flags );

void nspcrFft(float * reSamps , float * imSamps, int order , int flags );

void nspcFftNip(const SCplx * inSamps , SCplx * outSamps , int order ,
int flags );

void nspcrFftNip(const float * reInSamps , const float * imInSamps ,
float * reOutSamps , float * imOutSamps , int order , int flags );
/*complex values; single precision */

void nspzFft(DCplx * samps, int order , int flags );

void nspzrFft(double * reSamps , double * imSamps, int order ,
int flags );

void nspzFftNip(const DCplx * inSamps , DCplx * outSamps , int order ,
int flags );

void nspzrFftNip(const double * reInSamps , const double * imInSamps ,
double * reOutSamps , double * imOutSamps , int order , int flags );

/*complex values; double precision */

void nspvFft(WCplx * samps, int order , int flags, int  ScaleMode, 
int  *ScaleFactor );

void nspvrFft(short * reSamps , short * imSamps, int order , int flags, 
int  ScaleMode, int  *ScaleFactor );

void nspvFftNip(const WCplx * inSamps , WCplx * outSamps , int order ,
int flags, int  ScaleMode, int  *ScaleFactor );

void nspvrFftNip(const short * reInSamps , const short * imInSamps ,
short * reOutSamps , short * imOutSamps , int order , int flags,
int  ScaleMode, int  *ScaleFactor );
/*complex values; short integer */

flags Indicates the direction of the fast Fourier transform an
whether bit-reversal is performed.  The values for the 
flags  argument are described in “Flags Argument.”
7-17
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imInSamps  Pointer to the real array which holds the imaginary part 
of the input to the nsp?rFftNip()  function.  The 
imInSamps[n]  array must be of length N = 2order .

imOutSamps  Pointer to the real array which holds the imaginary part 
of the output of the nsp?rFftNip()  function.  The 
imOutSamps[n]  array must be of length N = 2order .

imSamps Pointer to the real array which holds the imaginary part 
of the input and output of the nsp?rFft()  function.  
The imSamps[n]  array must be of length N = 2order .

inSamps  Pointer to the complex array which holds the input to the 
nsp?FftNip()  function.  The inSamps[n]  array must 
be of length N = 2order .

order Base-2 logarithm of the number of samples in the FFT
(N).

outSamps  Pointer to the complex array which holds the output 
from the nsp?FftNip()  function.  The outSamps[n]  
array must be of length N = 2order .

reInSamps  Pointer to the real array which holds the real part of the 
input to the nsp?rFftNip()  function.  The 
reInSamps[n]  array must be of length N = 2order .

reOutSamps Pointer to the real array which holds the real part of the 
output of the nsp?rFftNip()  function.  The 
reOutSamps[n]  array must be of length N = 2order .

reSamps  Pointer to the real array which holds the real part of the 
input and output of the nsp?rFft()  function.  The 
reSamps[n]  array must be of length N = 2order .

samps Pointer to the complex array which holds the input and 
output samples for the nsp?Fft()  function.  The 
samps[n]  array must be of length N = 2order . 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

nsp?Fft() .  The nsp?Fft()  function computes a complex FFT in-place 
using the complex array samps[n]  for input and output.  This is 
functionally equivalent to nsp?Dft() , except that the DFT algorithm does
not compute in-place.  The length of the FFT must be a power of 2. 

nsp?FftNip() .  The nsp?FftNip()  function computes a complex FFT 
not-in-place, that is, it uses separate input and output arrays.  The comp
array inSamps[n]  holds the input samples (time-domain for forward 
direction), and outSamps[n]  holds the output samples (frequency-doma
for forward direction).  This is functionally equivalent to nsp?Dft() , 
except the length of the FFT must be a power of 2.

nsp?rFft() .  The nsp?rFft()  function computes a complex FFT 
in-place, and places the real and imaginary parts into separate arrays.  Th
real array reSamps[n]  holds the real part, and the real array imSamps[n]  
holds the imaginary part.  This form of the FFT is only used in special 
situations.

nsp?rFftNip() .  The nsp?rFftNip()  function computes a complex 
FFT not-in-place.  That is, on both input and output, it uses separate arra
for the real and imaginary parts.  The arrays reInSamps[n]  and 
imInSamps[n]  hold the input samples, while the arrays reOutSamps[n]  
and imOutSamps[n]  hold the output samples.  This form of the FFT is 
only used in special situations.

Example 7-3 shows the code for standard fast Fourier transform usage

Example 7-3 Using nsp?Ff tNip() to Perform the FFT 

/* Calculate 128-point FFT of an input signal.
 * Input signal is in xTime, output is in xFreq.
 * “order” of FFT is 7 (log-base-2 of 128).
 */

DCplx xTime[128], xFreq[128];

/* insert code here to put time-domain samples in xTime */

nspzFftNip(xTime, xFreq, 7, NSP_Forw);

/* xFreq now has frequency-domain samples */
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Example 7-4 shows the code for using the FFT to low-pass filter.

Example 7-5 shows the code for using the FFT to implement the fast 
convolution of complex signals.

Application Notes:   The twiddle factors can be obtained either from the 
function nsp?GetFftTwdTbl()  or by using an internal recurrence 
relation.

Example 7-4 Using nsp?Ff tNip() to Low -Pass Filter

/* Low-pass filter an input signal by taking 
 * its FFT, zeroing out the high frequency 
 * components, and taking its inverse FFT. Input 
 * signal is in “xTime” output is in “yTime.”
 */

DCplx xTime[128], xFreq[128], yTime[128];

nspzFftNip(xTime, xFreq, 7, NSP_Forw);

nspzZero(xFreq+32, 64); /* zero high frequencies */

nspzFftNip(xFreq, yTime, 7, NSP_Inv);

/* low-pass version of xTime is now in yTime */

Example 7-5 Using nsp?Fft() to Impl ement Fast Convolution

/* Use a 256-point FFT to implement the fast
 * convolution of two complex signals. This
 * is accomplished by taking the FFTs of both 
 * input signals (x and h), multiplying them 
 * together in the frequency domain, and then
 * taking the inverse FFT of their product.
 */

DCplx h[256], x[256];

/* insert code here to fill in h and x vectors */

nspzFft(h, 8, NSP_Forw|NSP_OutBitRev);
nspzFft(x, 8, NSP_Forw|NSP_OutBitRev);
nspzMpy2(h, x, 256);
nspzFft(x, 8, NSP_Inv|NSP_InBitRev);
/* x now contains the (circular) convolution of h and x */
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The algorithm for the bit-reversed, not in-place functions (that is, the 
nsp?FftNip()  and nsp?rFftNip() functions with the NSP_InBitRev  
and NSP_OutBitRev  flags specified) provide minimal performance 
advantage over the normal-ordered, not-in-place algorithm.  This is because 
the library can optimize the normal-ordered, not-in-place algorithms by 
including the bit-reversal into the first FFT stage.  In contrast, the 
bit-reversed, not-in-place combinations first copy the input array into the 
output array and then perform the computation in-place.  Thus there is little 
reason for applications to use the bit-reversed forms unless bit-reversed
happens to be available.

Low-Level FFTs of Real Signals 
The functions described in this section provide a low-level interface to 
compute the FFT of real signals (in either the time- or frequency-domai
Real signals occur frequently in the real world.  These functions exploit 
symmetry properties of the Fourier transform and compute the FFT of real 
signals much more efficiently than the FFT functions described in the 
previous section. 

These functions are referred to as “low-level” because the results of the F
are formatted in a somewhat complicated fashion.  The results can be sto
in either RCPack or RCPerm format.  These formats arrange sequences of 
real and complex samples in ways which are more convenient for the FFT 
algorithms.  For more information on these formats, see the sections 
“RCPack Format” and “RCPerm Format” later in this chapter.  For the 
description of a higher level interface to the FFT algorithm, see “RealFft” in 
page 7-38 for information on nsp?RealFft() .

Flags Argument

For low-level FFT functions, the flags  argument must also declare if the 
output will be stored in RCPack or RCPerm format.  This is in addition to 
the flag values described earlier in “Flags Argument” in the “Basic FFT 
Functions” section.
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The RCPack and RCPerm flag values are described in Table 7-3.  One of 
these flag values must be specified as one of the elements in the flags  
argument.

Inverses of the Low -Level FFTs of Real Signals

The nsp?RealFftl()  and nsp?RealFftlNip()  functions do not 
provide their own inverses.  Instead, the inverses are provided by the 
nsp?CcsFftl()  and nsp?CcsFftlNip()  functions.

For example, calling nspdRealFftl()  with the NSP_Forw flag 
transforms a real time-domain signal into a conjugate-symmetric 
frequency-domain signal.  The function nspdCcsFftl()  called with the 
NSP_Inv  flag can then be used to transform it back to the original, real 
time-domain signal.  In typical signal processing, these two operations (real 
time-domain to conjugate-symmetric frequency-domain and back) are more
frequently used than the other two operations (conjugate-symmetric 
time-domain to real frequency-domain forward and back).  For more 
information about inverses of Fourier transforms, see Appendix A.

Table 7-3 Flag Values for n sp?RealFftl() and nsp?RealFftlNip() F unctions

Value Description 

NSP_OutRCPack Specifies that the output array (samps[n]  or 
outSamps[n] ) should be arranged in RCPack 
format.

NSP_OutRCPerm Specifies that the output array (samps[n]  or 
outSamps[n] ) should be arranged in RCPerm 
format.

NOTE.  The bit-reversal flag values (NSP_NoBitRev , NSP_InBitRev , 
and NSP_OutBitRev ) are not available for the nsp?RealFftl()  and 
nsp?RealFftlNip()  functions.  This is because the algorithms used to
compute real FFTs do not naturally use bit-reversed ordering.
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RealFftl, RealFftlNip
Computes the forward or inverse FFT 
of a real signal using RCPack or 
RCPerm format.

void nspsRealFftl(float * samps, int order , int flags );

void nspsFftlNip(const float * inSamps , float * outSamps , int order ,
int flags );
/* real values, single precision */

void nspdRealFftl(double * samps, int order , int flags );

void nspdRealFftlNip(const double * inSamps , double * outSamps ,
int order , int flags );
/* real values, double precision */

void nspwRealFftl(short * samps, int order , int flags, 
int  ScaleMode, int  *ScaleFactor );

void nspwFftlNip(const short * inSamps , float * outSamps , int order ,
int flags, int  ScaleMode, int  *ScaleFactor );
/* real values, short integer */

flags Indicates the direction of the fast Fourier transform, 
whether bit-reversal is performed, and the packing typ
for the function.  The argument consists of the 
bitwise-OR of one or more flags.  One and only one of 
the flag values NSP_Forw, NSP_Inv , and NSP_Init  
must be specified.  The NSP_NoScale  flag is optional.  
The values for the flags  argument are described in 
Table 7-2,  the “Basic FFT Functions” section, and 
Table 7-3, the “Low-Level FFTs of Real Signal” 
section.

inSamps  Pointer to the real array which holds the input to the 
nsp?RealFftlNip()  function.  The inSamps[n]  
array must be of length N = 2order .

order The base-2 logarithm of the number of samples in the 
FFT (N). 
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outSamps  Pointer to the real array which holds the output from the
nsp?RealFftlNip()  function.  The outSamps[n]  
array must be of length N = 2order .

samps Pointer to the real array which holds the input and 
output samples for the nsp?RealFftl()  function.  The 
samps[n]  array must be of length N = 2order .

Discussion

nsp?RealFftl() .  The nsp?RealFftl()  function computes the FFT 
in-place.  In the forward direction (flags  = NSP_Forw), the array 
samps[n]  contains N real, time-domain samples that define an N-length 
sequence x(n) .  On exit, samps[n]  contains N real values in either 
RCPack or RCPerm format that describe the forward FFT of x(n) . 

In the inverse direction (flags  = NSP_Inv ), samps[k]  contains N real 
frequency-domain samples that define a N-length sequence X(k) .  On exit, 
samps[k]  contains N real values, in either RCPack or RCPerm format, that 
describe the inverse FFT of X(k) .

nsp?RealFftlNip() .  The nsp?RealFftlNip()  function computes the 
FFT not-in-place.  In the forward direction (flags  = NSP_Forw), the input 
array inSamps[n]  contains N real, time-domain samples that define a 
N-length sequence x(n) .  On exit, the output array outSamps[n]  contains 
N real values in either RCPack or RCPerm format that describe the forward 
FFT of x(n) . 

In the inverse direction (flags  = NSP_Inv ), the input array inSamps[k]  
contains N real frequency-domain samples that define a N-length sequence 
X(k) .  On exit, the output array outSamps[k]  contains N real values, in 
either RCPack or RCPerm format, that describe the inverse FFT of X(k) .

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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RCPack Format 
This discussion, and the notation used in this section, assumes a forward 
FFT; when considering an inverse FFT, just replace X()  by x() .  In either 
case, since the input is real valued, the output will be complex 
conjugate-symmetric.  Thus, the result of the fast Fourier transform can
described by (N/2) + 1 complex samples.  But, since the first sample X(0), 
and the middle sample X(N/2) are real, the result of the fast Fourier 
transform can be more compactly described by two real samples and N/2 - 1 
complex samples. 

The RCPack format is a convenient, compact representation of a complex 
conjugate-symmetric sequence.  The disadvantage of this format is that it is
not the natural format used by the real FFT algorithms (“natural” in the 
sense that bit-reversed order is natural for radix-2 complex FFTs).  In the 
RCPack format, the output samples of the FFT are arranged as follows:

The complete N-length FFT is then given by the following equation:

Table 7-4 Arrangement of Samples in RCPack Format

Index Contents

0 X(0)

1 X(1)R
2 X(1)I
3 X(2)R
4 X(2)I
. . . . . . 

N-3 X(N/2 - 1)R
N-2 X(N/2 - 1)I
N-1 X(N/2)

X k( )

samps 0[ ] k 0=,

samps 2k 1–[ ] j samps 2k[ ]⋅+ 1 k
N
2
---<≤,

samps N 1–[ ] k
N
2---=,

X N k–( )∗
N
2--- k N< <,













=
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RCPerm Format 
The RCPerm format stores the values in the order in which the FFT 
algorithm uses them.  This is the most natural way of storing values for the 
FFT algorithm.  The RCPerm format is an arbitrary permutation of the 
RCPack format.  An important characteristic of the RCPerm format is that 
the real and imaginary parts of a given sample need not be adjacent. 

The NSP_OutRCPerm value for the flags  argument results in the fastest 
possible FFT.  However, the order of the samples in the output array are 
completely implementation-dependent.  As a result, application programs 
have no way of interpreting this data. 

Even though the data stored in RCPerm format cannot be interpreted, it can
still be used.  The Intel Signal Processing Library provides functions that 
allow applications to use RCPerm format for fast convolution.  For example, 
you can use the nsp?MpyRCPerm3()  function to multiply two vectors 
stored in RCPerm format to create a third vector also in RCPerm format.  
You can then use the nsp?CcsFftl()  function to convert this vector back
to a naturally-ordered, time-domain vector. 

The following examples illustrate several different applications of the 
nsp?RealFftl()  and nsp?RealFftlNip()  functions. 

Example 7-6 shows the code for performing the forward and inverse FFT.

Example 7-6 Using nsp?RealFftl() to Perform the Forward and Inverse FFT

/* 
 * The following code performs an elaborate 
 * “do nothing” operation to illustrate the 
 * appropriate calling sequences and flags. 
 * It first takes a forward 64-point real 
 * FFT of the input signal (x). This is done 
 * in-place. It then calculates an inverse FFT,
 * depositing the results back in x.
 */

float x[64];

/* fill in time-domain samples of x */

nspsRealFftl(x, 6, NSP_Forw|NSP_OutRCPack);

nspsCcsFftl(x, 6, NSP_Inv|NSP_InRCPack);

/* x is now the same as when you started */
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Example 7-7 shows the code for using the FFT to perform low-pass 
filtering.

Example 7-8 is similar to the previous example, but the low-pass filtering is 
performed in-place.

Example 7-7 Using nsp?RealFf tlNip() to Perform Low-Pass Filtering

/* 
 * Low-pass filter an input signal using real
 * FFTs. This is accomplished by taking a 
 * 128-point real FFT of the input signal (xTime)
 * and storing the result in xFreq. The higher 
 * frequencies in xFreq are then set to zero, and
 * the inverse FFT (that is, the low-pass signal)
 * is stored in yTime. 
 */

double xTime[128], xFreq[128], yTime[128];

/* insert code here to fill in 128 samples of xTime */

nspdRealFftlNip(xTime, xFreq, 7, NSP_Forw|NSP_OutRCPack);

nspdbZero(xFreq+63, 65); /* zero high freqs f=0.25 to 0.5 */

nspdCcsFftlNip(xFreq, yTime, 7, NSP_Inv|NSP_InRCPack);

/* low-pass version of xTime is now in yTime */
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Example 7-9 shows the code for using the FFT for the fast convolution of 
two signals.

Example 7-8 Using nsp?RealFftl() to Perform Low-Pass Filtering In-Place

/* 
 * Low-pass filter an input signal in-place 
 * using real FFTs. This is accomplished by 
 * taking a 128-point real FFT of the input 
 * signal (x). The higher frequencies in x
 * are then set to zero, and the inverse FFT
 * (that is, the low-pass signal)is stored in x.
 */

double  x[128];

/* insert code to fill in 128 samples of x */

nspdRealFftl(x, 7, NSP_Forw|NSP_OutRCPack);

nspdbZero(x+63, 65); /* zero high freqs */

nspdCcsFftl(x, 7, NSP_Inv|NSP_InRCPack);

/* low-pass version now in x */

Example 7-9 Using nsp?RealFf tlNip() for the Fast Convolution of Real Signals

/*
 Perform the fast convolution of two real signals 
 * by using real-valued 256-point FFTs. The FFTs of
 * the real-valued input signals (x and h) are computed
 * and stored in xFreq and hFreq in RCPerm format. 
 * These are then multiplied using the MpyRCPerm3 
 * function. The product is then inverse FFT’d and 
 * stored in yTime.*/

double hTime[256], hFreq[256];
double xTime[256], xFreq[256], yTime[256], yFreq[256];

/* insert code here to fill in hTime and xTime vectors */

nspdRealFftlNip(hTime, hFreq, 8, NSP_Forw|NSP_OutRCPerm);

nspdRealFftlNip(xTime, xFreq, 8, NSP_Forw|NSP_OutRCPerm);

nspdMpyRCPerm3(hFreq, xFreq, yFreq, 8); /* y=h*x */

nspdCcsFftlNip(yFreq, yTime, 8, NSP_Inv|NSP_InRCPerm);

/* y now contains the (circular) convolution of h and x */
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Example 7-10 is similar to the previous example, but the fast convolution o

two signals is performed in-place.

Related Topics

CcsFftl Provides the inverse to the nsp?RealFftl()  function 
(see page 7-35).

CcsFftlNip  Provides the inverse to the nsp?RealFftlNip()  
function (see page 7-35). 

MpyRCPack2 Multiplies two vectors stored in RCPack format (see 
page 7-30). 

MpyRCPerm2 Multiplies two vectors stored in RCPerm format (see 
page 7-32). 

RealFft Provides a higher level interface to the real FFT 
algorithms without the complications of RCPack and 
RCPerm formats (see page 7-38).

Example 7-10 Using nsp?RealFftl() for the Fast Co nvolution of R eal Signals 
In-Place

/*

 * Perform the fast convolution of two real signals 
 * in-place by using real-valued 256-point FFTs. The 
 * FFTs of the real-valued input signals (x and h) 
 * are computed and stored in RCPerm format. These 
 * are then multiplied using the MpyRCPerm2 function. 
 * The product is then inverse FFT’d and stored in x.
 */

double  h[256], x[256];

/* insert code here to fill in h and x vectors */

nspdRealFftl(h, 8, NSP_Forw|NSP_OutRCPerm);

nspdRealFftl(x, 8, NSP_Forw|NSP_OutRCPerm);

nspdMpyRCPerm2(h, x, 8); /* multiply h into x */

nspdCcsFftl(x, 8, NSP_Inv|NSP_InRCPerm);

/* x now contains the (circular) convolution of h and x */
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RealFftNip Provides a higher level interface to the real FFT 
algorithms without the complications of RCPack and 
RCPerm formats (see page 7-38).

See [Mit93], section 8-2-9, Real-Valued FFTs, for more information on the 
fast Fourier transforms of real signals. 

Vector Multiplication in RC Pack or RCPerm Format
The functions described in this section perform the element-wise complex 
multiplication of vectors stored in RCPack or RCPerm formats.  These 
functions are used with the nsp?RealFftl()  and nsp?CcsFftl()  
functions to perform fast convolution on real signals.

The standard vector multiplication nsp?bMpy2()  function cannot be used 
to multiply RCPack or RCPerm format vectors because:

• Two real samples are stored in the RCPack format. 
• The RCPerm format might not pair the real parts of a signal with their 

corresponding imaginary parts. 

The argument order  indicates base-2 logarithm of the length of the FFT, N, 
where N = 2order .

MpyRCPack2, MpyRCPack3
Multiplies two vectors stored in 
RCPack format.

void nspsMpyRCPack2(const float * src , float * dst , int order );

void nspsMpyRCPack3(const float * srcA , const float * srcB ,
float * dst , int order );
/* real values; single precesion */

void nspdMpyRcPack2(const double * src , double * dst , int order );

void nspdMpyRcPack3(const double * srcA , const double * srcB ,
double * dst , int order );
/* real values; double precesion */
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void nspwMpyRCPack2(const short * src , short * dst , int order, 

int  ScaleMode, int  *ScaleFactor );

void nspwMpyRCPack3(const short * srcA , const short * srcB ,
short * dst , int order, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */

dst Pointer to the vector which: 

• holds the result of the multiplication 
(src[n]  * dst[n] ) for the nsp?MpyRCPack2()  
function. 

• holds the result of the multiplication 
(srcA[n]  * srcB[n] ) for the 
nsp?MpyRCPack3()  function. 

The vector must be of length N = 2order .

order The base-2 logarithm of the number of samples in the 
FFT (N). 

src Pointer to the vector to be multiplied to dst[n] .  The 
vector must be of length N = 2order .

srcA , srcB Pointers to the vectors to be multiplied together.  The 
vectors must be of length N = 2order .

Discussion

nsp?MpyRCPack2() .  The nsp?MpyRCPack2()  function multiplies the 
vector src[n]  with dst[n]  and stores the result into dst[n] .

nsp?MpyRCPack3() .  The nsp?MpyRCPack3()  function multiplies the 
vector srcA[n]  with srcB[n]  and stores the result into dst[n] .

Related Topics

MpyRCPerm2 Multiplies two vectors in RCPerm format 
(see page 7-32).

MpyRCPerm3 Multiplies two vectors in RCPerm format and stores the 
result in a third vector (see page 7-32). 

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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MpyRCPerm2, MpyRCPerm3
Multiplies two vectors stored in 
RCPerm format.

void nspsMpyRCPerm2(const float * src , float * dst , int order );

void nspsMpyRCPerm3(const float * srcA , const float * srcB ,
float * dst , int order );
/* real values; single precision */

void nspdMpyRCPerm2(const double * src , double * dst , int order );

void nspdMpyRCPerm3(const double * srcA , const double * srcB ,
double * dst , int order );
/* real values; double precision */

void nspwMpyRCPerm2(const short * src , short * dst , int order,
int ScaleMode , int * ScaleFactor );

void nspwMpyRCPerm3(const short * srcA , const short * srcB ,
short * dst , int order, int ScaleMode , int * ScaleFactor );
/* real values; short integer */

dst Pointer to the vector which: 

• holds the result of the multiplication 
(src[n]  * dst[n] ) for the nsp?MpyRCPerm2()  
function. 

• holds the result of the multiplication 
(srcA[n]  * srcB[n] ) for the 
nsp?MpyRCPerm3()  function. 

The vector must be of length N = 2order .

order The base-2 logarithm of the number of samples in the 
FFT (N). 

src Pointer to the vector to be multiplied to dst[n] .  The 
vector must be of length N = 2order .
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srcA , srcB Pointers to the vectors to be multiplied together.  The 
vectors must be of length N = 2order .

Discussion

nsp?MpyRCPerm2() .  The function nsp?MpyRCPerm2()  multiplies the 
vector src[n]  with dst[n]  and stores the result into dst[n] .

nsp?MpyRCPerm3() .  The function nsp?MpyRCPerm3()  multiplies the 
vector srcA[n]  with srcB[n]  and stores the result into dst[n] .

For an example of the use of the nsp?MpyRCPerm2()  and 
nsp?MpyRCPerm3()  functions, see Example 7-8 and Example 7-9.

Related Topics

MpyRCPack2 Multiplies two vectors in RCPack format 
(see page 7-30).

MpyRCPack3 Multiplies two vectors in RCPack format and stores the 
result in a third vector (see page 7-30).

Low-Level FFTs of Conjugate-Symmetric Signals
The functions described in this section provide a low-level interface to 
compute the FFT of conjugate-symmetric signals (in either time- or 
frequency-domain).  These functions exploit symmetry properties of the
Fourier transform and are significantly faster than the standard complex 
FFT. 

The functions are referred to as “low-level” because the results are 
formatted in a somewhat complicated fashion.  The results can be store
either RCPack or RCPerm format.  These formats are ways of arranging 
sequences of real and complex samples which are more convenient for the 
FFT algorithms.  For more information on these formats, see “RCPack 
Format” and “RCPerm Format.” For the description of a higher level 
interface to the FFT algorithm, see “CcsFft” in page 7-44 for information on 
nsp?CcsFft() .

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Flags Argument 

For low-level functions, the flags  argument must also declare if the input 
is stored in RCPack or RCPerm format.  This is in addition to the flag 
values described in “Flags Argument,” the “Basic FFT Functions” section.

The RCPack and RCPerm format flag values are described in Table 7-5.  
One of these flag values must be specified in the flags  argument.

Inverses of FFTs of Low-Level Conjugate-Symmetric Signals

The functions described in this section, nsp?CcsFftl()  and 
nsp?CcsFftlNip() , do not provide their own inverses.  Instead, the 
inverses are provided by the nsp?RealFftl()  and nsp?RealFftlNip() 

functions.

For example, nspdCcsFftl()  with the NSP_Forw flag transforms a 
conjugate-symmetric time-domain signal into a real frequency-domain 
signal, and nspdRealFftl()  with the NSP_Inv  flag transforms it back to 
the original, conjugate-symmetric time-domain signal.  For further 
discussion of inverses of Fourier transform functions, see Appendix A.

Table 7-5 Flag Values for n sp?C csFftl() and nsp?CcsFftlNi p() Functions

Value Description

NSP_InRCPack Specifies that the input array (samps[n]  or 
inSamps[n] ) should be arranged in RCPack 
format.

NSP_InRCPerm Specifies that the input array (samps[n]  or 
inSamps[n] ) should be arranged in RCPerm 
format.
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CcsFftl, CcsFftlNip
Computes the forward or inverse FFT 
of a complex conjugate-symmetric 
(CCS) signal using RCPack or RCPerm 
format.

void nspsCcsFftl(float * samps, int order , int flags );

void nspsCcsFftlNip(const float * inSamps , float * outSamps ,
int order , int flags );
/* real values, single precision */

void nspdCcsFftl(double * samps, int order , int flags );

void nspdCcsFftlNip(const double * inSamps , double * outSamps ,
int order , int flags );
/* real values, double precision */

flags Indicates the direction of the fast Fourier transform, 
whether bit-reversal is to be performed, and the packi
format.  The argument consists of the bitwise-OR of on
or more flags.  One and only one of the flag values 
NSP_Forw, NSP_Inv , and NSP_Init  must be specified.  
The NSP_NoScale  flag value is optional.  The values 
for the flags  argument are described in “Flags 
Argument,” the “Basic FFT Functions” section, and 
“Flags Argument,” the “Low-Level FFTs of 
Conjugate-Symmetric Signals” section.

inSamps  Pointer to the real array which holds the input to the 
nsp?CcsFftlNip()  function.  The inSamps[n]  array 
must be of length N = 2order .

order The base-2 logarithm of the number of samples in the 
FFT (N). 

outSamps  Pointer to the real array which holds the output from the
nsp?CcsFftlNip()  function.  The outSamps[n]  
array must be of length N = 2order .
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samps Pointer to the real array which holds the input and 
output samples for the nsp?CcsFftl()  function.  The 
samps[n]  array must be of length N = 2order .

Discussion

nsp?CcsFftl() .  The nsp?CcsFftl()  function computes the FFT 
in-place.  In the forward direction (flags  = NSP_Forw), the array 
samps[n]  contains N real values in either RCPack or RCPerm format.  
These values describe a complex conjugate-symmetric time-domain signal 
x(n) .  On exit, samps[n]  contains N real frequency-domain samples that 
are the forward FFT of x(n) . 

In the inverse direction (flags  = NSP_Inv ), the array samps[n]  contains 
N real values in either RCPack or RCPerm format.  The values describe a 
complex conjugate-symmetric frequency-domain signal X(k) .  On exit, 
samps[n]  contains N real time-domain samples that are the inverse FFT
X(k) .

nsp?CcsFftlNip() .  The function nsp?CcsFftlNip()  computes the 
FFT not-in-place.  In the forward direction (flags  = NSP_Forw), the input 
array inSamps[n]  contains N real values in either RCPack or RCPerm 
format.  These values describe a complex conjugate-symmetric 
time-domain signal x(n) .  On exit, the output array outSamps[n]  contains 
N real frequency-domain samples that are the forward FFT of x(n) . 

In the inverse direction (flags  = NSP_Inv ), the input array inSamps[n]  
contains N real values in either RCPack or RCPerm format that describe a 
complex conjugate-symmetric frequency-domain signal X(k) .  On exit, the 
output array outSamps[n]  contains N real time-domain samples that are 
the inverse FFT of X(k) .

Related Topics

CcsFft Provides a higher level interface to the FFT without th
complications of RCPerm and RCPack formats 
(see page 7-44).

CcsFftNip Provides a higher level interface to the FFT without th
complications of RCPerm and RCPack formats 
(see page 7-44).
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RealFftl Provides the functional inverse to the nsp?CcsFftl()  
function (see page 7-23). 

RealFftlNip  Provides the functional inverse to the 
nsp?CcsFftlNip()  function (see page 7-23).

FFTs of Real Signals
The functions described in this section compute the FFT of real signals
(either in the time- or frequency-domain), yielding a complex 
conjugate-symmetric signal.  These functions exploit symmetry propert
of the Fourier transform and are significantly faster than the standard FFT.

The nsp?RealFft()  and nsp?RealFftNip()  functions store the real 
samples in RCCcs format.  This is a simpler and easier to use format than
the RCPack and RCPerm formats used by nsp?RealFftl()  and 
nsp?RealFftlNip() .  However, RCCcs format requires slightly more 
memory.  The arrangement of samples in RCCcs format is described in 
Table 7-6.

Inverses of FFTs of Real Signals

The nsp?RealFft()  and nsp?RealFftNip()  functions do not provide 
their own inverses.  Rather, the inverses are provided by the 
nsp?CcsFft()  and nsp?CcsFftNip()  functions.

For example, nspdRealFft()  called with the NSP_Forw flag transforms a 
real time-domain signal into a conjugate-symmetric frequency-domain 
signal, and nspdCcsFft()  called with the NSP_Inv  flag transforms it back 
to the original, real time-domain signal.  In typical signal processing, these 
two operations (real time-domain to conjugate-symmetric frequency and 
back) are more frequently used than the other two operations 
(conjugate-symmetric time-domain to real frequency-domain forward and 
back).  For further discussion of the inverses of Fourier transform functions, 
see Appendix A.
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RealFft, RealFftNip
Computes the forward or inverse FFT 
of a real signal.

void nspsRealFft(float * samps, int order , int flags );

void nspsRealFftNip(const float * inSamps , SCplx * outSamps ,
int order , int flags );
/* real values; single precision */

void nspdRealFft(double * samps, int order , int flags );

void nspdRealFftNip(const double * inSamps , DCplx * outSamps ,
int order , int flags );
/* real values; double precision */

void nspwRealFft(short * samps, int order , int flags, int  ScaleMode,
int  *ScaleFactor );

void nspwRealFftNip(const short * inSamps , WCplx * outSamps ,
int order , int flags, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */

flags Indicates the direction of the fast Fourier transform an
whether bit-reversal is performed.  The argument 
consists of the bitwise-OR of one or more flags.  One 
and only one of the flag values NSP_Forw, NSP_Inv , 
and NSP_Init  must be specified.  The NSP_NoScale  
flag is optional.  The section “Flags Argument” in 
“Basic FFT Functions” describes the values for the 
flags  argument.

inSamps  Pointer to the real array which holds the input to the 
nsp?RealFftNip()  function.  The inSamps[n]  array 
must be of length N = 2order .

order The base-2 logarithm of the number of samples in the 
FFT (N).  
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outSamps  Pointer to the real array which holds the output from the
nsp?RealFftNip()  function.  The outSamps[n]  
array must be in RCCcs format and be of length N/2+1 
complex samples.

samps Pointer to the real array which holds the input and 
output samples for the nsp?RealFft()  function.  The 
samps[n]  array must be of length N + 2 elements 
(floats  or doubles ).  On input, samps[n]  should be 
considered a real array, the first N elements of which are 
data and the last two elements are ignored.  On outpu
samps[n]  should be considered a complex array of 
length N/2 + 1 complex samples in RCCcs format.

Discussion

nsp?RealFft() .  The nsp?RealFft()  function performs the FFT 
in-place.  In the forward direction (flags  = NSP_Forw), samps[n]  
contains N real, time-domain samples that define an N-length sequence 
x(n) .  On exit, samps[n]  contains N/2 + 1 complex samples in RCCcs 
format that describe the forward FFT of x(n) . 

In the inverse direction (flags  = NSP_Inv ), samps[k]  contains N real 
frequency-domain samples that define a N-length sequence X(k) .  On exit, 
samps[n]  contains N/2 + 1 complex samples in RCCcs format that describe 
the inverse FFT of X(k) .

There are two requirements for the length of samps[n] :

• The array samps[n]  must be of length N + 2 real elements so that it 
can contain the N/2 + 1 complex numbers that are returned.  The two 
extra elements (at the end of the array) are ignored on input.

• Upon return, the array samps[n]  should be treated as an array of 
N/2 + 1 complex numbers rather than an array of real numbers.  Th
can be done by appropriate casting.  The complex elements X(0) to 
X(N/2) span normalized frequency or, in the case of an inverse FFT
normalized time from 0.0 to 0.5.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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nsp?RealFftNip() .  The nsp?RealFftNip()  function computes the 
FFT not-in-place.  In the forward direction (flags  = NSP_Forw), the input 
array inSamps[n]  contains N real, time-domain samples that define an 
N-length sequence x(n) .  On exit, the output array outSamps[n]  contains 
N/2 + 1 complex samples in RCCcs format that describe the forward FFT of
x(n) .  The forward FFT of x(n)  is defined as follows:

In the inverse direction (flags  = NSP_Inv ), the input array inSamps(n)  
contains N real frequency-domain samples that define a N-length sequence 
X(k) .  On exit, outSamps(n)  contains N/2 + 1 complex samples in RCCcs 
format that describe the inverse FFT of X(k) .  The inverse FFT of X(k)  is 
defined as follows:

Table 7-6 describes the arrangement of samples in RCCcs format. 

The following examples illustrate the use of the nsp?RealFft()  and 
nsp?RealFftNip()  functions.

Table 7-6 Arrangement of Samples in RCCcs Format

Real Index Complex Index Contents

0 0 X(0)R
1 0 X(0)I
2 1 X(1)R
3 1 X(1)I
. . . . . . . . . 

N - 2 N/2 - 1 X(N/2 - 1)R
N - 1 N/2 - 1 X(N/2 - 1)I

N N/2 X(N/2)R

N + 1 N/2 X(N/2)I

X k( )
outsamps k[ ] 0 k

N
2---≤ ≤,

X N k–( )∗
N
2--- k N< <,









=

x n( )
outsamps n[ ] 0 n

N
2---≤ ≤,

X N n–( )∗
N
2--- n N< <,









=
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Example 7-11 shows the code to perform the FFT of a real signal. 

Example 7-12 shows the code to perform low-pass filtering.

Example 7-13 is similar to the previous example, except the low-pass 
filtering is performed in-place.

Example 7-11 Using nsp?R ealFftNip() to Take the FFT of a Real Signal

/* take the FFT of a 

 * real signal 

 */

double xTime[128];

DCplx xFreq[65], xFreqFull[128];

/* insert code here to put time-domain samples in xTime */

nspdRealFftNip(xTime, xFreq, 7, NSP_Forw);

/* xFreq now has frequency-domain samples from f=0.0 to 0.5 */

nspzbConjExtend2(xFreq, xFreqFull, 65);

/* xFreqFull contains freqency samples from f=0.0 to 1.0 */

Example 7-12 Using nsp?R ealFftNip() to Perform Low-Pass Fi ltering

/* use FFT functions to perform 
 * low-pass filtering 
 */

double  xTime[128], yTime[128];

DCplx xFreq[65];

/* insert code here to fill in 128 samples of xTime */

nspdRealFftNip(xTime, xFreq, 7, NSP_Forw);

nspzbZero(xFreq+33, 32); /* zero high freqs f=0.25 to 0.5 */

nspdCcsFftNip(xFreq, yTime, 7, NSP_Inv);

/* low-pass version of xTime is now in yTime */
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Example 7-14 shows the code to perform the fast convolution of two real 
signals.

 

Example 7-15 is similar to the previous example, except the fast 
convolution is performed in-place.

Example 7-13 Using nsp?R ealFft() to Perform Low-Pass Filtering In-Place

/* use the FFT functions to perform low-pass 
 * filtering in-place 
 */

double x[130];

/* insert code to fill in 128 samples of x */

nspdRealFft(x, 7, NSP_Forw);

nspzZero(((DCplx*)xTime)+33, 32); /* zero high freqs */

nspdCcsFft(x, 7, NSP_Inv);

/* low-pass version now in x */

Example 7-14 Using nsp?R ealFftNip() to Perform Fast C onvolution

/* use the FFT functions to perform fast 
 * convolution of real signals
 */

double hTime[256], xTime[256], yTime[256];

DCplx hFreq[129], xFreq[129], yFreq[129];

/* insert code here to fill in hTime and xTime vectors */

nspdRealFftNip(hTime, hFreq, 8, NSP_Forw);

nspdRealFftNip(xTime, xFreq, 8, NSP_Forw);

nspzbMpy3(hFreq, xFreq, yFreq, 129);  /* y=h*x */

nspdCcsFftNip(yFreq, yTime, 8, NSP_Inv);

/* y now contains the (circular) convolution of h and x */
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Related Topics

CcsFft  Provides the inverse to the nsp?RealFft()  
function (see page 7-44).

CcsFftNip  Provides the inverse to the nsp?RealFftNip()  
function (see page 7-44).

bConjExtend1  Extends the output arrays produced by the 
nsp?RealFft()  and nsp?RealFftNip()  
functions into full N-length signals (see page 3-36).

RealFftl  Provides a lower-level interface to the FFT 
algorithm (see page 7-23).

See [Mit93], section 8-2-9, Real-Valued FFTs, for more information about 
real-valued fast Fourier transform.

FFTs of Conjugate-Symmetric Signals
The functions described in this section compute the FFT of complex 
conjugate-symmetric signals (time- or frequency-domain), yielding a real 
signal.  These functions exploit symmetry properties of the Fourier 
transform and are significantly faster than the standard complex FFT.

The nsp?CcsFft()  and nsp?CcsFftNip()  functions store the complex 
conjugate-symmetric samples in RCCcs format.  This is a simpler and easier 
to use format than the RCPack and RCPerm formats used by 

Example 7-15 Using nsp?R ealFft() to Perform Fast Convolution In-Place

/* use the FFT functions to perform fast 
 * convolution of real signals in-place 
 */

double h[258], x[258];

/* insert code here to fill 256 samples of h and x vectors */

nspdRealFft(h, 8, NSP_Forw);

nspdRealFft(x, 8, NSP_Forw);

nspzbMpy2((DCplx*)h, (DCplx*)x, 129); /* x = h*x */

nspdCcsFft(x, 8, NSP_Inv);

/* x now contains the (circular) convolution of h and x */
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nsp?CcsFftl()  and nsp?CcsFftlNip() .  However, RCCcs format 
requires slightly more memory.  The arrangement of samples in RCCcs 
format is described in Table 7-6.

Inverses of FFTs of Conjugate-Symmetric Signals

These nsp?CcsFft()  and nsp?CcsFftNip()  functions do not provide 
their own inverses.  Instead, the inverses are provided by the 
nsp?RealFft()  and nsp?RealFftNip()  functions.

For example, nspdCssFft()  called with the NSP_Forw flag transforms a 
conjugate-symmetric time-domain signal into a real frequency-domain 
signal, and nspdRealFft()  called with the NSP_Inv  flag transforms it 
back to the original, conjugate-symmetric time-domain signal.  For more 
information about inverses of Fourier transform functions, see Appendix A.

CcsFft, CcsFftNip
Computes the forward or inverse FFT 
of a complex conjugate-symmetric 
(CCS) signal.

void nspsCcsFft(float * samps, int order , int flags );

void nspsCcsFftNip(const SCplx * inSamps , float * outSamps ,
int order , int flags );
/* real values; single precision */

void nspdCcsFft(double * samps, int order , int flags );

void nspdCcsFftNip(const DCplx * inSamps , double * outSamps ,
int order , int flags );
/* real values; double precision */

void nspwCcsFft(short * samps, int order , int flags, int  ScaleMode,
int  *ScaleFactor );

void nspwCcsFftNip(const WCplx * inSamps , short * outSamps ,
int order , int flags, int  ScaleMode, int  *ScaleFactor );
/* real values; short integer */
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flags Indicates the direction of the fast Fourier transform an
whether bit-reversal is performed.  The argument 
consists of the bitwise-OR of one or more flags.  One 
and only one of the flag values NSP_Forw, NSP_Inv , 
and NSP_Init  must be specified.  The NSP_NoScale  
flag is optional.  The values for the flags  argument are 
described in “Flags Argument” of the “Basic FFT 
Functions” section earlier in this chapter.

inSamps  Pointer to the real array which holds the input to the 
nsp?CcsFftNip()  function.  The inSamps[n]  array 
must be in RCCcs format and be of length N/2+1 
complex samples.

order The base-2 logarithm of the number of samples in the 
FFT (N).  

outSamps  Pointer to the real array which holds the output from the
nsp?CCsFftNip()  function.  The outSamps[n]  array 
must be of length N = 2order .

samps Pointer to the array which holds the input and output 
samples for the nsp?CCsFft()  function.  The 
samps[n]  array must be of length N + 2 elements 
(floats  or doubles ).  On input, samps[n]  should be 
considered a complex array of length N/2 + 1 complex 
samples in RCCcs format.  On output, samps[n] 

should be considered as a real array, the first N elements 
of which are data and the last two elements are ignored.  

Discussion

nsp?CcsFft() .  The function nsp?CcsFft()  computes the FFT in-place. 
In the forward direction (flags  = NSP_Forw), samps[n]  contains N/2 + 1 
complex samples in RCCcs format that describe a conjugate-symmetric 
time-domain signal x(n) .  On exit, samps[n]  contains N real 
frequency-domain samples that are the forward FFT of x(n) .

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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In the inverse direction (flags  = NSP_Inv ), samps[n]  contains N/2 + 1 
complex samples in RCCcs format that describe a conjugate-symmetric 
frequency-domain signal X(k) .  On exit, samps[n]  contains N real 
time-domain samples that are the inverse FFT of X(k) .

• The array samps[n]  must be of length N/2 + 1 complex elements so 
that it can contain the N + 2 real numbers that are returned.  The two 
extra elements (at the end of the array) are ignored on output.

• Upon return, the array samps[n]  should be treated as an array of N + 2 
real numbers rather than an array of complex numbers.  This can be 
done by appropriate casting.  The real elements x (0) to x(N)  span 
normalized time or, in the case of an inverse FFT, normalized 
frequency from 0.0 to 0.5.

nsp?CcsFftNip() .  The function nsp?CcsFftNip()  computes the FFT 
not-in-place.  In the forward direction (flags  = NSP_Forw), the input array 
inSamps[n]  contains N/2 + 1 complex samples in RCCcs format.  The 
samples describe a conjugate-symmetric time-domain signal x(n) .  On 
exit, the output array outSamps[n]  contains N real frequency-domain 
samples that are the forward FFT of x(n) .

In the inverse direction (flags  = NSP_Inv ), the input array inSamps[n]  
contains N/2 + 1 complex samples in RCCcs format.  The samples describe a
conjugate-symmetric frequency-domain signal X(k) .  On exit, the output 
array outSamps[n]  contains N real time-domain samples that are the 
inverse FFT of X(k) .

Related Topics

RealFft Provides the inverse to the nsp?CcsFft()  function 
(see page 7-38). 

RealFftNip  Provides the inverse to the nsp?CcsFftNip()  function 
(see page 7-38).

FFTs of Two Real Signals
The nsp?Real2Fft()  and nsp?Real2FftNip()  functions described in 
this section compute the forward or inverse FFT of two real signals (either 
time- or frequency-domain).  See “Fft” in page 7-17 for a description of 
nsp?Fft()  and Appendix A for general information on the FFT.
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The forward or inverse FFT of a real signal is conjugate-symmetric.  For 
example, the forward FFT of a real time-domain signal is 
conjugate-symmetric in frequency.  This property allows two real FFTs 
be simultaneously computed using a single complex FFT.  The algorithms 
used to implement these functions are very different from the ones used for 
nsp?RealFft()  even though the functions are quite similar.

Inverses of FFTs of Two Real Signals

The nsp?Real2Fft()  and nsp?Real2FftNip()  functions do not 
provide their own inverses.  Instead, the inverses are provided by the 
nsp?Ccs2Fft()  and nsp?Ccs2FftNip()  functions.

Real2Fft, Real2FftNip
Computes the forward or inverse FFT 
of two real signals.

void nspsReal2Fft(float * xSamps, float * ySamps, int order ,
int flags );

void nspsReal2FftNip(const float * xInSamps , SCplx * xOutSamps ,
const float * yInSamps , SCplx * yOutSamps , int order ,
int flags );
/* real values, single precision */

void nspdReal2Fft(double * xSamps, double * ySamps, int order , 
int flags );

void nspdReal2FftNip(const double * xInSamps , DCplx * xOutSamps ,
const double * yInSamps , DCplx * yOutSamps , int order ,
int flags );
/* real values, double precision */

void nspwReal2Fft(short * xSamps, short * ySamps, int order ,
int flags, int  ScaleMode, int  *ScaleFactor );

void nspwReal2FftNip(const short * xInSamps , WCplx * xOutSamps ,
const short * yInSamps , WCplx * yOutSamps , int order ,
int flags, int  ScaleMode, int  *ScaleFactor );
/* real values, short integer */
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flags Indicates the direction of the fast Fourier transform an
whether bit-reversal is performed.  The argument 
consists of the bitwise-OR of one or more flags.  One 
and only one of the flag values NSP_Forw, NSP_Inv , 
and NSP_Init  must be specified.  The NSP_NoScale  
flag is optional.  The values for the flags  argument are 
described in “Flags Argument” of the “Basic FFT 
Functions” sections.

order The base-2 logarithm of the number of samples in the 
FFT (N). 

xInSamps Pointer to the array which holds the real samples to b
input to the nsp?Real2FftNip()  function.  The array 
must be of length N = 2order .

xOutSamps Pointer to the array which holds the complex samples 
output from the nsp?Real2FftNip()  function.  The 
array is in RCCcs format and must be of length N/2 + 1 
complex samples.

xSamps Pointer to the array which holds the input and output o
the nsp?Real2Fft()  function.  The xSamps[n]  array 
must be of length N + 2 elements (floats  or doubles ).  
On input, the array should be considered as a real array, 
the first N elements of which are data and the last two 
elements of which are ignored.  On output, the array 
should be considered a complex array of length N/2 + 1 
complex samples.

yInSamps Pointer to the array which holds the real samples to b
input to the nsp?Real2FftNip()  function.  The array 
must be of length N = 2order .

yOutSamps Pointer to the array which holds the complex samples 
output from the nsp?Real2FftNip()  function.  The 
array is in RCCcs format and must be of length N/2 + 1 
complex samples.
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ySamps Pointer to the array which holds the input and output o

the nsp?Real2Fft()  function.  The ySamps[n]  array 
must be of length N + 2 elements (floats  or doubles ).  
On input, the array should be considered as a real array, 
the first N elements of which are data and the last two 
elements of which are ignored.  On output, the array 
should be considered a complex array of length N/2+  1 
complex samples.

Discussion

nsp?Real2Fft() .  The function nsp?Real2Fft()  computes the FFT 
in-place.  It computes the FFT of the N real samples stored in xSamps[n] , 
and returns N/2+1 complex samples to xSamps[n] .  Similarly, the FFT of 
the samples in ySamps[n]  are returned to ySamps[n] .  

nsp?Real2FftNip() .  The function nsp?Real2FftNip()  computes the 
FFT not-in-place.  It computes the FFT of the N real samples in 
xInSamps[n] , storing N/2 + 1 complex samples in xOutSamps[n] .  
Similarly, the FFT of the N samples in yInSamps[n]  are stored into 
yOutSamps[n] . 

Example 7-16 shows how to use the nsp?Real2FftNip()  function to 
convolve two real signals.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.

Example 7-16 Using nsp?Real 2FftNi p() to Convolve Two Real Signals

/* perform fast convolution 
 * of real signals 
 */
double xTime[256], hTime[256], yTime[256];

DCplx xFreq[129], hFreq[129], yFreq[129];

/* insert code here to fill xTime and hTime vectors */

nspdReal2FftNip(xTime, xFreq, hTime, hFreq, 8, NSP_Forw);

nspzbMpy3(xFreq, hFreq, yFreq, 129);

nspdCcsFftNip(yFreq, yTime, 8, NSP_Inv);

/* y now contains the (circular) convolution of h and x */
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Related Topics

Ccs2Fft Provides the inverse to the nsp?Real2Fft()  function 
(see page 7-51).

RealFft Computes the FFT of a single, real signal 
(see page 7-38).

RealFftl Provides a lower-level interface to the FFT algorithm 
(see page 7-23).

See [Mit93], section 8-2-9, Real-Valued FFTs, for more information on 
real-valued fast Fourier transforms.

FFTs of Two Conjugate-Symmetric Signals
The nsp?Ccs2Fft()  and nsp?Ccs2FftNip()  functions described in this 
section compute the forward or inverse FFT of two independent 
conjugate-symmetric signals (either time- or frequency-domain), yielding 
two real signals.  See “Fft” in page 7-17 for a description of nsp?Fft()  
and Appendix A for general information on the FFT.  The algorithms used 
to implement these functions are very different from the ones used for 
nsp?CcsFft()  even though the functions are quite similar.

Inverses of FFTs of Two Conjugate-Symmetric Signals

The nspsCcs2Fft()  and nspsCcs2Fft()  functions do not provide their 
own inverses.  Instead, the inverses are provided by the nsp?Real2Fft()  
and nsp?Real2FftNip()  functions.
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Ccs2Fft, Ccs2FftNip
Computes the forward or inverse FFT 
of two complex conjugate-symmetric 
(CCS) signals.

void nspsCcs2Fft(float * xSamps, float * ySamps, int order ,
int flags );

void nspsCcs2FftNip(const SCplx * xInSamps , float * xOutSamps ,
const SCplx * yInSamps , float * yOutSamps , int order ,
int flags );
/* real values; single precision */

void nspdCcs2Fft(double * xSamps, double * ySamps, int order ,
int flags );

void nspdCcs2FftNip(const DCplx * xInSamps , double * xOutSamps ,
const DCplx * yInSamps , double * yOutSamps , int order ,
int flags );
/* real values; double precision */ 

flags Indicates the direction of the fast Fourier transform an
whether bit-reversal is performed.  The argument 
consists of the bitwise-OR of one or more flags.  One 
and only one of the flag values NSP_Forw, NSP_Inv , 
and NSP_Init  must be specified.  The NSP_NoScale  
flag is optional.  The values for the flags  argument are 
described in “Flags Argument” of the “Basic FFT 
Functions” section.

order The base-2 logarithm of the number of samples in the 
FFT (N). 

xInSamps Pointer to the array which holds the complex 
conjugate-symmetric samples in RCCcs format for input 
to the nsp?Ccs2FftNip()  function.  The 
xInSamps[n]  array must be of length N/2 + 1 complex 
samples.
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xOutSamps Pointer to the array which holds the real samples outp
from the nsp?Ccs2FftNip()  function.  The 
xOutSamps[n]  array must be of length N = 2order .

xSamps Pointer to the array which holds the input and output o
the nsp?Ccs2Fft()  function.  On input, xSamps[n] 

should be considered as a complex array of length N/2 + 
1 complex samples in RCCcs format.  On output, 
xSamps[n]  should be considered as a real array, the 
first N elements of which are data, and the last two 
elements are ignored.

yInSamps Pointer to the array which holds the complex 
conjugate-symmetric samples in RCCcs format for input 
to the nsp?Ccs2FftNip()  function.  The 
yInSamps[n]  array must be of length N/2 + 1 complex 
samples.

yOutSamps Pointer to the array which holds the real samples outp
from the nsp?Ccs2FftNip()  function.  The 
yOutSamps[n]  array must be of length N = 2order .

ySamps Pointer to the array which holds the input and output o
the nsp?Ccs2Fft()  function.  On input, ySamps[n]  
should be considered as a complex array of length
N/2 + 1 complex samples in RCCcs format.  On output, 
ySamps[n]  should be considered as a real array, the 
first N elements of which are data, and the last two 
elements are ignored.

Discussion

nsp?Ccs2Fft() .  The function nsp?Ccs2Fft()  computes the FFT 
in-place.  It computes the FFT of the N/2 + 1 complex samples stored in 
xSamps[n] , and returns N real samples back into xSamps[n] .  Similarly, 
the FFT of the samples in ySamps[n]  are returned to ySamps[n] .
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nsp?Ccs2FftNip() .  The function nsp?Ccs2FftNip()  computes the 
FFT not-in-place.  It computes the FFT of the N/2 + 1 complex 
conjugate-symmetric samples in xInSamps[n] , and returns N real samples 
to xOutSamps[n] .  Similarly, the FFT of the samples in yInSamps[n]  are 
returned to yOutSamps[n] . 

Related Topics

CcsFft  Calculates the FFT of a single, conjugate-symmetric 
signal (see page 7-44).

Real2Fft  Provides the inverse to the function nsp?Ccs2Fft()  
(see page 7-47). 

See [Mit93], section 8-2-9, Real-Valued FFTs, for more information on the 
FFTs of real-valued signals.

Memory Reclaim F unctions
This section describes the nspFreeBitrevTbls()  and 
nsp?FreeTwdTbls() functions that free the memory allocated for 
bit-reversed indices tables and for twiddle tables, respectively. These tables 
are used by the Signal Processing library internally.

You need to use the functions decribed in this section only if you are 
particularly concerned about clearing the memory. Otherwise, the mem
is always reclaimed at the program exit.
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FreeBitRevTbls
Frees dynamic memory for tables of 
bit-reversed indices. 

void nspFreeBitRevTbls();

Discussion

The nspFreeBitRevTbls()  function frees all dynamic memory for all 
bit-reversal tables of any size previously allocated. 

FreeTwdTbls
Frees memory associated with all 
twiddle tables of a particular type.

void nspcFreeTwdTbls();
/* complex values; single precision */

void nspzFreeTwdTbls();
/* complex values; double precision */

void nspvFreeTwdTbls();
/* complex values; short integer */

Discussion

The nsp?FreeTwdTbls()  function frees all memory associated with all 
twiddle tables of a particular data type. Thus the function 
nspcFreeTwdTbls()  frees all memory associated with all 
single-precision FFT and DFT twiddle tables.  Similarly, the function 
nspzFreeTwdTbls()  frees all memory associated with all 
double-precision FFT and DFT twiddle tables; and the function 
nspvFreeTwdTbls()  frees all memory with all short integer FFT and 
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DFT twiddle tables. The function leaves the internal pointer tables prope

initialized so that subsequent memory allocation by internal functions will 
succeed.

Use the nsp?FreeTwdTbls()  function at the end of a program to release 
all of the dynamic memory allocated previously.
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The functions described in this chapter implement the following types o
filters:

• finite impulse response (FIR)
• adaptive finite impulse response using least mean squares (LMS)
• infinite impulse response (IIR)

To understand the background of the filters used by the Intel Signal 
Processing Library, see Appendix B.

Depending on the application, there are two different filtering modes:

batch The signal to be filtered is finite and stored entirely in
memory.  Such a signal can be filtered in “batch” mod
that is, all at once in a single (large) operation.  The 
signal’s samples are convolved with a set of filter 
coefficients to produce an output signal.  In this case, 
non-causal filtering is possible since the entire signal is
available.

cyclic The signal to be filtered is not stored entirely in 
memory, either because it is too large, infinite in length, 
or the output is required before input is entirely known.  
Such a signal can be filtered in “cyclic” mode, that is, in 
small pieces.  In this case, a portion of the signal is re
into memory, filtered, the output is written out, and the
the process is repeated with the next portion.

Library
function lists
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Cyclic filtering, in contrast to batch filtering, requires information (that is
“state”) to be preserved between each cycle.  Managing this state can b
complicated.  Thus the library functions for cyclic processing are divided 
into two groups:

low-level These functions give the application direct access to all 
state information and allow the state to be shared amon
different filters.  

normal These functions group all state information into a sing
pointer using dynamic memory allocation, providing a
simpler interface.

The normal functions perform all of their own memory allocation while the 
low-level functions do not perform any memory allocation.  Typically, yo
will only use the low-level functions if you need to closely manage or ma
special arrangements for the way your application allocates memory. 

Low-Level FIR Filter Functions
The functions described in this section initialize a low-level finite impuls
response (FIR) filter, get and set the filter coefficients and delay line, an
perform the filtering function.  The low-level FIR functions are intended for 
cyclic processing: first, initialize the filter, then filter the samples one at 
time or in blocks.  This allows a relatively expensive initialization function 
to pre-compute values so that later filtering is efficient (this is particularl
useful for multi-rate filtering).  For non-cyclic (batch) FIR filtering, “Conv” 
in Chapter 9 for a description of the convolution function nsp?Conv() .

The low-level FIR functions maintain the filter coefficients separately from 
the delay line, allowing multiple delay lines to be used with the same set o
taps.  Also, the low-level FIR functions do not use any dynamic memory 
allocation. 

To use a low-level FIR filter, follow this general scheme:

Low-Level 
FIR function 
list
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1. Call either nsp?FirlInit()  to initialize the coefficients and structure
of a single-rate filter or call nsp?FirlInitMr()  to initialize the 
coefficients and structure of a multi-rate filter.  

2. Call nsp?FirlInitDlyl()  to initialize the structure of a delay line.
The delay line is associated with a particular set of taps.  Multiple delay 
lines for a given set of taps can be initialized by calling this function 
multiple times, but there should be only one call for each delay line. 

3. Call nsp?FirlSetDlyl()  to initialize the delay line itself.  
4. After this initialization, you have a choice of functions to call, 

depending on what you want to accomplish. 
a. Call the nsp?Firl()  function to filter a single sample through a 

single-rate filter and/or call nsp?bFirl()  to filter a block of 
consecutive samples through a single-rate or multi-rate filter. 

b. Call the nsp?FirlGetTaps()  function and then the 
nsp?FirlSetTaps()  function to get and set the filter 
coefficients (taps). 

c. Call the nsp?FirlGetDlyl()  function and then the 
nsp?FirlSetDlyl()  function to get and set the values in the 
delay line.

Real and complex taps can be mixed with real and complex delay lines 
(that is, all four combinations are allowable).  However, taps and delay
lines of different precision must not be mixed.  It is the application’s 
responsibility to call the correct function for the given type 
combination.  This is not checked at compile time nor is it required 
be checked at run-time.
8-3
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Figure 8-1 illustrates the order of use of the low-level FIR filter functions

FirlInit, FirlInitMr, FirlInitDlyl
Low-level functions which perform 
cyclic FIR filtering via a tapped delay 
line.

void nspsFirlInit(float * taps , int tapsLen , 
NSPFirTapState * tapStPtr );

void nspsFirlInitMr(float * taps , int tapsLen , int upFactor ,
int upPhase , int downFactor , int downPhase ,
NSPFirTapState * tapStPtr );

Figure 8-1 Order of Use of the Low-Level FIR Functions

FirlInit

Firl

FirlInitMr
FirlInitDlyl

bFirl

FirlGetTaps
FirlSetTaps

FirlGetDlyl
FirlSetDlyl

or FirlSetDlyl
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void nspsFirlInitDlyl(const NSPFirTapState * tapStPtr , float * dlyl ,

NSPFirDlyState * dlyStPtr );
/* real values; single precision */

void nspcFirlInit(SCplx * taps , int tapsLen ,
NSPFirTapState * tapStPtr );

void nspcFirlInitMr(SCplx * taps , int tapsLen ,int upFactor ,
int upPhase , int downFactor , int downPhase ,
NSPFirTapState * tapStPtr );

void nspcFirlInitDlyl(const NSPFirTapState * tapStPtr , SCplx * dlyl ,
NSPFirDlyState * dlyStPtr );
/* complex values; single precision */

void nspdFirlInit(double * taps , int tapsLen ,
NSPFirTapState * tapStPtr );

void nspdFirlInitMr(double * taps , int tapsLen , int upFactor ,
int upPhase , int downFactor , int downPhase ,
NSPFirTapState * tapStPtr );

void nspdFirlInitDlyl(const NSPFirTapState * tapStPtr , double * dlyl ,
NSPFirDlyState * dlyStPtr );
/* real values; double precision */

void nspzFirlInit(DCplx * taps , int tapsLen ,
NSPFirTapState * tapStPtr );

void nspzFirlInitMr(DCplx * taps , int tapsLen ,
int upFactor , int upPhase , int downFactor , int downPhase ,
NSPFirTapState * tapStPtr );

void nspzFirlInitDlyl(const NSPFirTapState * tapStPtr , DCplx * dlyl ,
NSPFirDlyState * dlyStPtr );
/* complex values; double precision */

void nspwFirlInit(short * taps , int tapsLen , 
NSPFirTapState * tapStPtr );

void nspsFirlInitMr(short * taps , int tapsLen , int upFactor ,
int upPhase , int downFactor , int downPhase , 
NSPFirTapState * tapStPtr ); 

void nspwFirlInitDlyl(const NSPFirTapState * tapStPtr , short * dlyl ,
NSPFirDlyState * dlyStPtr ); 
/* real values; short integer */
8-5
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dlyl Pointer to the array which specifies the initial values fo
the delay line for the nsp?FirlInitDlyl()  function.

dlylStPtr  Pointer to the NSPFirDlylState  structure.

downFactor The factor value used by the FirlInitMr()  function 
for down-sampling multi-rate signals. 

downPhase The phase value used by the FirlInitMr()  function 
for down-sampling multi-rate signals.

taps Pointer to the array which specifies the filter coefficients 
for the nsp?FirlInit()  and nsp?FirlInitMr()  
functions.

tapsLen The number of taps in the taps[n]  array. 

tapStPtr Pointer to the NSPFirTapState  structure. 

upFactor  The factor value used by the FirlInitMr()  function 
for up-sampling multi-rate signals. 

upPhase  The phase value used by the FirlInitMr()  function 
for up-sampling multi-rate signals. 

Discussion

nsp?FirlInit() .  The nsp?FirlInit()  function configures a 
single-rate filter.  The array taps[n]  specifies the filter coefficients (taps) 
h(n) .  The nsp?FirlInit()  function initializes the structure pointed to 
by tapStPtr .  The structure NSPFirState  defines the length of the FIR 
filter, tapsLen , and a pointer to the taps[n]  array.  In addition, the 
contents of the taps[n]  array can be permuted in an 
implementation-dependent way to allow faster filtering.  The pointer 
tapStPtr  is used in subsequent calls to reference the taps and filter 
structure.

nsp?FirlInitMr() .  The nsp?FirlInitMr()  function configures a 
multi-rate filter; that is, a filter that internally up-samples and/or 
down-samples using a polyphase filter structure.  It initializes tapStPtr  in 
the same way as described for single-rate filters, but includes additional 
information about the required up-sampling and down-sampling 
parameters.  The arguments upFactor  and upPhase  are the same as 
described for the nsp?UpSample()  function, and the arguments 
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downFactor  and downPhase  are the same as described for the 
nsp?DownSample()  function.  For more information on multi-rate filters, 
see Appendix C.

nsp?FirlInitDlyl() .  The nsp?FirlInitDlyl()  function associates 
a delay line with a particular set of taps.  During initialization, you must 
specify the delay line array dlyl[n] .  This array provides the initial values 
of the delay line, and is updated during each filtering operation.  The delay 
line can be permuted in an implementation-dependent way to allow fast
filtering.  The pointer dlyStPtr  is used in subsequent calls to reference the 
delay line.  For single-rate filters, dlyl[n]  must be tapsLen  long, though 
only the first tapsLen  - 1 samples provide initial values.  For multi-rate 
filters, define the length of the delay line array dlyl  as PL, where

PL = tapsLen /upFactor .
As discussed in Appendix C, the length of the delay line for a multi-rate
filter does not reduce to the length of a single-rate filter.

The array taps[n]  and the array dlyl[n]  are used every time the filter 
functions are called.  Thus they must exist while the filter exists (that is,
they must not be stored in a stack variable that goes out of scope prior to the
last nsp?Firl()  invocation).  Further, since the arrays might be permute
they must not be referenced by the application except as described for the 
functions nsp?FirlSetTaps()  and nsp?FirlSetDlyl() .  It is helpful 
to view the array taps[n]  as part of tapStPtr  and to view the array 
dlyl[n]  as part of dlyStPtr .

Application Notes:  The contents of the NSPFirTapState  and 
NSPFirDlyState  structures are implementation-dependent. 

The structures NSPFirTapState  and NSPFirDlyState  are data 
type-independent. 

The nsp?FirlInitDlyl()  function can accept tap arrays and delay line
of different types but not of different precisions.  For example, float  with 
SCplx , or double  with DCplx  are permissible but double  with float  is 
not.

The coefficient and delay line values in taps[n]  and dlyl[n]  can be 
stored in an implementation-dependent order to permit efficient 
computation of single- and multi-rate filtering. 
8-7
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Related Topics

bFirl Filters a block of samples through a low-level FIR filte
(see page 8-8).

DownSample Down-samples a signal, conceptually decreasing its 
sampling rate by an integer factor (see page 3-42).

Firl Filters a single sample through a low-level FIR filter 
(see page 8-8).

FirlGetDlyl Gets the delay line contents for a low-level FIR filter 
(see page 8-16).

FirlGetTaps Gets the tap coefficients for a low-level FIR filter 
(see page 8-14).

FirlSetDlyl Sets the delay line contents for a low-level FIR filter 
(see page 8-16).

FirlSetTaps Sets the tap coefficients for a low-level FIR filter 
(see page 8-14).

UpSample Up-samples a signal, conceptually increasing its 
sampling rate by an integer factor (see page 3-39). 

Firl, bFirl
Low-level functions which filter either a 
single sample or block of samples 
through an FIR filter.

float nspsFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , float samp);

void nspsbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const float * inSamps ,
float * outSamps , int numIters );
/* real input, real taps; single precision */

SCplx nspcFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , SCplx samp);
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void nspcbFirl(const NSPFirTapState * tapStPtr ,

NSPFirDlyState * dlyStPtr ,  const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, complex taps; single precision */

SCplx nspscFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , float samp);

void nspscbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const float * inSamps ,
SCplx * outSamps , int numIters );
/* real input, complex taps; single precision */

SCplx nspcsFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , SCplx samp);

void nspcsbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, real taps; single precision */

double nspdFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , double samp);

void nspdbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const double * inSamps ,
double * outSamps , int numIters );
/* real input, real taps; double precision */

DCplx nspzFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , DCplx samp);

void nspzbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, complex taps; double precision */

DCplx nspdzFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , double samp);

void nspdzbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const double * inSamps ,
DCplx * outSamps , int numIters );
/* real input, complex taps; double precision */

DCplx nspzdFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , DCplx samp);
8-9
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void nspzdbFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr ,  const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, real taps; double precision */

float nspwFirl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlyStPtr , float samp, int  ScaleMode, 
int  *ScaleFactor );

void nspwbFirl(const NSPFirTapState * tapStPtr , 
NSPFirDlyState * dlyStPtr , const short * inSamps , short * outSamps , 
int numIters, int  ScaleMode, int  *ScaleFactor );

/* real input, real taps; short integer */

dlylStPtr  Pointer to the NSPFirDlylState  structure.

inSamps Pointer to the array which stores the input samples to 
filtered by the nsp?bFirl()  function.

numIters The number of samples (single-rate) or blocks 
(multi-rate) to be filtered by the nsp?bFirl()  
function.

outSamps Pointer to the array which stores the output samples 
filtered by the nsp?bFirl()  function.

samp Pointer to the current sample for the nsp?Firl()  
function.

tapStPtr Pointer to the NSPFirTapState  structure. 

Discussion

The nsp?Firl()  and nsp?bFirl()  functions filter either a single sample 
or block of samples through a low-level finite impulse response (FIR) filte
Many combinations of input (x(n) ) types and filter coefficients (taps) 

types are possible.  Real or complex input can be mixed with real or 
complex filter coefficients.  This is indicated by the s, c, sc , cs , d, z , dz , 
and zd  type codes following the nsp  prefix in the function names above.  

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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For both of the functions, nsp?Firl()  and nsp?bFirl() , the allowed 
combinations of real and complex input and filter coefficients are described 
in Table 8-1.

Even though real or complex input can be mixed with real or complex fil
coefficients, input and filter coefficients of different precision cannot be 
mixed. 

Previous Tasks:   Before using either nsp?Firl()  or nsp?bFirl() , 
you must initialize the filter taps state tapStPtr , a taps array taps[n] , the 
number of taps tapsLen , and any multi-rate parameters by calling either 
nsp?FirlInit()  or nsp?FirlInitMr() .  The taps values are denoted 
h(0)...h (tapsLen  - 1). 

You must also initialize the delay line state dlyStPtr  and a delay line 
array dlyl[n]  by calling nsp?FirlInitDlyl() , and then update the 
delay line state by calling nsp?FirlSetDlyl() .  For single-rate filters, 
the contents of the delay line array are denoted as x (n - tapsLen  + 
1)...x (n - 1).  For multi-rate filters, the contents of the delay line array a
denoted as
x (n - PL)...x (n - 1).

Table 8-1 Input and Taps Combinat ions for nsp?Firl() and nsp?bFirl() 
Functions

Type 
Codes

x(n) 
(or input) Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

cs SCplx float SCplx

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx
8-11
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nsp?Firl() .  The nsp?Firl()  function filters a single sample through a
single-rate filter.  The argument samp[n] is the sample to be filtered and is
denoted as x(n) .  The return value is y(n) , and is calculated as follows:

The delay line dlyl  (and the delay line state pointer dlyStPtr , if 
appropriate) is updated to contain x(n) , and x(n - tapsLen  + 1) is 
discarded from the delay line.

nsp?bFirl() .  The nsp?bFirl()  function filters a block of consecutive 
samples through a single-rate or multi-rate filter.  For single-rate filters, the 
numIters  samples in the array inSamps[n]  are filtered, and the resulting 
numIters  samples are stored in the array outSamps[n] .  The results are 
identical to numIters  consecutive calls to nsp?Firl() .  The values in the 
outSamps[n]  array are calculated as follows:

inSamps [m] = x(n+m), 0 ≤ m < tapsLen  

For multi-rate filters, the (numIters  * downFactor ) samples in the array 
inSamps[n]  are filtered, and the resulting (numIters  * upFactor ) 
samples are stored in the array outSamps[n] .  For both single-rate and 
multi-rate filters, the appropriate number of samples from inSamps[n]  are 
copied into the delay line, and the oldest samples are discarded.  See 
Appendix C for more information on multi-rate filtering.

Example 8-1 illustrates single-rate filtering with the nsp?Firl()  function.

y n( ) h k( ) x n k–( )⋅
k 0=

tapsLe n 1–

∑=

y n m+( ) outSamps m[ ] h k( ) x n m k–+( )⋅
k 0=

tapsLen 1–

∑= =
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Related Topics

DownSample Down-samples a signal, conceptually decreasing its 
sampling rate by an integer factor (see page 3-42).

FirlGetDlyl Gets the delay line contents for a low-level FIR filte
(see page 8-16).

FirlGetTaps Gets the tap coefficients for a low-level FIR filter 
(see page 8-14).

FirlInit Initializes a single-rate, low-level FIR filter 
(see page 8-4).

FirlInitDlyl Initializes the delay line for a low-level FIR filter 
(see page 8-4).

FirlInitMr Initializes a multi-rate, low-level FIR filter 
(see page 8-4).

Example 8-1 Single-Rate Fil tering with the n sp?Firl() Function

/* standard 
 * single-rate filtering 
 */

NSPFirTapState tapSt;

NSPFirDlyState dlySt;

double taps[32];

double dlyl[32];

int i;

double xval, yval;

/* insert code here to initialize taps */

nspdFirlInit(taps, 32, &tapSt);

nspdFirlInitDlyl(&tapSt, dlyl, &dlySt);

/* zero out the delay line */

nspdFirlSetDlyl(&tapSt, (double *)NULL, &dlySt);

for (i=0; i < 2000; i++) {

      xval = /* insert code here get next val of x(n) */;

yval = nspdFirl(&tapSt, &dlySt, xval);

/* yval has the output sample */

}

8-13
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FirlSetDlyl Sets the delay line contents for a low-level FIR filter 
(see page 8-16).

FirlSetTaps Sets the tap coefficients for a low-level FIR filter 
(see page 8-14).

UpSample Up-samples a signal, conceptually increasing its 
sampling rate by an integer factor (see page 3-39). 

FirlGetTaps, FirlSetTaps
Gets and sets the tap coefficients of 
low-level FIR filters.

void nspsFirlGetTaps(NSPFirTapState * tapStPtr , float * outTaps );

void nspsFirlSetTaps(float * inTaps , NSPFirTapState * tapStPtr );
/* real values; single precision */

void nspcFirlGetTaps(NSPFirTapState * tapStPtr , SCplx * outTaps );

void nspcFirlSetTaps(SCplx * inTaps , NSPFirTapState * tapStPtr );
/* complex values; single precision */

void nspdFirlGetTaps(NSPFirTapState * tapStPtr , double * outTaps );

void nspdFirlSetTaps(double * inTaps , NSPFirTapState * tapStPtr );
/* real values; double precision */

void nspzFirlGetTaps(NSPFirTapState * tapStPtr , DCplx * outTaps );

void nspzFirlSetTaps(DCplx * inTaps , NSPFirTapState * tapStPtr );
/* complex values; double precision */

void nspwFirlGetTaps(NSPFirTapState * tapStPtr , short * outTaps );

void nspwFirlSetTaps(short * inTaps , NSPFirTapState * tapStPtr );
/* real values; short integer */

inTaps Pointer to the array holding copies of the tap 
coefficients.

outTaps Pointer to the array holding copies of the tap 
coefficients.
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tapStPtr Pointer to the NSPFirTapState  structure.

Discussion

The nsp?FirlGetTaps()  and nsp?FirlSetTaps()  functions provide a 
safe mechanism to get and set the taps of a low-level FIR filter.  Because th
taps might be stored in permuted order, it is not safe for the application to 
directly access the tap array.  Instead, nsp?FirlGetTaps()  and 
nsp?FirlSetTaps()  should be used.

Previous Tasks:  Before calling either nsp?FirlGetTaps()  or 
nsp?FirlSetTaps() , you must initialize the filter tap state tapStPtr  by 
calling either nsp?FirlInit()  or nsp?FirlInitMr() .  The data type 
used during initialization must match the data type used here.

nsp?FirlGetTaps() .  The nsp?FirlGetTaps()  function copies the tap 
coefficients from the array taps[n]  to the tapsLen  length array 
outTaps[n] , unpermuting them if required so that outTaps [n] = h(n).

nsp?FirlSetTaps() .  The nsp?FirlSetTaps()  function copies the 
tapsLen  tap coefficients from the array inTaps[n]  into the array 
taps[n] , permuting them if required.

Application Notes:  The nsp?FirlGetTaps()  and 
nsp?FirlSetTaps()  functions can be used to permute or unpermute a
FIR filter’s taps in-place or not-in-place.  That is, if the pointer inTaps  
points to an array other than taps[n]  (for nsp?FirlSetTaps() ), or if 
outTaps  points to an array other than taps[n]  (for 
nsp?FirlGetTaps() ), then the permutation is performed not-in-place. 

If, on the other hand, inTaps  or outTaps  points to the same array, 
taps[n] , then the permutation is performed in-place.  You might want 
your application to do this to avoid allocating a separate array to hold the 
permuted values.  However, if your application unpermutes the taps[n]  
array in-place (via nsp?FirlGetTaps() ), the taps[n]  array must be 
re-permuted (via nsp?FirlSetTaps() ) before the filter can be used 
again.  Thus, you must use caution when permuting in-place. 

Related Topics

bFirl Filters a block of samples through a low-level FIR filter 
(see page 8-8).
8-15
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Firl Filters a single sample through a low-level FIR filter 
(see page 8-8).

FirlInit Initializes a single-rate, low-level FIR filter 
(see page 8-21).

FirlInitDlyl Initializes the delay line for a low-level FIR filter 
(see page 8-4).

FirlInitMr Initializes a multi-rate, low-level FIR filter 
(see page 8-4).

FirlGetDlyl, FirlSetDlyl
Gets and sets the delay line contents of 
low-level FIR filters.

void nspsFirlGetDlyl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlylStPtr , float * outDlyl );

void nspsFirlSetDlyl(const NSPFirTapState * tapStPtr , float * inDlyl ,
NSPFirDlyState * dlylStPtr );
/* real values; single precision */

void nspcFirlGetDlyl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlylStPtr , SCplx * outDlyl );

void nspcFirlSetDlyl(const NSPFirTapState * tapStPtr , SCplx * inDlyl ,
NSPFirDlyState * dlylStPtr );
/* complex values; single precision */

void nspdFirlGetDlyl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlylStPtr , double * outDlyl );

void nspdFirlSetDlyl(const NSPFirTapState * tapStPtr ,
double * inDlyl , NSPFirDlyState * dlylStPtr );
/* real values; double precision */

void nspzFirlGetDlyl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlylStPtr , DCplx * outDlyl );
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void nspzFirlSetDlyl(const NSPFirTapState * tapStPtr , DCplx * inDlyl ,
NSPFirDlyState * dlylStPtr );
/* complex values; double precision */

void nspwFirlGetDlyl(const NSPFirTapState * tapStPtr ,
NSPFirDlyState * dlylStPtr , short * outDlyl );

void nspwFirlSetDlyl(const NSPFirTapState * tapStPtr , short * inDlyl ,
NSPFirDlyState * dlylStPtr );
/* real values; short integer */

dlylStPtr Pointer to the NSPFirDlylState  structure.

inDlyl Pointer to the array holding copies of the delay line 
values for the nsp?FirlSetDlyl()  function. 

outDlyl Pointer to the array holding copies of the delay line 
values for the nsp?FirlGetDlyl()  function. 

tapStPtr Pointer to the NSPFirTapState  structure.

Discussion

These nsp?FirlGetDlyl()  and nsp?FirlSetDlyl()  functions provide 
a safe mechanism to get and set the delay line values of a low-level FIR
filter.  Because the delay line might be stored in permuted order, it is no
safe for the application to directly access the delay line array.  Instead, 
nsp?FirlGetDlyl()  and nsp?FirlSetDlyl()  should be used.

Previous Tasks:  Before calling either nsp?FirlGetDlyl()  or 
nsp?FirlSetDlyl() , you must initialize the filter tap state pointed to by
tapStPtr , the (permuted) taps array taps[n] , and the filter length 
tapsLen  by calling either nsp?FirlInit()  or nsp?FirlInitMr() .  In 
addition, you must initialize the delay line state pointed to by dlylStPtr  
and the (permuted) delay line array dlyl[n]  by calling 
nsp?FirlInitDlyl() .  You must also update the delay line pointer 
dlylStPtr  by calling nsp?FirlSetDlyl() .  Both 
nsp?FirlGetDlyl()  and nsp?FirlSetDlyl()  require tapStPtr  as an 
argument to describe the delay line permutation.  The data type used fo
these functions must match the data type of the delay line initialization (
not the data type of the taps initialization).
8-17
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nsp?FirlGetDlyl() .  The nsp?FirlGetDlyl()  function copies the 
delay line values from the array dlyl[n]  and stores them into the array 
outDlyl[n] .  The function also unpermutes the delay line values if 
necessary so that outDlyl[k] = x (n - tapsLen  + 2 + k ), where x(n)  is 
the last filtered sample.  For single-rate filters, outDlyl[n]  must be 
tapsLen  - 1 long.  For multi-rate filters outDlyl[n]  must be PL long, 
where PL is defined as 

PL = tapsLen /upFactor .
nsp?FirlSetDlyl() .  The nsp?FirlSetDlyl()  function permutes the 
values in the array inDlyl[n] , stores them into dlyl[n] , and updates 
dlylStPtr .  For single-rate filters, inDlyl[n]  must be tapsLen  - 1 long, 
and for multi-rate filters it must be PL long.  If inDlyl  is NULL, the delay 
line is initialized to all zeros.

Application Notes:  The nsp?FirlGetDlyl()  and 
nsp?FirlSetDlyl()  functions can be used to permute or unpermute a
FIR filter’s taps in-place or not-in-place.  That is, if the pointer inDlyl  
points to an array other than dlyl[n] (for nsp?FirlSetDlyl() ), or if 
outDlyl points to an array other than dlyl[n] (for 
nsp?FirlGetDlyl() ), then the permutation is performed not-in-place.  

If, on the other hand, inDlyl or outDlyl points to the same array, 
dlyl[n] , then the permutation is performed in-place.  You might want 
your application to do this to avoid allocating a separate array to hold the 
permuted values.  However, if your application unpermutes the dlyl[n] 

array in-place (via nsp?FirlGetDlyl() ), the dlyl[n]  array must be 
re-permuted (via nsp?FirlSetDlyl() ) before the filter can be used 
again.  Thus, you must use caution when permuting in-place.  

Related Topics

bFirl Filters a block of samples through a low-level FIR filter 
(see page 8-8).

Firl Filters a single sample through a low-level FIR filter 
(see page 8-8).

FirlInit Initializes a single-rate, low-level FIR filter 
(see page 8-4).
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FirlInitDlyl Initializes the delay line for a low-level FIR filter 
(see page 8-4).

FirlInitMr Initializes a multi-rate, low-level FIR filter 
(see page 8-4). 

FIR Filter Functions
The functions described in this section initialize a finite impulse response 
filter, get and set the delay line and filter coefficients (taps) and perform the
filtering function.  They are intended for cyclic processing.  For batch mode 
filtering, see “Conv” in Chapter 9 for a description of the nsp?Conv()  
function.

These functions provide a higher-level interface than the corresponding 
low-level FIR functions (see “Firl” in page 8-8 for a description of 
nsp?Firl() ).  In particular, they bundle the taps and delay line into a 
single state.  Also, the FIR filter functions dynamically allocate memory for 
the taps and delay line; thus the arrays storing the taps and delay line v
are not accessed after initialization, and need not exist while the filter exist

To use the FIR filter functions, follow this general scheme: 

1. Call either nsp?FirInit()  to initialize the coefficients, delay line, 
and structure of a single-rate filter, or call nsp?FirInitMr()  to 
initialize the coefficients, delay line, and structure of a multi-rate filte

2. After this initialization, you have a choice of functions to call, 
depending on what you want to accomplish.  
a. Call the nsp?Fir()  function to filter a single sample through a 

single-rate filter and/or call nsp?bFir()  to filter a block of 
consecutive samples through a single-rate or multi-rate filter.  

b. Call the nsp?FirGetTaps()  function and then the 
nsp?FirSetTaps()  function to get and set the filter coefficients 
(taps).  

c. Call the nsp?FirGetDlyl()  function and then the 
nsp?FirSetDlyl()  function to get and set the values in the 
delay line.

3. Call the nspFirFree()  function to free dynamic memory associated
with the FIR filter.

FIR function 
list
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(that 
Real and complex taps can be mixed with real and complex delay lines 
is, all four combinations are allowable).  However, taps and delay lines of 
different precision must not be mixed.  It is the application’s responsibility 
to call the correct function for the given type combination.  This is not 
checked at compile time nor is it required to be checked at run-time.

Figure 8-2 illustrates the order of use of the FIR filter functions.

Figure 8-2 Order of Use of the FIR Functions

FirInit

Fir

FirInitMr

bFir

FirGetTaps
FirSetTaps

FirGetDlyl
FirSetDlyl

or FirFree
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FirInit, FirInitMr, FirFree
Initializes a finite impulse response 
filter.

void nspsFirInit(const float * tapVals , int tapsLen , 
const float * dlyVals , NSPFirState * statePtr );

void nspsFirInitMr(const float * tapVals , int tapsLen ,
const float * dlyVals ,int upFactor , int upPhase ,
int downFactor , int downPhase , NSPFirState * statePtr );
/* real delay line, real taps; single precision */

void nspcFirInit(const SCplx * tapVals , int tapsLen ,
const SCplx * dlyVals , NSPFirState * statePtr );

void nspcFirInitMr(const SCplx * tapVals , int tapsLen ,
const SCplx * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* complex delay line, complex taps; single precision */

void nspscFirInit(const SCplx * tapVals , int tapsLen ,
const float * dlyVals , NSPFirState * statePtr );

void nspscFirInitMr(const SCplx * tapVals , int tapsLen ,
const float * dlyVals ,int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* real delay line, complex taps; single precision */

void nspcsFirInit(const float * tapVals , int tapsLen ,
const SCplx * dlyVals , NSPFirState * statePtr );

void nspcsFirInitMr(const float * tapVals , int tapsLen ,
const SCplx * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* complex delay line, real taps; single precision */

void nspdFirInit(const double * tapVals , int tapsLen ,
const double * dlyVals , NSPFirState * statePtr );

void nspdFirInitMr(const double * tapVals , int tapsLen ,
const double * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* real delay line, real taps; double precision */
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void nspzFirInit(const DCplx * tapVals , int tapsLen ,
const DCplx * dlyVals , NSPFirState * statePtr );

void nspzFirInitMr(const DCplx * tapVals , int tapsLen ,
const DCplx * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* complex delay line, complex taps; double precision */

void nspdzFirInit(const DCplx * tapVals , int tapsLen ,
const double * dlyVals , NSPFirState * statePtr );

void nspdzFirInitMr(const DCplx * tapVals , int tapsLen ,
const double * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* real delay line, complex taps; double precision */

void nspzdFirInit(const double * tapVals , int tapsLen ,
const DCplx * dlyVals , NSPFirState * statePtr );

void nspzdFirInitMr(const double  *tapVals, int tapsLen ,
const DCplx * dlyVals , int upFactor , int upPhase ,
int downFactor , int downPhase ,  NSPFirState * statePtr );
/* complex delay line, real taps; double precision */

void nspwFirInit(const short * tapVals , int tapsLen , 
const short * dlyVals , NSPFirState * statePtr );

void nspwFirInitMr(const short * tapVals , int tapsLen ,
const short * dlyVals ,int upFactor , int upPhase ,
int downFactor , int downPhase , NSPFirState * statePtr );
/* real delay line, real taps; short integer */

void nspFirFree(NSPFirState * statePtr );
/* releases all dynamic memory associated with 
   FIR filter */

dlylVals Pointer to the array containing the delay line values.

downFactor The factor used by the nsp?FirInitMr()  function for 
down-sampling multi-rate signals. 

downPhase The phase value used by the nsp?FirInitMr()  
function for down-sampling multi-rate signals. 

statePtr Pointer to the NSPFirState  structure. 

tapVals Pointer to the array containing the filter coefficient 
(taps) values.
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tapsLen The number of values in the array containing the filter
coefficients (taps).

upFactor The factor used by the nsp?FirInitMr()  function for 
up-sampling multi-rate signals.

upPhase The phase value used by the nsp?FirInitMr()  
function for up-sampling multi-rate signals.

Discussion

The nsp?FirInit()  and nsp?FirInitMr()  functions initialize a finite 
impulse response filter.  They are intended for cyclic processing.  For batch
mode filtering, see “Conv” in Chapter 9 for the description of the 
nsp?Conv()  function.

The nsp?FirInit()  and nsp?FirInitMr()  functions provide a 
higher-level interface than the corresponding low-level FIR functions (see
“FirlInit” and “FirlIni tMr” in page 8-4 for a description of 
nsp?FirlInit()  and nsp?FirlInitMr() ).  In particular, they bundle 
the taps and delay line into the state structure NSPFirState .  Also, 
nsp?FirInit()  and nsp?FirInitMr()  dynamically allocate memory 
for the taps and delay line arrays.  Thus the data in the arrays tapVals[n]  
and dlyVals[n]  need not exist while the filter exists.  That is, your 
application can overwrite or deallocate the values in tapVals[n]  and 
dlyVals[n]  after calling the nsp?FirInit()  or nsp?FirInitMr()  
function. 

Many combinations of real and complex delay lines and filter coefficients
are possible.  This is indicated by the s , c, sc , cs , d, z , dz , and zd  type 
codes following the nsp  prefix in the function names above.  For both of the
functions, nsp?FirInit()  and nsp?FirInitMr() , the allowed 
combinations of real and complex taps and delay lines are described in 
Table 8-2.

Table 8-2 Delay Line and Taps Combinations for nsp?FirI nit() and 
nsp?FirInitMr() Functions

Type 
Codes

Delay Line 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

                     continued ☛
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nsp?FirInit() .  The nsp?FirInit()  function initializes a single-rate 
filter.  The tapsLen  length array tapVals[n]  specifies the filter 
coefficients as follows:

tapVals[k]  = h(k) , 0 ≤ k  < tapsLen

If the tapsLen  - 1 length array dlyVals[n]  is non-NULL, the following 
equation provides initial samples for the delay line:

dlylVals[k]  = x(-tapsLen  + 1 + k ), 0 ≤ k < tapsLen  - 1

where x(0) will be the first sample filtered.  If dlyVals[n]  is NULL, the 
delay line is initialized to zero.

nsp?FirInitMr() .  The nsp?FirInitMr()  function initializes a 
multi-rate filter; that is, a filter that internally up-samples and/or 
down-samples using a polyphase filter structure.  It initializes the 
NSPFirState  structure pointed to be statePtr  in the same way as 
described for single-rate filters, but includes additional information about 
the required up-sampling and down-sampling parameters. 

 The argument  upFactor  is the factor by which the filtered signal is 
internally up-sampled  (see “UpSample” in Chapter 3).  That is, 
upFactor  - 1 zeros are inserted between each sample of input signal.  

The argument upPhase  is the parameter which determines where a 
non-zero sample lies within the upFactor -length block of up-sampled 
input signal. 

sc float SCplx SCplx

cs SCplx float SCplx

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx

w short short short

Table 8-2 Delay Line and Taps Combinations for nsp?FirI nit() and 
nsp?FirInitMr() Functions (continued)

Type 
Codes

Delay Line 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type
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The argument downFactor  is the factor by which the FIR response 
obtained by filtering an up-sample input signal is internally down-sample
(see “DownSample” in Chapter 3). That is, downFactor -1 output samples 
are discarded from each downFactor -length output block of up-sampled 
filter response.

The argument downPhase  is the parameter which determines where 
non-discarded sample lies within a block of up-sampled filter response.

The delay line array dlyVals[n]  is defined in the same way as in the 
single-rate case, but if the array is non-NULL its length is defined as 

PL = tapsLen /upFactor .
nspFirFree() .  The nspFirFree()  function frees all memory 
associated with a filter created by either the nsp?FirInit()  or 
nsp?FirInitMr()  function.  You should call nspFirFree()  after the 
application has finished filtering with statePtr .  After calling 
nspFirFree() , you should not reference statePtr  again. 

Application Notes:  The contents of the NSPFirState  structure are 
implementation-dependent.  The contents of NSPFirState  includes a 
dynamically allocated array for the taps and delay line.  For more 
information, see the “Application Notes” in page 8-7 for the “FirlInit” and 
“FirlIni tMr” sections (that is, for the low-level functions nsp?FirlInit()  
and nsp?FirlInitMr() ).

Related Topics

upSample Up-samples a signal, conceptually increasing its 
sampling rate by an integer factor (see page 3-39).

downSample Down-samples a signal, conceptually decreasing its 
sampling rate by an integer factor (see page 3-42).

bFir Filters a block of samples through an FIR filter
 (see page 8-26).

Fir Filters a single sample through an FIR filter
(see page 8-26).

FirGetDlyl Gets the delay line contents for an FIR filter 
(see page 8-32).
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FirGetTaps Gets the tap coefficients for an FIR filter 
(see page 8-31).

FirSetDlyl Sets the delay line contents for an FIR filter 
(see page 8-32).

FirSetTaps Sets the tap coefficients for an FIR filter (see page 8-31). 

Fir, bFir
Performs finite impulse response 
filtering.

float nspsFir(NSPFirState * statePtr , float samp);

void nspsbFir(NSPFirState * statePtr , const float * inSamps ,
float * outSamps , int numIters );
/* real delay line, real taps; single precision */

SCplx nspcFir(NSPFirState * statePtr , SCplx samp);

void nspcbFir(NSPFirState * statePtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex delay line, complex taps; single precision */

SCplx nspscFir(NSPFirState * statePtr , float samp);

void nspscbFir(NSPFirState * statePtr , const float * inSamps ,
SCplx * outSamps , int numIters );
/* real delay line, complex taps; single precision */

SCplx nspcsFir(NSPFirState * statePtr , SCplx samp);

void nspcsbFir(NSPFirState * statePtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex delay line, real taps; single precision */

double nspdFir(NSPFirState * statePtr , double samp);

void nspdbFir(NSPFirState * statePtr , const double * inSamps ,
double * outSamps , int numIters );
/* real delay line, real taps; double precision */

DCplx nspzFir(NSPFirState * statePtr , DCplx samp);
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be 
void nspzbFir(NSPFirState * statePtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex delay line, complex taps; double precision */

DCplx nspdzFir(NSPFirState * statePtr , double samp);

void nspdzbFir(NSPFirState * statePtr , const double * inSamps ,
DCplx * outSamps , int numIters );
/* real delay line, complex taps; double precision */

DCplx nspzdFir(NSPFirState * statePtr , DCplx samp);

void nspzdbFir(NSPFirState * statePtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex delay line, real taps; double precision */

float nspwFir(NSPFirState * statePtr , short samp, int  ScaleMode, 
int  *ScaleFactor );

void nspwbFir(NSPFirState * statePtr , const short * inSamps ,
short * outSamps , int numIters, int  ScaleMode, 
int  *ScaleFactor );
/* real delay line, real taps; short integer */

inSamps Pointer to the array which stores the input samples to 
filtered by the nsp?bFir()  function. 

numIters Parameter associated with the number of samples to 
filtered by the nsp?bFir()  function.  For single-rate 
filters, the numIters  samples in the array inSamps[n]  
are filtered and the resulting numIters  samples are 
stored in the array outSamps[n] .  For multi-rate filters, 
the (numIters  * downFactor ) samples in the array 
inSamps[n]  are filtered and the resulting
(numIters  * upFactor ) samples are stored in the 
array outSamps[n] . 

outSamps Pointer to the array which stores the output samples 
filtered by the nsp?bFir()  function. 

samp The input sample to be filtered by the nsp?bFir()  
function. 
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r 
statePtr Pointer to the NSPFirState  structure.

Discussion

The nsp?Fir()  and nsp?bFir()  functions perform finite impulse 
response filtering.  The nsp?Fir()  function filters a single sample through
a single-rate filter and the nsp?bFir()  function filters a block of 
consecutive samples through a single-rate or multi-rate filter.

Previous Tasks:  Before calling either the nsp?Fir()  or nsp?bFir()  
function, you must initialize the filter state pointed to by statePtr  by 
calling either nsp?FirInit()  or nsp?FirInitMr() .  You must specify 
the number of taps tapsLen , and the taps values, denoted as 
h(0)...h (tapsLen  - 1).  You must also specify the delay line values.  Fo
single-rate filters the values are denoted as x(n-tapsLen  + 1)...x (n - 1); 
for multi-rate filters, they are denoted as x (n - PL)...x (n - 1).  

The data type of the function used here must match the data type of the 
function used for initialization.  For example, if the filter was initialized 
with nspcsFirInit() , use the nspcsFir()  function to filter the sample. 
For a description of the initialization functions, see nsp?FirInit()  and 
nsp?FirInitMr()  in page 8-21.

Table 8-3 describes the s, c, sc , cs , d, z , dz , and zd  type codes following 
the nsp  prefix

.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.

Table 8-3 Delay Line and Taps Combinations for n sp?Fir() and nsp?bFir() 
Functions 

Type 
Codes

Delay Line 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

cs SCplx float SCplx

                     continued ☛



Filtering Functions8
nsp?Fir() .  The nsp?Fir()  function filters a single sample through a 
single-rate filter.  In the following definition of the FIR filter, the sample to 
be filtered is denoted x(n)  and the filter coefficients are denoted h(k) .  
The return value y(n)  is calculated as follows:

The nsp?Fir()  function then updates the delay line dlyl[n]  to contain 
x(n) , and discards the value x(n - tapsLen  + 1) from the delay line.

nsp?bFir() .  The nsp?bFir()  function filters a block of consecutive 
samples through a single-rate or multi-rate filter.  For single-rate filters, the 
numIters  samples in the array inSamps[n]  are filtered, and the resulting 
numIters  samples are stored in the array outSamps[n] .  The results are 
identical to numIters  consecutive calls to nsp?Fir() .  The values in the 
outSamps[n]  array are calculated as follows:

inSamps[m]  = y(n + m), 0 ≤ m < numIters

For multi-rate filters, nsp?bFir()  filters the (numIters  * downFactor ) 
samples in the array inSamps[n] , and stores the resulting
(numIters  * upFactor ) samples in the array outSamps[n] .  

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx

w short short short

Table 8-3 Delay Line and Taps Combinations for n sp?Fir() and nsp?bFir() 
Functions  (continued)

Type 
Codes

Delay Line 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

y n( ) h k( ) x n k–( )⋅
k 0=

tapsLe n 1–

∑=

y n m+( ) outSamps m[ ] h k( ) x n m k–+( )⋅
m 0=

numIters 1–

∑= =
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See Appendix C  for more information about multi-rate filters. For both 
single-rate and multi-rate filters, the appropriate number of samples from 
inSamps[n]  are copied into the delay line, and the oldest samples are 
discarded.

Example 8-2 illustrates single-rate filtering with the nsp?Fir()  function.

Related Topics

bFirl Filters a block of samples through a single-rate or 
multi-rate low-level FIR filter (see page 8-8).

Firl Filters a single sample through a single-rate. low-level 
FIR filter (see page 8-8).

FirInit Initializes a single-rate FIR filter (see page 8-21).

FirInitMr Initializes a multi-rate FIR filter (see page 8-21).

Example 8-2 Single-Rate Fil tering with the n sp?Fir() Function

/* standard 
 * single-rate filtering
 */

NSPFirState firSt;

double h[32], xval, yval;

int    i;

/* insert code here to initialize h */

nspdFirInit(h, 32, NULL, &firSt);

for (i=0; i < 2000; i++) {

   xval = /* insert code here to get 
           * next value of x(n) 
           */;

yval = nspdFir(&firSt, xval);

/* yval has the output sample */

}



Filtering Functions8

atch 
FirGetTaps, FirSetTaps
Gets and sets the tap coefficients of FIR 
filters.

void nspsFirGetTaps(const NSPFirState * statePtr , float * outTaps );

void nspsFirSetTaps(const float * inTaps , NSPFirTapState * statePtr );
/* real values; single precision */

void nspcFirGetTaps(const NSPFirTapState * statePtr , SCplx * outTaps );

void nspcFirSetTaps(const SCplx * inTaps , NSPFirTapState * statePtr );
/* complex values; single precision */

void nspdFirGetTaps(const NSPFirState * statePtr , double * outTaps );

void nspdFirSetTaps(const double * inTaps , NSPFirTapState * statePtr );
/* real values; double precision */

void nspzFirGetTaps(const NSPFirTapState * statePtr , DCplx * outTaps );

void nspzFirSetTaps(const DCplx * inTaps , NSPFirTapState * statePtr );
/* complex values; double precision */

void nspwFirGetTaps(const NSPFirState * statePtr , short * outTaps );

void nspwFirSetTaps(const short * inTaps , NSPFirTapState * statePtr );
/* real values; short integer */

inTaps Pointer to the array holding copies of the tap 
coefficients.

outTaps Pointer to the array holding copies of the tap 
coefficients.

statePtr Pointer to the NSPFirState  structure.

Discussion

The nsp?FirGetTaps()  and nsp?FirSetTaps()  functions get and set 
the taps of a FIR filter.  The data type of the function used here must m
the data type for the taps used during initialization.
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Previous Tasks:  Before calling either nsp?FirGetTaps()  or 
nsp?FirSetTaps() , you must initialize the state structure NSPFirState  
pointed to by statePtr  by calling either nsp?FirInit()  or 
nsp?FirInitMr() .  You must also specify the tap length tapsLen  and 
the taps h(0)...h (tapsLen  - 1). 

nsp?FirGetTaps() .  The nsp?FirGetTaps()  function copies the tap 
coefficients from statePtr  to the tapsLen  length array outTaps[n] , 
unpermuting them if required so that outTaps[n]  = h(n) .

nsp?FirSetTaps() .  The nsp?FirSetTaps()  function copies the 
tapsLen  tap coefficients from the inTaps[n]  array into statePtr , 
permuting them if required so that h(n)  = inTaps[n] .

Related Topics

bFir Filters a block of samples through a single-rate or 
multi-rate FIR filter (see page 8-26).

Fir Filters a single sample through a single-rate FIR filter 
(see page 8-26).

FirInit Initializes a single-rate FIR filter (see page 8-21).

FirInitMr Initializes a multi-rate FIR filter (see page 8-21).

FirGetDlyl, FirSetDlyl
Gets and sets the delay line contents of 
FIR filters.

void nspsFirGetDlyl(const NSPFirState * statePtr , float * outDlyl );

void nspsFirSetDlyl(const float * inDlyl , NSPFirState * statePtr );
/* real values; single precision */

void nspcFirGetDlyl(const NSPFirState * statePtr , SCplx * outDlyl );

void nspcFirSetDlyl(const SCplx * inDlyl , NSPFirState * statePtr );
/* complex values; single precision */
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void nspdFirGetDlyl(const NSPFirState * statePtr , double * outDlyl );

void nspdFirSetDlyl(const double * inDlyl , NSPFirState * statePtr );
/* real values; double precision */

void nspzFirGetDlyl(const NSPFirState * statePtr , DCplx * outDlyl );

void nspzFirSetDlyl(const DCplx * inDlyl , NSPFirState * statePtr );
/* complex values; double precision */

void nspwFirGetDlyl(const NSPFirState * statePtr , short * outDlyl );

void nspwFirSetDlyl(const short * inDlyl , NSPFirState * statePtr );
/* real values; short integer */

inDlyl Pointer to the array holding copies of the delay line 
values for the nsp?FirSetDlyl()  function. 

outDlyl Pointer to the array holding copies of the delay line 
values for the nsp?FirGetDlyl()  function. 

statePtr Pointer to the NSPFirState  structure.

Discussion

The nsp?FirGetDlyl()  and nsp?FirSetDlyl()  functions get and set 
the delay line of an FIR filter.  The data type of the function used here m
match the data type for the delay line used during initialization.

Previous Tasks:   Before calling either nsp?FirGetDlyl()  or 
nsp?FirSetDlyl() , you must initialize the state structure NSPFirState  
pointed to by statePtr  by calling either nsp?FirInit()  or 
nsp?FirInitMr() .  You must also specify the tap length tapsLen  and 
the delay line values.  For single-rate filters, the delay line values are 
denoted as x(n - tapsLen  + 1)...x (n - 1); for multi-rate filters they are 
denoted as x(n - PL)...x (n - 1).

nsp?FirGetDlyl() .  The nsp?FirGetDlyl()  function unpermutes the 
delay line values in statePtr  and stores them into the array outDlyl[n]  
so that outDlyl[k]  = x (n - tapsLen  + 2 - k), where x(n)  is the last 
filtered sample.  For single-rate filters, the array outDlyl[n]  must be 
tapsLen  - 1 long, and for multi-rate it must be PL long, where PL is 
defined as follows:

PL = tapsLen /upFactor .
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nsp?FirSetDlyl() .  The nsp?FirSetDlyl()  function permutes the 
values in the array inDlyl[n]  and stores them into statePtr .  For 
single-rate filters, inDlyl[n]  must be tapsLen  - 1 long, and for multi-rate 
filters, it must be PL long.  If inDlyl  is NULL, the delay line is initialized to 
all zeros.

Related Topics

bFir Filters a block of samples through a single-rate or 
multi-rate FIR filter (see page 8-26).

Fir Filters a single sample through a single-rate FIR filter 
(see page 8-26).

FirInit Initializes a single-rate FIR filter (see page 8-21).

FirInitMr Initializes a multi-rate FIR filter (see page 8-21).

Low-Level LMS Filter Functions
This section describes the low-level, adaptive finite impulse response fi
functions.  These filter functions employ the least mean squares (LMS) 
adaptation.  The functions initialize the filter, get and set its taps and delay
line, and perform the filter function.  Unlike the FIR filters (whose filter 
coefficients do not vary over time) an adaptive filter varies its coefficien
to try to make its output match some prototype “desired” signal as closely as 
possible. 

The low-level LMS functions maintain the filter coefficients separately 
from the delay line, allowing multiple delay lines to be used with the same 
set of taps.  The low-level LMS functions do not allocate memory 
dynamically. 

To use a low-level LMS filter, follow this general scheme:

1. Call either nsp?LmslInit()  to initialize the coefficients and structure
of a single-rate filter or call nsp?LmslInitMr()  to initialize the 
coefficients and structure of a multi-rate filter. 

2. Call nsp?LmslInitDlyl()  to initialize a delay line.
The delay line is associated with a particular set of taps.  Multiple delay 
lines for a given set of taps can be initialized by calling this function 
multiple times, but there should be only one call for each delay line. 

Low-Level 
LMS function 
list
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3. After this initialization, you now have a choice of functions to call, 

depending on what you want to accomplish. 
a. Call the nsp?Lmsl()  function to filter a single sample through a 

single-rate filter and/or call nsp?bLmsl()  to filter a block of 
consecutive samples through a single-rate or multi-rate filter. 

b. Call the nsp?LmslGetTaps()  function and the 
nsp?LmslSetTaps()  function to get and set the filter 
coefficients (taps).

c. Call the nsp?LmslGetDlyl()  function and the 
nsp?LmslSetDlyl()  function to get and set the values in the 
delay line. 

d. Call the nsp?LmslGetStep()  function and the 
nsp?LmslSetStep()  function to get and set the convergence 
step size values. 

e. Call the nsp?LmslGetLeak()  function and the 
nsp?LmslSetLeak()  function to get and set the leak values.

f. Call the functions nsp?LmslNa()  or nsp?bLmslNa()  to allow a 
second signal to be filtered independent of the first signal driving 
the adaptation.  (That is, a second signal is filtered without the 
adaptation which is being applied to the first signal.) 

Figure 8-3 illustrates the order of use of the low-level LMS filter functions.
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Figure 8-3 Order of Use of the Low-Level LMS Functions
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LmslInit, LmslInitMr, LmslInitDlyl
Initializes a low-level FIR filter that 
uses the least mean square (LMS) 
adaptation.

void nspsLmslInit(NSPLmsType lmsType , float * taps ,
int tapsLen , float step , float leak , int errDly ,
NSPLmsTapState * tapStPtr );

void nspsLmslInitMr(NSPLmsType lmsType , float * taps , int tapsLen ,
float step , float leak , int errDly , int downFactor ,
int downPhase , NSPLmsTapState * tapStPtr );

void nspsLmslInitDlyl(NSPLmsTapState * tapStPtr , float * dlyl ,
int adaptB , NSPLmsDlyState * dlyStPtr );
/* real values; single precision */

void nspcLmslInit(NSPLmsType lmsType , SCplx * taps , int tapsLen ,
float step , float leak , int errDly , NSPLmsTapState * tapStPtr );

void nspcLmslInitMr(NSPLmsType lmsType , SCplx * taps , int tapsLen ,
float step , float leak , int errDly , int downFactor ,
int downPhase , NSPLmsTapState * tapStPtr );

void nspcLmslInitDlyl(NSPLmsTapState * tapStPtr , SCplx * dlyl ,
int adaptB , NSPLmsDlyState * dlyStPtr );
/* complex values; single precision */

void nspdLmslInit(NSPLmsType lmsType , double * taps , int tapsLen ,
float step , float leak , int errDly , NSPLmsTapState * tapStPtr );

void nspdLmslInitMr(NSPLmsType lmsType , double * taps , int tapsLen ,
float step , float leak , int errDly , int downFactor ,
int downPhase , NSPLmsTapState * tapStPtr );

void nspdLmslInitDlyl(NSPLmsTapState * tapStPtr , double * dlyl ,
int adaptB , NSPLmsDlyState * dlyStPtr );
/* real values; double precision */

void nspzLmslInit(NSPLmsType lmsType , DCplx * taps , int tapsLen ,
float step , float leak , int errDly , NSPLmsTapState * tapStPtr );
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void nspzLmslInitMr(NSPLmsType lmsType , DCplx * taps , int tapsLen ,
float step , float leak , int errDly , int downFactor ,
int downPhase , NSPLmsTapState * tapStPtr );

void nspzLmslInitDlyl(NSPLmsTapState * tapStPtr , DCplx * dlyl ,
int adaptB , NSPLmsDlyState * dlyStPtr );
/* complex values; double precision */

adaptB Indicates whether the delay line will be used to adapt t
LMS filter (that is, whether nsp?Lmsl()  or 
nsp?LmslNa()  will be called).  The values for adaptB  
are TRUE or FALSE.  This argument is used by the 
nsp?LmslInitDlyl()  function. 

dlyl Pointer to the array storing the delay line values for the 
nsp?LmslInit()  and nsp?LmslInitMr()  functions.

dlylStPtr Pointer to the NSPLmsDlylState  structure.  This 
pointer is used by the nsp?LmslInitDlyl()  function.

lmsType The type of least mean square algorithm used.  
Currently, this must always be NSP_LmsDefault . 

downFactor For multi-rate filters.  The factor by which the signal is 
down-sampled.  That is, downFactor  - 1 samples are 
discarded from the signal.  This argument is used by t
nsp?LmslInitMr() function.

downPhase For multi-rate filters.  A parameter that determines 
which of the samples within each block are not 
discarded.  The value of downPhase  is required to be 
0 ≤ downPhase  < downFactor .  This argument is used 
by the nsp?LmslInitMr()  function.

errDly The delay (in samples) from the output signal of the 
LMS filter to the error signal input.  The errDly  
argument is used by the nsp?LmslInit()  and 
nsp?LmslInitMr()  functions.

leak How much the tap values “leak” towards 0.0 on each 
iteration.  The value must be between 0.0 and 1.0.  Th
leak  argument is used by the nsp?LmslInit()  and 
nsp?LmslInitMr()  functions.
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step The convergence step size.  This value must be between 
0.0 and 1.0.  A non-zero value enables adaptation while 
a value of 0.0 disables the filter adaptation.  The step  
argument is used by the nsp?LmslInit()  and 
nsp?LmslInitMr()  functions.

taps Pointer to the array storing the filter coefficient values 
for the nsp?LmslInit()  and nsp?LmslInitMr()  
functions.

tapsLen The number of taps values in the taps[n]  array. 

tapStPtr Pointer to the NSPLmsTapState  structure.  The 
tapStPtr  pointer is used by the nsp?LmslInit()  and 
nsp?LmslInitMr()  functions. 

Discussion

nsp?LmslInit() .  The nsp?LmslInit()  function initializes tapStPtr  
to describe a single-rate LMS filter.  The argument taps  is a pointer to an 
array of filter coefficient values and tapsLen  is the length of the array.  
The array defines the signal h0(k) .  The filter taps are considered to be a 
signal hn(k) , where n indexes the evolution over time (that is, updating the 
taps corresponds to increasing n), and where k  indexes the taps from 0 to 
tapsLen  - 1 for a fixed point in time. 

For example, at time = 0, the taps are denoted as

h0(0), h0(1), .  .  .  h0(k) . 

At time = 1, the taps are denoted as

h1(0), h1(1), .  .  .  h1(k) .

The argument leak  controls how much the tap values “leak” towards 0 on 
each iteration.  Its value should be between 0.0 and 1.0.  A value of 0.0
yields a traditional non-leaky LMS filter; a typical leaky filter uses a small 
value for leak . 

The argument errDly  specifies the delay (in samples) from the output 
signal of the LMS filter to the error signal input.  In principle, the value of 
errDly  must be at least 1.  A delay of 1 corresponds to subtracting the f
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output sample y(n)  from the desired signal d(n)  to obtain the error signal 
e(n) .  The value of the error signal is then passed to the next invocatio
the filter.  In the general case, errDly  is chosen as follows:

e(n)  = d(n  - errDly)  - y(n  - errDly)

where e(n)  is the error signal.  See “Lmsl” (for nsp?Lmsl() ) in page 8-48 
for a description of how e(n)  is used.

nsp?LmslInitMr() .  The nsp?LmslInitMr()  function initializes 
tapStPtr  to describe a multi-rate filter; that is, a filter which internally 
down-samples using a polyphase filter structure.  As discussed in Appendix
C, only down-sampling is supported for the LMS filters as opposed to b
up-sampling and down-sampling.  The argument taps  is a pointer to an 
array of filter coefficient values and tapsLen  is the length of the array.  
The array defines the signal h0(k) .  The filter taps are considered to be a 
signal hn(k) , where n indexes the evolution over time (that is, updating the 
taps corresponds to increasing n), and where k  indexes the taps from 0 to 
tapsLen  - 1 for a fixed point in time.

The argument downFactor  is the factor by which the signal is 
down-sampled.  That is, downFactor  - 1 samples are discarded from the 
signal.  The argument downPhase  determines which of the samples within
each block are not discarded.  The value of downPhase  is required to be 
0 ≤ downPhase  < downFactor .  For more information on down-sampling, 
see “DownSample” in Chapter 3 for the description of the 
nsp?DownSample  function.

The arguments step , leak , and errDly  are the same as described for the 
nsp?LmslInit()  function above.  Note that errDly  is relative to the 
output rate, not the input rate.

nsp?LmslInitDlyl() .  The nsp?LmslInitDlyl()  function initializes 
dlyStPtr  to describe a delay line.  The tap state tapStPtr  must have 
been previously initialized by either nsp?LmslInit()  or 
nsp?LmslInitMr() .  

The argument adaptB  specifies whether the delay line will be used to ada
the LMS filter (that is, whether nsp?Lmsl()  or nsp?LmslNa()  will be 
called).  This is important because a delay line used for adaptation requires 
more previous samples than otherwise.  If adaptB  is TRUE, the delay line 
will be used for adaptation, and the array dlyl[n]  must be
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tapsLen  + errDly  long.  If adaptB  is FALSE, the array dlyl[n]  must be 
tapsLen  long.  Only the first tapsLen  + errDly  - 1 (or tapsLen  - 1 for 
non-adapting) samples provide initial values.  For multi-rate filters, the 
delay line length is greater by the downFactor  value.  The adaptB  
argument is used by the nsp?Lmsl()  function only to determine the correct 
length of the delay line; the adaptB  argument does not determine whethe
adaptation is done.  To disable adaptation, your application should set step  
to 0.

The step  and leak  parameters are single precision (float ) for all types of 
the nsp?LmslInit()  and nsp?LmslInitMr()  functions defined above.  
These parameters do not require the extra precision available with double 
precision (double ).

Do not deallocate or overwrite the arrays taps[n]  and dlyl[n]  during the 
life of the filter.  Your application must not directly access these arrays 
because the nsp?LmslInit() , nsp?LmslInitMr()  and 
nsp?LmslInitDlyl() functions can permute their contents in an 
implementation-dependent way.

Application Notes:  The taps array taps[n]  and delay line array 
dlyl[n]  can be permuted as described for the FIR filters.  See the 
“Low-Level FIR Filter Functions” for details.  The permuted order used b
the LMS functions is implementation-dependent and might or might not
the same as that used by the FIR functions. 

Related Topics

bLmsl Filters samples using a low-level, multi-rate, adaptive 
LMS filter to produce a single sample (see page 8-48). 

bLmslNa Filters a block of signals using a low-level, adaptive 
LMS filter but does not adapt the filter for a secondary
signal (see page 8-53).

Lmsl Filters a single sample using a low-level, single-rate, 
adaptive LMS filter (see page 8-48).

LmslGetLeak Gets the leak values for a low-level LMS filter 
(see page 8-47).

LmslGetStep Gets the step values for a low-level LMS filter 
(see page 8-47).
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LmslNa Filters a signal using a low-level, adaptive LMS filter 
but does not adapt the filter for a secondary signal 
(see page 8-53).

LmslSetLeak Sets the leak values for a low-level LMS filter 
(see page 8-47).

LmslSetStep Sets the step values for a low-level LMS filter 
(see page 8-47).

LmslGetTaps, LmslSetTaps
Gets and sets the tap coefficients of 
low-level LMS filters.

void nspsLmslGetTaps(const NSPLmsTapState * tapStPtr , 
float * outTaps );

void nspsLmslSetTaps(const float * inTaps , NSPLmsTapState * tapStPtr );
/* real values; single precision */

void nspcLmslGetTaps(const NSPLmsTapState * tapStPtr , 
SCplx * outTaps );

void nspcLmslSetTaps(const SCplx * inTaps , NSPLmsTapState * tapStPtr );
/* complex values; single precision */

void nspdLmslGetTaps(const NSPLmsTapState * tapStPtr , 
double *outTaps);

void nspdLmslSetTaps(const double * inTaps , 
NSPLmsTapState * tapStPtr );
/* real values; double precision */

void nspzLmslGetTaps(const NSPLmsTapState * tapStPtr , 
DCplx * outTaps );

void nspzLmslSetTaps(const DCplx * inTaps , NSPLmsTapState * tapStPtr );
/* complex values; double precision */

inTaps Pointer to the array holding copies of the tap coefficients 
for the nsp?LmslSetTaps()  function.
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outTaps Pointer to the array holding copies of the tap coefficients 
for the nsp?LmslGetTaps()  function.

tapStPtr Pointer to the NSPLmsTapState  structure.

Discussion

The nsp?LmslGetTaps()  and nsp?LmslSetTaps()  functions provide a 
safe mechanism to get and set the taps of a low-level LMS filter.  Becaus
the taps may be stored in permuted order, it is not safe for the application to 
directly access the tap array.  Instead, nsp?LmslGetTaps()  and 
nsp?LmslSetTaps()  should be used.

Previous Tasks: Before calling either the nsp?LmslGetTaps()  or the 
nsp?LmslSetTaps() function, you must initialize the filter tap state 
tapStPtr  by calling either nsp?LmslInit()  or nsp?LmslInitMr() .  
This references the (permuted) tap array taps[n]  and the filter length 
tapsLen .  The data type used during initialization must match the data type 
used here.

nsp?LmslGetTaps().   The function nsp?LmslGetTaps()  copies the 
tap coefficients from taps[n]  to the tapsLen  length array outTaps[n] , 
unpermuting them if required so that outTaps [ n]= h(n) .

nsp?LmslSetTaps().   The function nsp?LmslSetTaps()  copies the 
tapsLen  tap coefficients from the inTaps[n]  array into taps[n] , 
permuting them if required.

Application Notes:   The nsp?LmslGetTaps()  and 
nsp?LmslSetTaps()  functions can be used to permute or unpermute a
LMS filter’s taps in-place or not-in-place.  That is, if the pointer inTaps  
points to an array other than taps[n]  (for nsp?LmslSetTaps() ), or if 
outTaps  points to an array other than taps[n]  (for 
nsp?LmslGetTaps() ), then the permutation is performed not-in-place. 

If, on the other hand, inTaps  or outTaps  points to the same array, 
taps[n] , then the permutation is performed in-place.  You might want 
your application to do this to avoid allocating a separate array to hold the 
permuted values.  However, if your application unpermutes the taps[n]  
array in-place (via nsp?LmslGetTaps() ), the taps[n]  array must be 
re-permuted (via nsp?LmslSetTaps() ) before the filter can be used 
again.  Thus, you must use caution when permuting in-place.  
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Related Topics

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 

LmslGetDlyl, LmslSetDlyl
Gets and sets the delay line contents of 
low-level LMS filters.

void nspsLmslGetDlyl(const NSPLmsTapState * tapStPtr , 
const NSPLmsDlyState * dlyStPtr , float * outDlyl );

void nspsLmslSetDlyl(const NSPLmsTapState * tapStPtr , 
const float * inDlyl , NSPLmsDlyState * dlyStPtr );
/* real values; single precision */

void nspcLmslGetDlyl(const NSPLmsTapState * tapStPtr , 
const NSPLmsDlyState * dlyStPtr , SCplx * outDlyl );

void nspcLmslSetDlyl(const NSPLmsTapState * tapStPtr , 
const SCplx * inDlyl , NSPLmsDlyState * dlyStPtr );
/* complex values; single precision */

void nspdLmslGetDlyl(const NSPLmsTapState * tapStPtr , 
const NSPLmsDlyState * dlyStPtr , double * outDlyl );

void nspdLmslSetDlyl(const NSPLmsTapState * tapStPtr , 
const double * inDlyl , NSPLmsDlyState * dlyStPtr );
/* real values; double precision */

void nspzLmslGetDlyl(const NSPLmsTapState * tapStPtr , 
const NSPLmsDlyState * dlyStPtr , DCplx * outDlyl );

void nspzLmslSetDlyl(const NSPLmsTapState * tapStPtr , 
const DCplx * inDlyl , NSPLmsDlyState * dlyStPtr );
/* complex values; double precision */

dlyStPtr Pointer to the NSPLmsDlyState  structure.
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inDlyl Pointer to the array holding copies of the delay line 
values for the nsp?LmslSetDlyl()  function. 

outDlyl Pointer to the array holding copies of the delay line 
values for the nsp?LmslGetDlyl()  function. 

tapStPtr Pointer to the NSPLmsTapState  structure.

Discussion

The nsp?LmslGetDlyl()  and nsp?LmslSetDlyl()  functions provide a 
safe mechanism to get and set the delay line of a low-level LMS filter.  
Because the delay line may be stored in permuted order, it is not safe for the 
application to directly access the delay line array.  Instead, 
nsp?LmslGetDlyl()  and nsp?LmslSetDlyl()  should be used.  The 
data type used for  nsp?LmslGetDlyl()  and nsp?LmslSetDlyl()  must 
match the data type of the delay line initialization (and not the data type
the tap initialization).  For more information on initializing delay lines, see 
“LmslInitDlyl” in page 8-37 for nsp?LmslInitDlyl() .

Previous Tasks: Before calling either nsp?LmslGetDlyl()  or 
nsp?LmslSetDlyl() , you must initialize the filter tap state pointed to by
tapStPtr , the (permuted) tap array taps  and the filter length tapsLen  by 
calling either nsp?LmslInit()  or nsp?LmslInitMr() .  In addition, you 
must initialize the delay line state pointed to by dlyStPtr  and the 
(permuted) delay line array dlyl[n]  by calling nsp?LmslInitDlyl() .  
Both nsp?LmslGetDlyl()  and nsp?LmslSetDlyl()  require tapStPtr  
as an argument to describe the delay line permutation.

nsp?LmslGetDlyl().   The nsp?LmslGetDlyl()  function unpermutes 
the delay line values in dlyl[n]  and stores them into the array 
outDlyl[n]  so that outDlyl [ k ]= x( n-k ) , where x( n)  was the last 
sample that was filtered.  For single-rate filters, outDlyl[n]  must be 
tapsLen  + errDly  -1 long if the delay line is used for adaptation, and 
tapsLen  - 1 long otherwise.  For multi-rate filters an additional 
downFactor  samples are required in outDlyl[n] .  

nsp?LmslSetDlyl().   The nsp?LmslSetDlyl()  function permutes the 
values in the array inDlyl[n] , stores them into dlyl[n] , and updates 
dlyStPtr .  For single-rate filters, inDlyl[n]  must be 
tapsLen  + errDly  - 1 long if the delay line is used for adaptation and 
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tapsLen  - 1 long otherwise.  For multi-rate filters an additional 
downFactor  samples are required in inDlyl[n] .  If inDlyl  is NULL, the 
delay line is initialized to all zeros.

Application Notes: The nsp?LmslGetDlyl()  and 
nsp?LmslSetDlyl()  functions can be used to permute or unpermute a
LMS filter’s taps in-place or not-in-place.  That is, if the pointer inDlyl  
points to an array other than dlyl[n] (for nsp?LmslSetDlyl() ), or if 
outDlyl points to an array other than dlyl[n] (for 
nsp?LmslGetDlyl() ), then the permutation is performed not-in-place.  

If, on the other hand, inDlyl or outDlyl points to the same array, 
dlyl[n] , then the permutation is performed in-place.  You might want 
your application to do this to avoid allocating a separate array to hold the 
permuted values.  However, if your application unpermutes the dlyl[n] 

array in-place (via nsp?LmslGetDlyl() ), the dlyl[n] array must be 
re-permuted (via nsp?LmslSetDlyl() ) before the filter can be used 
again.  Thus, you must use caution when permuting in-place.  

Related Topics

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitDlyl Initializes the delay line values for an LMS filter 
(see page 8-37).

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 
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LmslGetStep, LmslSetStep, LmslGetLeak, 
LmslSetLeak
Gets and sets the leak and step values of 
a low-level LMS filter.

float nspsLmslGetStep(const NSPLmsTapState * statePtr );

void nspsLmslSetStep(float step , NSPLmsTapState * statePtr );
/* real values; single precision */

float nspsLmslGetLeak(const NSPLmsTapState * statePtr );

void nspsLmslSetLeak(float leak , NSPLmsTapState * statePtr );
/* real values; single precision */

leak How much the tap values “leak” towards 0.0 on each 
iteration.  The value must be between 0.0 and 1.0.

statePtr Pointer to the NSPLmsTapState  structure.

step The convergence step size.  This value must be between 
0.0 and 1.0.

Discussion

The nsp?LmslGetLeak()  and nsp?LmslSetLeak()  functions allow 
your application to get and set the leak  parameter of a low-level LMS filter 
described by statePtr . 

The nsp?LmslGetStep()  and nsp?LmslSetStep()  functions allow 
your application to get and set the step  parameter of a low-level LMS filter 
described by statePtr . 

These functions can be used for filters of any type since only the 
single-precision step  and leak  parameters are supported.

Related Topics

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 
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Lmsl, bLmsl
Filters samples through a low-level 
LMS adaptation filter.

float nspsLmsl(NSPLmsTapState * tapStPtr , NSPLmsDlyState * dlyStPtr ,
float samp, float err );

float nspsbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  const float * inSamps , float err );
/* real input, real taps; single precision */

SCplx nspcLmsl(NSPLmsTapState * tapStPtr , NSPLmsDlyState * dlyStPtr ,
SCplx samp, SCplx err );

SCplx nspcbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  const SCplx * inSamps , SCplx err );
/* complex input, complex taps; single precision */

SCplx nspscLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  float samp, SCplx err );

SCplx nspscbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const float * inSamps , SCplx err );
/* real input, complex taps; single precision */

double nspdLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  double samp, double err );

double nspdbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const double * inSamps , double err );
/* real input, real taps; double precision */

DCplx nspzLmsl(NSPLmsTapState * tapStPtr , NSPLmsDlyState * dlyStPtr ,
DCplx samp, DCplx err );

DCplx nspzbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  const DCplx * inSamps , DCplx err );
/* complex input, complex taps; double precision */

DCplx nspdzLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  double samp, DCplx err );
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DCplx nspdzbLmsl(NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const double * inSamps , DCplx err );
/* real input, complex taps; double precision */

dlyStPtr Pointer to the NSPLmsDlyState  structure. 

err The error signal sample. 

inSamps Pointer to the array containing the input samples for t
nsp?bLmsl()  function.

samp The input sample for the nsp?Lmsl()  function.

tapStPtr Pointer to the NSPLmsTapState  structure.

Discussion

The nsp?Lmsl()  and nsp?bLmsl()  functions perform a single iteration 
of LMS adaptation and filtering.  The nsp?Lmsl()  function filters a 
sample through a single-rate filter and the nsp?bLmsl()  function filters 
samples through a multi-rate filter to produce a single sample.

Previous Tasks:   Before using either nsp?Lmsl()  or nsp?bLmsl() , 
you must initialize the tapStPtr  argument by calling either 
nsp?LmslInit()  or nsp?LmslInitMr() , and the argument dlyStPtr  
by calling nsp?LmslInitDlyl()  with adaptB  = TRUE.

Many combinations of input (x(n) ) types and filter coefficient types are 
possible.  Real or complex input can be mixed with real or complex filter 
coefficients.  This is indicated by the s , c , sc , d, z , and dz , type codes 
following the nsp  prefix in the function names above.  For both of the 
functions, nsp?Lmsl()  and nsp?bLmsl() , the allowed combinations of 
real and complex input and filter coefficients are described in Table 8-4.

Table 8-4 Input and Taps Combinat ions for nsp?Lmsl() and nsp?b Lmsl() 
Functions  

Type 
Codes

x(n) (or input) 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

                     continued ☛
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The data type of the output is described in the table above.  The data ty
the error signal must match the data type of the output signal. 

nsp?Lmsl() .  The nsp?Lmsl()  function filters a sample through a 
single-rate filter.  In the function definition below, the input sample 
samp[n]  is x(n) , err  is the error sample e(n) , and y(n)  is the returned 
sample:

where x(n-k-errDly )* denotes the complex conjugate of x(n-k -errDly ) 
and the “⋅” operator denotes complex multiplication. 

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

NOTE.  The complex input, real tap types (cs , zd ), are not provided.  
While it is possible to implement such constrained LMS filters by 
projecting the error term onto the real taps, the method of projection is 
application-dependent.  In contrast, the real input, complex tap types 
(sc , dz ), are provided, but might have convergence problems dependin
on the input signal.

Table 8-4 Input and Taps Combinat ions for nsp?Lmsl() and nsp?b Lmsl() 
Functions  (continued) 

Type 
Codes

x(n) (or input) 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

e n( ) d n errDly–( ) y n errDly–( )–=

hn k( ) 1 leak–( ) hn 1– k( )⋅ step e n( ) x n k– errDly–( )∗
0 k tapsLen<≤

,⋅ ⋅+=

y n( ) hn k( ) x n k–( )⋅
k 0=

tapsLen 1–

∑=
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The above formulations define the filter for all combinations of real and 
complex input and coefficients.   If the input is real, the complex 
conjugation of x()  in the coefficient update equation is not necessary.   

An alternative formulation, found in many textbooks, gives identical 
results, but differs in how it defines e(n) .  This alternative formulation is 
difficult to interpret when errDly  > 1 and cannot be directly implemented
because it requires that d(n)  be available to the LMS filtering function.  
You should formulate the error sample calculation for your application in 
terms of the above set of equations.

nsp?bLmsl() .  The nsp?bLmsl()  function filters samples through a 
multi-rate filter to produce a single sample.  The argument tapStPtr  uses 
the downFactor  argument specified by nsp?LmslInitMr() .  The 
argument err  is the error signal e(n) , and the downFactor  length array 
inSamps[n]  provides samples of x(n) .  The filtered result y(n)  is 
returned.  The sample rate of the input signal is greater than the sample rat
of the output and error by a factor of downFactor . 

Even though nsp?bLmsl()  has the b prefix flag to indicate a blocked 
function, this function does not perform more than one iteration.  This is 
because doing so would introduce excess delay into the error signal.  
Instead, this function is provided for multi-rate filtering, which requires a 
vector (blocked) input array.

Example 8-3 illustrates the use of the low-level LMS functions to initializ
and filter a signal sample.

Example 8-3 Filtering w ith the Low-Level LMS Filter

#define TAPSLEN  2 
#define LEN   100 

const float STEP = 0.6;
NSPLmsTapState tapStPtr;
NSPLmsDlyState dlyStPtr;
double x[LEN], d[LEN], y[LEN], z[LEN]; 

double h[TAPSLEN];

int n; 

double err = 0; 

continued ☛
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Related Topics

bLmslNa Filters a block of signals using a low-level, adaptive 
LMS filter but does not adapt the filter for a secondary
signal (see page 8-53).

LmslGetLeak Gets the leak values for a low-level LMS filter 
(see page 8-47).

LmslGetStep Gets the step values for a low-level LMS filter 
(see page 8-47).

/*
 * Generate the input and desired signals.  The input 
 * signal is a sine wave with amplitude 1.0 at 0.2 Fs.  
 * The desired signal is a cosine wave with amplitude 
 * 2.0 at the same frequency. 
 */

for (n = 0; n < LEN; n++) { 

 x[n] = sin(NSP_2PI*n/10); 

 d[n] = 2*cos(NSP_2PI*n/10);

 z[n] = 0.0; 

} 
/*  Initialize taps values to zero */ 

for (n = 0; n < TAPSLEN; n++) {

 h[n] = 0.0; 

}

/*  Initialize filter */

nspdLmslInit(NSP_LmsDefault, h, TAPSLEN, STEP, 0.0, 0, &tapStPtr);

 /* Initialize delay line */

nspdLmslInitDlyl(&tapStPtr, z, TRUE, &dlyStPtr); 

/*  Filter LEN samples using single-rate adaptive filtering */ 

for (n = 0; n < LEN; n++) { 

 y[n] = nspdLmsl(&tapStPtr, &dlyStPtr, x[n], err); 

 err = d[n] - y[n]; 

} /* The final taps values = {2.75,-3.40} and 
 * err = 0 are obtained 
 */ 

Example 8-3 Filtering w ith the Low-Level LMS Filter (continued)
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LmslInitDlyl Initializes the delay line values for a low-level LMS 

filter (see page 8-37). 

LmslNa Filters a signal using a low-level, adaptive LMS filter 
but does not adapt the filter for a secondary signal 
(see page 8-53).

LmslSetLeak Sets the leak values for a low-level LMS filter 
(see page 8-47).

LmslSetStep Sets the step values for a low-level LMS filter 
(see page 8-47).

LmslNa, bLmslNa
Filters a signal using a low-level  
adaptive LMS filter, but does not adapt 
the filter for a secondary signal.

float nspsLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , float samp);

void nspsbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const float * inSamps ,
float * outSamps , int numIters );
/* real input, real taps; single precision */

SCplx nspcLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  SCplx samp);

void nspcbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, complex taps; single precision */

SCplx nspscLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  float samp);

void nspscbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const float * inSamps ,
SCplx * outSamps , int numIters );
/* real input, complex taps; single precision */
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SCplx nspcsLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  SCplx samp);

void nspcsbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, real taps; single precision */

double nspdLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , double samp);

void nspdbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  const double * inSamps ,
double * outSamps , int numIters );
/* real input, real taps; double precision */

DCplx nspzLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  DCplx samp);

void nspzbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, complex taps; double precision */

DCplx nspdzLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  double samp);

void nspdzbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const double * inSamps ,
DCplx * outSamps , int numIters );
/* real input, complex taps; double precision */

DCplx nspzdLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr ,  DCplx samp);

void nspzdbLmslNa(const NSPLmsTapState * tapStPtr ,
NSPLmsDlyState * dlyStPtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, real taps; double precision */

dlyStPtr Pointer to the NSPLmsDlyState  structure. 

inSamps Pointer to the array containing the input samples for t
nsp?bLmslNa()  function.

numIters The number of samples to be filtered by the 
nsp?bLmsNa()  function.



Filtering Functions8

elay 

 
.  
outSamps Pointer to the array containing the output samples for 
the nsp?bLmslNa()  function.

samp The input sample for the nsp?LmslNa()  function.

tapStPtr Pointer to the NSPLmsTapState  structure.

Discussion

The nsp?LmslNa()  and nsp?bLmslNa()  functions allow a secondary 
signal, w(n) , to be filtered independently of the primary signal, x(n) , 
which drives the adaptation.  The secondary signal must have its own d
line independent of the delay line used for the primary signal.  The 
functions update the delay line for the secondary signal but not for the 
primary signal.  The functions also filter the secondary signal by the same 
taps as used for the primary signal.  The taps themselves are not modified. 

The argument tapStPtr  must have been previously initialized by 
nsp?LmslInit()  or nsp?LmslInitMr() , and the pointer dlyStPtr  
must have been previously initialized by nsp?LmslInitDlyl()  with 
adaptB  = FALSE.

In terms of supported data types, the nsp?LmslNa()  and nsp?bLmslNa()  
functions are less restrictive than nsp?Lmsl()  and nsp?bLmsl() .  In 
particular, all combinations of real and complex input data types and filter
coefficients are supported.  The complete blocked form is also supported
The data type codes following the nsp  prefix in the function names are 
described in Table 8-5.

Table 8-5 Input and Taps Combinat ions for nsp?LmslNa() and 
nsp?bLmslNa() Functions

Type 
Codes

x(n) (or input) 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

cs SCplx float SCplx

                     continued ☛
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nsp?LmslNa() .  The nsp?LmslNa()  function filters a single sample 
through a single-rate filter without adapting the filter.  The argument 
samp[n]  provides the sample signal, w(n) , and the result v(n)  is returned.  
The result, v(n) , is defined as follows: 

nsp?bLmslNa() .  The nsp?bLmslNa()  function filters a block of 
samples through a single-rate or multi-rate filter without adapting the filter.  
For single-rate filters, the numIters  samples in the array inSamps[n]  are 
filtered, and the resulting numIters  samples are stored in the array 
outSamps[n] .  The results are identical to numIters  consecutive calls to 
nsp?LmslNa() .  The values in the outSamps[n]  array are calculated as 
follows:

For multi-rate filters, the numIters  *downFactor  samples in the array 
inSamps[n]  are filtered, and the resulting numIters  samples are stored in
the array outSamps[n] .  See Appendix C for more information on 
multi-rate filtering.  For both single-rate and multi-rate, the appropriate 
number of samples from inSamps[n]  are copied into the delay line, and 
the oldest samples are discarded.

Example 8-4 illustrates using the nsp?LmslNa()  functions to filter a signal 
with adapted filter coefficients.

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx

Table 8-5 Input and Taps Combinat ions for nsp?LmslNa() and 
nsp?bLmslNa() Functions (continued)

Type 
Codes

x(n) (or input) 
Type

Filter Coefficient 
(or taps) Type

y(n) (or 
output) Type

v n( ) hn k( ) w n k–( )⋅
k 0=

ta psLen 1–

∑=

inSamps m[ ] x n m+( )=

outSamps m[ ] y n m+( ) h k( ) x n m k–+( )⋅
k 0=

tapsLen 1–

∑= =
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Example 8-4 Creating a Fil ter Predictor with the LMS Filter Functions 

/* A filter-predictor using adaptive and 
 nonadaptive filter functions */ 

#include <math.h> 

#define nsp_UsesLms 

#include "nsp.h" 

#define HLEN (5)  /* taps number */ 

#define DLY  (1) /* Prediction depth */ 

float 

y[100], /* Output predicted signal */ 

d[100], /* Output signal of adaptive filter */ 

z_a[HLEN+DLY], /* Delay line of adaptive filter */

z_n[HLEN], /* Delay line of filter-predictor */ 

x[100], /* Output signal */ 

h[HLEN], /* taps */ 

err; /* Adaptation error signal */ 

int main (void)

{ 

int i; 

NSPLmsTapState tapst; 

NSPLmsDlyState dlyst_a,dlyst_n;

/* Adaptive filter initialization */ 

nspsLmslInit (NSP_LmsDefault, h,HLEN, 0.05,\
   0.0, DLY,&tapst); 

/* The adaptive filter delay line initialization */

nspsLmslInitDlyl (&tapst, z_a, TRUE, &dlyst_a);

/* The predictor delay line initialization */ 

nspsLmslInitDlyl (&tapst, z_n, FALSE, &dlyst_n); 

continued ☛
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line 
Application Notes:   The nsp?LmslNa()  and nsp?bLmslNa()  
functions are intended only for filtering the secondary signal without 
adapting the coefficients.  They should not be used to filter the primary 
signal without adapting the coefficients, because they manage the delay 
in a manner incompatible with nsp?Lmsl() .  To filter a primary signal 
without adaptation, use the nsp?LmslSetStep()  function to set the step  
argument to zero, and then use the nsp?Lmsl()  or nsp?bLmsl()  function.  

The nsp?LmslNa()  and nsp?bLmslNa()  functions do not support 
filtering of the primary signal x(n)  because the primary signal requires a 
longer delay line. 

Related Topics

bLmsl Filters samples using a low-level, multi-rate, adaptive 
LMS filter to produce a single sample (see page 8-48). 

/* Initial values of taps and  
 * delay line are updated here
 */ 

/* Generate model input signal */ 

for(i=0;i<100;i++) x[i]=cos(NSP_2PI*i/16);

err = 0; 
/* Taps adaptation */ 

for(i=DLY; i<100; i++) { 

   err = x[i] - (d[i]=nspsLmsl (&tapst, &dlyst_a,\

      x[i-DLY], err)); 

   /* the coefficients have now  
    * been adapted using err 
    */ 

   /* Signal prediction */ 

   y[i] = nspsLmslNa (&tapst, &dlyst_n, x[i]); 

} 

return 0; 

} 

Example 8-4 Creating a Fil ter Predictor w ith the LMS Filter Functions  (continued)



Filtering Functions8

s are 
Lmsl Filters a single sample using a low-level, single-rate, 
adaptive LMS filter (see page 8-48).

LmslGetStep Gets the step values for a low-level LMS filter 
(see page 8-47).

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitDlyl Initializes the delay line contents for a low-level LMS 
filter (see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 

LmslSetStep Sets the step values for a low-level LMS filter 
(see page 8-47). 

LMS Filter Functions
The functions described in this section perform the following tasks:

• initialize an LMS filter
• get and set the delay line values
• get and set the filter coefficients (taps) values
• get and set the step values
• get and set the leak values
• get and set the error signals
• compute error signals
• perform the filtering function 
• free dynamic memory allocated for the functions

These functions provide a higher-level interface than the corresponding 
low-level LMS functions (see “Lmsl” in page 8-48 for a description of  
nsp?Lmsl() ).  In particular, they bundle the taps and delay line into a 
single state.  Also, the LMS functions dynamically allocate memory for the 
taps and delay line; thus the arrays storing the taps and delay line value
not accessed after initialization, and need not exist while the filter exists.

To use the LMS adaptive filter functions, follow this general scheme:

LMS 
function list
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1. Call nsp?LmsInit()  to initialize a single-rate LMS filter or call 
nsp?LmsInitMr()  to initialize a multi-rate LMS filter.

2. After this initialization, you have a choice of functions to call, 
depending on what you want to accomplish.
a. Call the nsp?Lms()  function to filter a single sample through a 

single-rate filter and/or call nsp?bLms()  to filter a block of 
consecutive samples through a single-rate or multi-rate filter. 

b. Call the nsp?LmsGetTaps()  function and then the 
nsp?LmsSetTaps()  function to get and set the filter coefficients 
(taps).  

c. Call the nsp?LmsGetDlyl()  function and then the 
nsp?LmsSetDlyl()  function to get and set the values in the 
delay line.

d. Call the nspsLmsGetStep()  function and the 
nspsLmsSetStep()  function to get and set the convergence step 
size values. 

e. Call the nspsLmsGetLeak()  function and the 
nspsLmsSetLeak()  function to get and set the leak values.

f. Call the nsp?LmsDes()  function to compute an error signal and 
filter a sample through a single-rate filter and/or call 
nsp?bLmsDes()  to compute an error signal and filter a sample 
through a multi-rate signal. 

g. Call the nsp?LmsGetErrVal()  function and the 
nsp?LmsSetErrVal()  function to get and set the error signal of 
an LMS filter.

3. Call the nspLmsFree()  function to release dynamic memory 
associated with the LMS filter. 

Figure 8-4 illustrates the order of use of the LMS filter functions.
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Figure 8-4 Order of Use of the LMS Functions
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LmsInit, LmsInitMr, LmsFree
Initializes an adaptive FIR filter that 
uses the least mean-square (LMS) 
algorithm.

void nspsLmsInit(NSPLmsType lmsType , const float * tapVals , 
int tapsLen , const float * dlyVals , float step , float leak , 
int errDly , NSPLmsState * statePtr );

void nspsLmsInitMr(NSPLmsType lmsType , const float * tapVals , 
int tapsLen , const float * dlyVals , float step , float leak , 
int errDly , int downFactor , int downPhase , 
NSPLmsState * statePtr );
/* real delay line, real taps; single precision */

void nspcLmsInit(NSPLmsType lmsType , const SCplx * tapVals , 
int tapsLen , const SCplx * dlyVals , float step , float leak , 
int errDly , NSPLmsState * statePtr );

void nspcLmsInitMr(NSPLmsType lmsType , const SCplx * tapVals , 
int tapsLen , const SCplx * dlyVals , float step , float leak ,

 int errDly , int downFactor , int downPhase , 
NSPLmsState * statePtr );
/* complex delay line, complex taps; single precision */

void nspscLmsInit(NSPLmsType lmsType , const SCplx * tapVals , 
int tapsLen , const float * dlyVals , float step , float leak , 
int errDly , NSPLmsState * statePtr );

void nspscLmsInitMr(NSPLmsType lmsType , const SCplx * tapVals , 
 int tapsLen , const float * dlyVals , float step , float leak ,
 int errDly , int downFactor , int downPhase , 

NSPLmsState * statePtr );
/* real delay line, complex taps; single precision */

void nspdLmsInit(NSPLmsType lmsType , const double * tapVals , 
int tapsLen , const double * dlyVals , float step , float leak ,

 int errDly , NSPLmsState * statePtr );
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void nspdLmsInitMr(NSPLmsType lmsType , const double * tapVals , 
int tapsLen , const double * dlyVals , float step , float leak ,
int errDly , int downFactor , int downPhase , 
NSPLmsState * statePtr );
/* real delay line, real taps; double precision */

void nspzLmsInit(NSPLmsType lmsType , const DCplx * tapVals , 
int tapsLen , const DCplx * dlyVals , float step , float leak , 
int errDly , NSPLmsState * statePtr );

void nspzLmsInitMr(NSPLmsType lmsType , const DCplx * tapVals , 
int tapsLen , const DCplx * dlyVals , float step , float leak ,

 int errDly , int downFactor , int downPhase , 
NSPLmsState * statePtr );
/* complex delay line, complex taps; double precision */

void nspdzLmsInit(NSPLmsType lmsType , const DCplx * tapVals , 
int tapsLen , const double * dlyVals , float step , float leak ,

 int errDly , NSPLmsState * statePtr );

void nspdzLmsInitMr((NSPLmsType lmsType , const DCplx * tapVals , 
int tapsLen , const double * dlyVals , float step , float leak ,

 int errDly , int downFactor , int downPhase , 
NSPLmsState * statePtr );
/* real delay line, complex taps; double precision */

void nspLmsFree(NSPLmsState * statePtr );

dlyVals Pointer to the array containing the delay line values.

downFactor The factor used by the nsp?LmsInitMr()  function for 
down-sampling multi-rate signals. 

downPhase The phase value used by the nsp?LmsInitMr()  
function for down-sampling multi-rate signals.

errDly The delay (in samples) from the output signal of the 
LMS filter to the error signal input.  The errDly  
argument is used by the nsp?LmsInit()  and 
nsp?LmsInitMr()  functions.

leak How much the tap values “leak” towards 0.0 on each 
iteration.  The value must be between 0.0 and 1.0.  Th
leak  argument is used by the nsp?LmsInit()  and 
nsp?LmsInitMr()  functions.
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nd 
lmsType  Specifies the adaptation scheme to use with the filter 
description given.  The value for lmsType  must 
currently be set to NSP_LmsDefault .  The lmsType  
argument is used by the nsp?LmsInit()  and 
nsp?LmsInitMr()  functions.

statePtr Pointer to the NSPLmsState  structure. 

step The convergence step size.  This value must be between 
0.0 and 1.0.  A non-zero value enables adaptation while 
a value of 0.0 disables the filter adaptation.  The step  
argument is used by the nsp?LmsInit()  and 
nsp?LmsInitMr()  functions.

tapVals Pointer to the array containing the filter coefficient 
(taps) values.

tapsLen The number of values in the array containing the filter
coefficients (taps).

Description

The nsp?LmsInit()  and nsp?LmsInitMr()  functions initialize a 
single-rate LMS filter and a multi-rate LMS filter respectively.  They are
intended for cyclic processing.  The nspLmsFree()  function releases 
dynamic memory associated with the filter.

The nsp?LmsInit()  and nsp?LmsInitMr()  functions provide a 
higher-level interface than the corresponding low-level LMS functions (see 
nsp?LmslInit()  and nsp?LmslInitMr()  in page 8-37).  In particular, 
nsp?LmsInit()  and nsp?LmsInitMr()  bundle the taps and delay line 
into a single state.  They also dynamically allocate memory for the taps a
delay line; thus the arrays tapVals[n]  and dlyVals[n]  are not accessed 
after initialization and need not exist while the filter exists.

Many combinations of input (x(n) ) types and filter coefficient types are 
possible.  Real or complex input can be mixed with real or complex filter 
coefficients.  This is indicated by the s , c , sc , d, z , and dz , type codes 
following the nsp  prefix in the function names above.
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nsp?LmsInit().   The function nsp?LmsInit()  initializes statePtr  to 
describe a single-rate LMS filter.  The argument lmsType  specifies the 
adaptation scheme and must currently be NSP_LmsDefault .  The 
tapsLen  length array tapVals[n]  specifies the initial filter coefficients.  
The array dlyVals[n]  specifies the initial delay line contents.  If dlyVals  
is non-NULL, it must have a length of tapsLen  - 1.  If dlyVals  is NULL the 
delay line is initialized to zero.  

The argument leak  controls how much the tap values “leak” towards 0 on 
each iteration.  Its value should be between 0.0 and 1.0.  A value of 0.0
yields a traditional non-leaky LMS filter.  A typical leaky filter uses a small
value for leak .  

The argument errDly  specifies the delay (in samples) from the output 
signal of the LMS filter to the error signal input.  In principle, the value of 
errDly  must be at least 1.  A delay of 1 corresponds to subtracting the f
output sample y(n)  from the desired signal d(n)  to obtain the error signal 
e(n) .  The value of the error signal is then passed to the next invocatio
the filter.  In the general case, errDly  is chosen as follows:

e(n)  = d(n  - errDly)  - y(n  - errDly)

where e(n)  is the error signal.  

The step  argument specifies the convergence step size.  This value must be 
between 0.0 and 1.0.  A non-zero value enables adaptation while a value 
0.0 disables the filter adaptation.

NOTE.  The different data types of nsp?LmsInit()  and 
nsp?LmsInitMr()  correspond to different combinations of 
real/complex inputs versus real/complex outputs.  The complex input, 
real tap types (cs , zd ), are not provided.  While it is possible to 
implement such constrained LMS filters by projecting the error term 
onto the real taps, the method of projection is application-dependent.  In 
contrast, the real input, complex tap types (sc , dz ), are provided, but 
may have convergence problems depending on the input signal.
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nsp?LmsInitMr().   The function nsp?LmsInitMr()  initializes 
statePtr  to describe a multi-rate LMS filter.  The errDly , dlyVals , 
lmsType , tapVals , tapsLen , statePtr , step , and leak , arguments for 
the nsp?LmsInitMr() function are defined the same as for the 
nsp?LmsInit()  function above.  

The downFactor  argument is the factor by which the signal is 
down-sampled.  That is, downFactor  - 1 samples are discarded from the 
signal.  The argument downPhase  determines which of the samples within
each block are not discarded.  The value of downPhase  is required to be 
0 ≤ downPhase  < downFactor .  For more information on down-sampling, 
see “DownSample”  in Chapter 3 for the description of the 
nsp?DownSample  function.

nspLmsFree().   The nspLmsFree()  function releases dynamic memory
associated with the LMS adaptive filters created with the nsp?LmsInit()  
and  nsp?LmsInitMr()  functions.

Application Notes:  The step  and leak  parameters are single-precision 
(float ) in all data types of the functions.  The extra precision available 
with double-precision (double ) is not required for these parameters.

Related Topics

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 
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Lms, bLms
Filters samples through an LMS filter.

float nspsLms(NSPLmsState * statePtr , float samp, float err );

float nspsbLms(NSPLmsState * statePtr , const float * inSamps , 
float err );
/* real input, real error signal; single precision */

SCplx nspcLms(NSPLmsState * statePtr , SCplx samp, SCplx err );

SCplx nspcbLms(NSPLmsState * statePtr , const SCplx * inSamps , 
SCplx err );
/* complex input, complex error signal; single precision */

SCplx nspscLms(NSPLmsState * statePtr , float samp, SCplx err );

SCplx nspscbLms(NSPLmsState * statePtr , const float * inSamps , 
SCplx err );
/* real input, complex error signal; single precision */

double nspdLms(NSPLmsState * statePtr , double samp, double err );

double nspdbLms(NSPLmsState * statePtr , const double * inSamps ,
double err );
/* real input, real error signal; double precision */

DCplx nspzLms(NSPLmsState * statePtr , DCplx samp, DCplx err );

DCplx nspzbLms(NSPLmsState * statePtr , const DCplx * inSamps , 
DCplx err );
/* complex input, complex error signal; double precision */

DCplx nspdzLms(NSPLmsState * statePtr , double samp, DCplx err );

DCplx nspdzbLms(NSPLmsState * statePtr , const double * inSamps , 
DCplx err );
/* real input, complex error signal; double precision */

err The error signal sample. 

inSamps Pointer to the array containing the input samples for t
nsp?bLms()  function.

samp The input sample for the nsp?Lms()  function.

statePtr Pointer to the NSPLmsState  structure. 
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Description

The nsp?Lms()  and nsp?bLms()  functions perform a single iteration of 
LMS adaptation and filtering. 

Many combinations of input (x(n) ) types and filter coefficient types are 
possible.  Real or complex input can be mixed with real or complex filter 
coefficients.  This is indicated by the s , c , sc , d, z , and dz , type codes 
following the nsp  prefix in the function names above.  

Previous Tasks: Before using nsp?Lms()  or nsp?bLms() , you must 
initialize statePtr  by calling either nsp?LmsInit()  or 
nsp?LmsInitMr() .

nsp?Lms().   The nsp?Lms()  function filters a sample through a 
single-rate filter.  The input sample samp[n]  is x(n) , err  is the error 
sample e(n) , and the output sample y(n)  is returned, as specified for 
nsp?Lmsl() .

nsp?bLms().   The nsp?bLms()  function filters samples through a 
multi-rate filter to produce a single output sample.  The argument 
statePtr  uses the downFactor  argument specified by 
nsp?LmsInitMr() .  The argument err  is the error signal e(n)  and the 
downFactor  length array inSamps[n]  provides samples of x(n) .  The 
filtered result y(n)  is returned. 

Even though nsp?bLms()  has the b prefix flag to indicate a blocked 
function, nsp?bLms()  does not perform more than one iteration.  This is
because doing so would introduce excess delay into the error signal.  
Instead, this function is provided for multi-rate filtering, which requires a 
vector (blocked) input array.

NOTE.  The complex input, real error signal types (cs , zd ), are not 
provided.  While it is possible to implement such constrained LMS filters 
by projecting the error term onto the real taps, the method of projectio
is application-dependent.  In contrast, the real input, complex error 
signal types (sc , dz ), are provided, but may have convergence problem
depending on the input signal.
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Example 8-5 illustrates the use of the LMS functions to initialize and filter a 
signal sample.

Related Topics

bLmsl Filters samples through a multi-rate, low-level LMS 
filter to produce a single sample (see page 8-48).

LmsInit Initializes a single-rate, low-level LMS filter 
(see page 8-62).

LmsInitMr Initializes a multi-rate, low-level LMS filter 
(see page 8-62).

Lmsl  Filters a sample through a single-rate, low-level LMS 
filter(see page 8-48). 

Example 8-5 Filtering w ith the LMS Filter Functions

/* 
 * standard single-rate 
 * filtering 
 */

NSPLmsState lmsSt;
double taps[32];
int i;
double xval, yval, dval, eval = 0.0;

/* insert code here to initialize taps */

nspdLmsInit(NSP_LmsDefault, taps, 32, NULL, 0.01, 0.0, 1, &lmsSt);
for (i=0; i<2000; i++) {

xval = /* insert code here to get next value of x(n) */;
yval = nspdLms(&tapSt, xval, eval);
dval = /* insert code here to get next value of d(n) */;
eval = dval - yval;

}
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LmsGetTaps, LmsSetTaps
Gets and sets the taps coefficients of an 
LMS filter.

void nspsLmsGetTaps(const NSPLmsState * statePtr , float * outTaps );

void nspsLmsSetTaps(const float * inTaps , NSPLmsState * statePtr );
/* real values; single precision */

void nspcLmsGetTaps(const NSPLmsState * statePtr , SCplx * outTaps );

void nspcLmsSetTaps(const SCplx * inTaps , NSPLmsState * statePtr );
/* complex values; single precision */

void nspdLmsGetTaps(const NSPLmsState * statePtr , double * outTaps );

void nspdLmsSetTaps(const double * inTaps , NSPLmsState * statePtr );
/* real values; double precision */

void nspzLmsGetTaps(const NSPLmsState * statePtr , DCplx * outTaps );

void nspzLmsSetTaps(const DCplx * inTaps , NSPLmsState * statePtr );
/* complex values; double precision */

inTaps Pointer to the array holding copies of the tap coefficients 
for the nsp?LmsSetTaps()  function.

outTaps Pointer to the array holding copies of the tap coefficients 
for the nsp?LmsGetTaps()  function.

statePtr Pointer to the NSPLmsState  structure. 

Description

The nsp?LmsGetTaps()  and nsp?LmsSetTaps()  functions get and set 
the taps of an LMS adaptive filter.  The data type of the function used here 
must match the data type for the taps used during initialization.

Previous Tasks:  Before calling either nsp?LmsGetTaps()  or 
nsp?LmsSetTaps() , you must initialize the state structure NSPLmsState  
pointed to by statePtr  by calling either nsp?LmsInit()  or 
nsp?LmsInitMr() .  You must also specify the tap length tapsLen  and 
the taps h(0)...h(tapsLen  - 1) . 
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nsp?LmsGetTaps().   The nsp?LmsGetTaps()  function copies the tap 
coefficients from statePtr  to the tapsLen  length array outTaps[n] , 
unpermuting them if required so that outTaps[n] =h(n) .

nsp?LmsSetTaps().   The nsp?LmsSetTaps()  function copies the 
tapsLen  tap coefficients from the inTaps[n]  array into statePtr , 
permuting them if required so that h(n) =inTaps[n] .

Related Topics

LmslGetTaps  Gets the filter coefficient (taps) values for a low-level 
LMS adaptive filter (see page 8-42). 

LmslSetTaps  Sets the filter coefficient (taps) values for a low-level 
LMS adaptive filter (see page 8-42). 

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 

LmsGetDlyl, LmsSetDlyl
Gets and sets the delay line contents of 
an LMS filter.

void nspsLmsGetDlyl(const NSPLmsState * statePtr , float * outDlyl );

void nspsLmsSetDlyl(const float * inDlyl , NSPLmsState * statePtr );
/* real values; single precision */

void nspcLmsGetDlyl(const NSPLmsState * statePtr , SCplx * outDlyl );

void nspcLmsSetDlyl(const SCplx * inDlyl , NSPLmsState * statePtr );
/* complex values; single precision */

void nspdLmsGetDlyl(const NSPLmsState * statePtr , double * outDlyl );

void nspdLmsSetDlyl(const double * inDlyl , NSPLmsState * statePtr );
/* real values; double precision */

void nspzLmsGetDlyl(const NSPLmsState * statePtr , DCplx * outDlyl );
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void nspzLmsSetDlyl(const DCplx * inDlyl , NSPLmsState * statePtr );
/* complex values; double precision */

inDlyl Pointer to the array holding copies of the delay line 
values for the nsp?LmsSetDlyl()  function. 

outDlyl Pointer to the array holding copies of the delay line 
values for the nsp?LmsGetDlyl()  function. 

statePtr Pointer to the NSPLmsState  structure.

Description

The nsp?LmsGetDlyl()  and nsp?LmsSetDlyl()  functions get and set 
the delay line of an adaptive LMS filter.  The data type of the function us
here must match the data type for the delay line used during initialization.

Previous Tasks:  Before calling either nsp?LmsGetDlyl()  or 
nsp?LmsSetDlyl() , you must initialize the state structure NSPLmsState  
pointed to by statePtr  by calling either nsp?LmsInit()  or 
nsp?LmsInitMr() .  You must also specify the tap length tapsLen  and 
the delay line values.  For single-rate filters, the delay line values are 
denoted as x(n  -  tapsLen  -  errDly  + 1)...x(n  -  1) ; for multi-rate 
filters they are denoted as x(n  -  tapsLen  -  errDly  -  downFactor  + 
1)...x(n  -  1) .

nsp?LmsGetDlyl().   The nsp?LmsGetDlyl()  function takes the delay 
line values in statePtr  and stores them into the tapsLen  length array 
outDlyl[n] .  The nsp?LmsGetDlyl()  function unpermutes the delay 
line values if necessary so that outDlyl[k] =x(n  -  k -  1) , where x(n  -  1)  
is the last filtered sample.  For single-rate filters outDlyl[n]  must be 
tapsLen  + errDly  - 1 long; for multi-rate filters it must be 
tapsLen  + errDly  + downFactor  - 1 long.

nsp?LmsSetDlyl().   The nsp?LmsSetDlyl()  function permutes the 
values in the array inDlyl[n]  and stores them into statePtr .  For 
single-rate filters, inDlyl[n]  must be tapsLen  + errDly  - 1 long; for 
multi-rate filters it must be tapsLen  + errDly  + downFactor  - 1 long.  If 
inDlyl  is NULL, the delay line is initialized to all zeros.
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Related Topics
LmslGetDlyl Gets the delay line values for a low-level LMS filter 

(see page 8-44). 

LmslSetDlyl  Sets the delay line values for a low-level LMS filter 
(see page 8-44). 

LmslInit Initializes a low-level, single-rate LMS filter 
(see page 8-37). 

LmslInitMr Initializes a low-level, multi-rate LMS filter 
(see page 8-37). 

LmsGetStep, LmsSetStep, LmsGetLeak, 
LmsSetLeak
Gets and sets the leak and step values of 
an LMS filter.

float nspsLmsGetStep(const NSPLmsState * statePtr );

void nspsLmsSetStep(float step , NSPLmsState * statePtr );
/* real values; single precision */

float nspsLmsGetLeak(const NSPLmsState * statePtr );

void nspsLmsSetLeak(float leak , NSPLmsState * statePtr );
/* real values; single precision */

leak How much the tap values “leak” towards 0.0 on each 
iteration.  The value must be between 0.0 and 1.0.

statePtr Pointer to the NSPLmsState  structure.

step The convergence step size.  This value must be between 
0.0 and 1.0.
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Description

The nspsLmsGetLeak()  and nspsLmsSetLeak() functions allow your 
application to get and set the leak  parameter of an LMS filter described by
statePtr . 

The nspsLmsGetStep()  and nspsLmsSetStep()  functions allow your 
application to get and set the step  parameters of an LMS filter described by
statePtr . 

These functions can be used for filters of any type since only 
single-precision step  and leak  parameters are supported.

Application Notes:  On most platforms, the nspsLmsGetLeak() , 
nspsLmsSetLeak() , nspsLmsGetStep() , and nspsLmsSetStep()  
functions are implemented by calling the corresponding low-level functions 
nspsLmslGetLeak() , nspsLmslSetLeak() , nspsLmslGetStep() , 
and nspsLmslSetStep() .

Related Topics

LmslGetLeak  Gets the leak  parameter for a low-level LMS adaptive 
filter (see page 8-47).

LmslGetStep  Gets the step  parameter for a low-level LMS adaptive 
filter (see page 8-47).

LmslSetLeak  Sets the leak  parameter for a low-level LMS adaptive 
filter (see page 8-47).

LmslSetStep  Sets the step  parameter for a low-level LMS adaptive 
filter (see page 8-47).
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LmsDes, bLmsDes
Filters samples through an LMS filter 
using a desired-output signal for 
adaptation instead of an error signal.

float nspsLmsDes(NSPLmsState * statePtr , float samp, float des );

void nspsbLmsDes(NSPLmsState * statePtr , const float * inSamps , 
const float * desSamps , float * outSamps , int numIters );
/* real input, real desired signal; single precision */

SCplx nspcLmsDes(NSPLmsState * statePtr , SCplx samp, SCplx des );

void nspcbLmsDes(NSPLmsState * statePtr , const SCplx * inSamps , 
const SCplx * desSamps , SCplx * outSamps , int numIters );
/* complex input, complex desired signal; single precision */

SCplx nspscLmsDes(NSPLmsState * statePtr , float samp, SCplx des );

void nspscbLmsDes(NSPLmsState * statePtr , const float * inSamps ,
const SCplx * desSamps , SCplx * outSamps , int numIters );
/* real input, complex desired signal; single precision */

double nspdLmsDes(NSPLmsState * statePtr , double samp, double des );

void nspdbLmsDes(NSPLmsState * statePtr , const double * inSamps , 
const double * desSamps, double * outSamps , int numIters );
/* real input, real desired signal; double precision */

DCplx nspzLmsDes(NSPLmsState * statePtr , DCplx samp, DCplx des );

void nspzbLmsDes(NSPLmsState * statePtr , const DCplx * inSamps , 
const DCplx * desSamps , DCplx * outSamps , int numIters );
/* complex input, complex desired signal; double precision */

DCplx nspdzLmsDes(NSPLmsState * statePtr , double samp, DCplx des );

void nspdzbLmsDes(NSPLmsState * statePtr , const double * inSamps ,
 const DCplx * desSamps , DCplx * outSamps , int numIters );

/* real input, complex desired signal; double precision */

des A single sample of the desired signal. 

desSamps Pointer to the array containing samples of the desired 
signal.
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ple 
inSamps Pointer to the array containing samples of the input 
signal.  For a multi-rate filter, the length of the array 
inSamps is numIters  *  downFactor .  

numIters The length of the arrays inSamps , desSamps, and 
outSamps  for a single-rate filter.

outSamps Pointer to the array containing samples of the output 
signal.

samp A single sample of the input signal.  

statePtr Pointer to the NSPLmsState  structure.  

Description

The nsp?LmsDes()  and nsp?bLmsDes()  functions perform LMS 
adaptation and filtering.  They also compute the error signal e(n)  from the 
desired signal d(n) .  This is different from the functions nsp?Lms()  and 
nsp?bLms()  which assume the presence of a pre-computed error signal.  

The low-level LMS filtering functions first perform adaptation using the 
input argument err  and then perform one iteration of filtering.  The 
high-level functions nsp?LmsDes()  and nsp?bLmsDes()  use the desired 
signal d(n)  after each iteration of filtering and compute the error value for
the next filter adaptation.  The computed error is stored in the errVal  field 
in statePtr .  

Many combinations of input (x(n) ) types and filter coefficient types are 
possible.  Real or complex input can be mixed with real or complex sam
signals.  This is indicated by the s, c, sc , d, z , and dz , type codes following 
the nsp  prefix in the function names above.  

NOTE.  The complex input, real signal sample types (cs , zd ), are 
not provided.  In contrast, the real input, complex signal sample types 
(sc , dz ), are provided.
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Previous Tasks: Before using nsp?LmsDes()  or nsp?bLmsDes() , you 
must initialize statePtr  by calling either nsp?LmsInit()  or 
nsp?LmsInitMr() .

nsp?LmsDes().   The nsp?LmsDes()  function filters a sample through a 
single-rate filter.  The input sample samp is x(n) , the desired signal sample
des  is d(n)  and the result y(n)  is returned.  Since adaptation is performe
before the filter convolution, the error value for adaptation is obtained from 
the errVal  field of statePtr .  The nsp?LmsDes()  function uses the 
desired signal sample des  to compute the error value e(n)  for the next 
adaptation and to update errVal .

nsp?bLmsDes().   The function nsp?bLmsDes()  filters a block of 
samples through a single-rate or multi-rate filter.  For a single-rate filter, 
numIters  length arrays inSamps[n]  and desSamps[n]  contain samples 
of the input signal x(n)  and the desired signal d(n)  respectively.  The 
numIters  output samples are returned in outSamps[n] .  The result is the 
same as numIters  consecutive calls to nsp?LmsDes() .

For a multi-rate filter, the numIters  *  downFactor  length array 
inSamps[n]  contains samples of x(n)  and the numIters  length array 
desSamps[n]  contains samples of d(n) .  The numIters  output samples 
are returned in outSamps[n] .

As with nsp?LmsDes() , the error value for the first adaptation of the 
sample block is taken from the errVal  field of statePtr .  The errVal  
field is updated using the last output sample and the last desired signal
sample before the function exits.

Example 8-6 illustrates the use of the single-rate filtering with the 
nsp?LmsDes()  function, and Example 8-7 illustrates the use of the LMS 
filtering using nsp?Lms() and nsp?LmsDes()  functions.

NOTE.  The nsp?LmsDes()  and nsp?bLmsDes()  functions are 
different from nsp?Lms()  and nsp?bLms() .  Since nsp?Lms()  and 
nsp?bLms()  do not update errVal , it is up to the application to check 
or update errVal  (using nsp?LmsGetErrVal()  or 
nsp?LmsSetErrVal() ) when switching from one mode to the other. 
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Example 8-6 Single-Rate Fil tering with the n sp?LmsD es() Function

/* 
 * standard single-rate 
 * filtering 
 */

NSPLmsState lmsSt;
double taps[32];
int i;
double xval, yval, dval;
/* insert code here to initialize taps */

nspdLmsInit(NSP_LmsDefault, taps, 32, NULL, 0.01, 0.0, 1, &lmsSt);
for (i=0; i<2000; i++) {
   xval = /* insert code here to get next value of x(n) */;
   dval = /* insert code here to get next value of d(n) */;
   yval = nspdLmsDes(&tapSt, xval, dval);
}

Example 8-7 LMS Filtering Using nsp?Lms() and nsp?LmsD es()

/* 
 * LMS filtering using both 
 * nsp?Lms() and nsp?LmsDes() */
 */
NSPLmsState lmsSt;
double taps[32];
int i,j;
double xval, yval, dval, eval=0.0;

/* insert code here to initialize taps */

}

continued ☛
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Related Topics

LmsInit   Initializes a single-rate adaptive LMS filter 
(see page 8-62).

LmsInitMr   Initializes a multi-rate adaptive LMS filter 
(see page 8-62).

LmsGetErrVal, LmsSetErrVal
Gets and sets the error signal of an LMS 
adaptive filter if computed from the 
desired signal by the Intel Signal 
Processing Library Library.

float nspsLmsGetErrVal(const NSPLmsState * statePtr );

void nspsLmsSetErrVal(float err , NSPLmsState * statePtr );
/* real input; single precision */

nspdLmsInit(NSP_LmsDefault, taps, 32, NULL, 0.01, 0.0, 1, &lmsSt);
for (j=0; j<10; j++) {
   for (i=0; i<2000; i++) {
      xval = /* insert code to get next value of x(n) */
      yval = nspdLms(&tapSt, xval, eval);
      dval = /* insert code to get next value of d(n) */;
      eval = dval - yval; 
   }

   nspdLmsSetErrVal(eval, &lmsSt);
   for (i=0; i<2000; i++) {
      xval = /* insert code to get next value of x(n) */;
      dval = /* insert code to get next value of d(n) */;
      yval = nspdLmsDes(&tapSt, xval, dval);

   }

   eval = nspdLmsGetErrVal(&lmsSt);

Example 8-7 LMS Filtering Using nsp?Lms() and nsp?LmsD es() (continued)
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SCplx nspcLmsGetErrVal(const NSPLmsState * statePtr );

void nspcLmsSetErrVal(SCplx err , NSPLmsState * statePtr );
/* complex input; single precision */

double nspdLmsGetErrVal(const NSPLmsState * statePtr );

void nspdLmsSetErrVal(double err , NSPLmsState * statePtr );
/* real input; double precision */

DCplx nspzLmsGetErrVal(const NSPLmsState * statePtr );

void nspzLmsSetErrVal(DCplx err , NSPLmsState * statePtr );
/* complex input; double precision */

err The error signal sample. 

statePtr Pointer to the NSPLmsState  structure. 

Description

The nsp?LmsGetErrVal  and nsp?LmsSetErrVal  functions allow the 
application to get and set the error value (errVal ) used by nsp?LmsDes()  
and nsp?bLmsDes() .  The data type of the function used here must match 
the data type of the filter output.  For more information on errVal , see 
“LmsInit” in page 8-62 for nsp?LmsInit()  and “LmsDes” in page 8-75 
for nsp?LmsDes() . 

Previous Tasks: The filter state statePtr  must have been previously 
initialized by nsp?LmsInit()  or nsp?LmsInitMr() . 

nsp?LmsGetErrVal().   The nsp?LmsGetErrVal()  function returns the 
value of errVal  which is stored in statePtr .

nsp?LmsSetErrVal().   The function nsp?LmsSetErrVal()  copies the 
error signal sample err  into errVal  in statePtr .

NOTE.  The error value (errVal ) field is initialized to zero when 
statePtr  is initialized.  Thus, nsp?LmsGetErrVal()  will return zero 
if errVal  has not been set with nsp?LmsSetErrVal() , or if a new 
errVal  has not been computed by nsp?LmsDes()  or nsp?bLmsDes() .
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Related Topics

LmsInit   Initializes a single-rate adaptive LMS filter 
(see page 8-62).

LmsInitMr   Initializes a multi-rate adaptive LMS filter 
(see page 8-62).

Low-Level IIR Filter Functions
The functions described in this section initialize a low-level, infinite 
impulse response (IIR) filter. 

To initialize and use a low-level IIR filter, follow this general scheme:

1. Call either nsp?IirlInit()  to initialize the filter as an arbitrary 
order IIR filter or call nsp?IirlInitBq()  to initialize the filter as a 
cascade of biquads. 

2. Call nsp?IirlInitDlyl()  to initialize a delay line for the IIR filter.
3. Call the nsp?Iirl()  function to filter a single sample through a 

low-level IIR filter and/or call nsp?bIirl()  to filter a block of 
consecutive samples through a low-level IIR filter. 

Figure 8-5 illustrates the order of use of the low-level IIR filter functions.

 

Figure 8-5 Order of Use of the Low-Level IIR Functions

IirlInit Iirl

IirlInitBq
IirlInitDlyl

bIirl

oror

Low-Level 
IIR function 
list
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IirlInit, IirlInitBq, IirlInitDlyl
Initializes a low-level infinite impulse 
response filter.

void nspsIirlInit(NSPIirType iirType , float * taps , int order ,
NSPIirTapState * tapStPtr );

void nspsIirlInitBq(NSPIirType iirType , float * taps , int numQuads,
NSPIirTapState * tapStPtr );

void nspsIirlInitDlyl(const NSPIirTapState * tapStPtr , float * dlyl ,
NSPIirDlyState * dlyStPtr );
/* real values; single precision */

void nspcIirlInit(NSPIirType iirType , SCplx * taps , int order ,
NSPIirTapState * tapStPtr );

void nspcIirlInitBq(NSPIirType iirType , SCplx * taps , int numQuads,
NSPIirTapState * tapStPtr );

void nspcIirlInitDlyl(const NSPIirTapState * tapStPtr , SCplx * dlyl ,
NSPIirDlyState * dlyStPtr );
/* complex values; single precision */

void nspdIirlInit(NSPIirType iirType , double * taps , int order ,
NSPIirTapState * tapStPtr );

void nspdIirlInitBq(NSPIirType iirType , double * taps , int numQuads,
NSPIirTapState * tapStPtr );

void nspdIirlInitDlyl(const NSPIirTapState * tapStPtr , double * dlyl ,
NSPIirDlyState * dlyStPtr );
/* real values; double precision */

void nspzIirlInit(NSPIirType iirType , DCplx * taps , int order ,
NSPIirTapState * tapStPtr );

void nspzIirlInitBq(NSPIirType iirType , DCplx * taps , int numQuads,
NSPIirTapState * tapStPtr );

void nspzIirlInitDlyl(const NSPIirTapState * tapStPtr , DCplx * dlyl ,
NSPIirDlyState * dlyStPtr );
/* complex values; double precision */
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void nspwIirlInit(NSPIirType iirType , short * taps , int order ,
NSPIirTapState * tapStPtr );

void nspwIirlInitBq(NSPIirType iirType , short * taps , int numQuads,
NSPIirTapState * tapStPtr );

void nspwIirlInitDlyl(const NSPIirTapState * tapStPtr , short * dlyl ,
NSPIirDlyState * dlyStPtr );
/* real values; short integer */

dlyl Pointer to the array storing the delay line values.  The 
dlyl  argument is used by the nsp?IirlInitDlyl()  
function.

dlyStPtr Pointer to the NSPIirDlyState  structure.

iirType Specifies the filter structure to use with the filter 
description given.  The value for iirType  must 
currently be NSP_IirDefault .  This argument is used 
by the nsp?IirlInit()  and nsp?IirlInitBq()  
functions.  

numQuads The number of cascades of biquads (second-order IIR 
sections).  The numQuads argument is used by the 
nsp?IirlInitBq()  function. 

order  The order of the IIR filter.  This argument is used by th
nsp?IirlInit()  function.

taps Pointer to the array of filter coefficients used by the 
nsp?IirlInit()  and nsp?IirlInitBq()  functions.

tapStPtr Pointer to the NSPIirTapState  structure.

Discussion

The nsp?IirlInit() , nsp?IirlInitBq() , and 
nsp?IirlInitDlyl() functions initialize a low-level IIR filter.  The 
choice of nsp?IirlInit()  or nsp?IirlInitBq()  selects whether the 
filter is described as an arbitrary-order IIR filter or as a cascade of biquads. 

nsp?IirlInit() .  The nsp?IirlInit()  function initializes tapStPtr  
to describe a low-level IIR filter of order order .  The argument iirType  
selects the filter structure to use with the filter description given.  The filter 
structure is the organization of delay elements, gain elements, and adders 
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that make up the filter (common filter structures are, for example, “direct 
form 1,” “direct form 2,” and so on).  Multiple structures can implement the
same filter, but the contents of the delay line will have different meaning
depending on the structure you choose to use.  Both the choice of 
initialization function and the value of iirType  combine to select the 
desired filter implementation.  The value of iirType  must currently be set 
to NSP_IirDefault , meaning that the library is free to use whichever 
filter structure is most natural.

The array taps[n]  describes a filter with the following transfer function:

Thus, there are 2(order  + 1) elements in the array taps[N] .  The value of 
taps[N]  must not be 0.0, and is generally 1.0.  If the value of taps[N]  is 
not equal to 1.0, the initialization function (that is, either nsp?IirlInit()  
or nsp?IirlInitBq() ) will typically normalize the taps so that it is 1.0.

nsp?IirlInitBq() .  The nsp?IirlInitBq()  function initializes 
tapStPtr  to reference a cascade of biquads (second-order IIR sections).  
The filter type argument iirType  describes the filter structure to use.  As 
described above, this must currently be NSP_IirDefault .  The array 
taps[n]  describes a set of filters as follows:

Note that taps [6 x i  + 3] must not be 0.0, and is generally 1.0.  Most 
implementations normalize the taps so that taps [6 x i  + 0] and 
taps [6 x i  + 3] are 1.0; this requires a separate gain term.

H z( )

taps k[ ] z
k–⋅

k 0=

N 1–

∑

taps N k+[ ] z
k–⋅

k 0=

N 1–

∑
----------------------------------------------------------- N, order 1+= =

Hi z( )
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---------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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nsp?IirlInitDlyl() .  The nsp?IirlInitDlyl()  function initializes 
dlyStPtr  to reference a delay line for an IIR filter.  For the arbitrary-ord
IIR filter, dlyl  contains order  elements, and for the biquad IIR filter, 
dlyl  must contain 2 x numQuads elements.  For
iirType  = NSP_IirDefault , the delay line is set to all zeros.  The data
type of the delay line initialization must match the data type of the filter 
output.  

Do not deallocate or overwrite the arrays taps[n]  and dlyl[n]  during the 
life of the filter.  Your application must not directly access these arrays 
because the nsp?IirlInit() , nsp?IirlInitBq()  and 
nsp?IirlInitDlyl() functions can permute their contents in an 
implementation-dependent way.

Application Notes:  The nsp?IirlInit()  and 
nsp?IirlInitBq() functions can use any filter structure to implement th
transfer function.  For efficiency, the implementation can permute the taps 
and delay line.  Most filter structures require scaling the transfer functions 
such that the leading term of the denominator is 1.0; this is also allowable.

The filter structure NSP_IirDefault  is implementation-dependent and 
might or might not permute and/or normalize the taps and delay line.  

Related Topics

bIirl Filters a block of samples through a low-level IIR filter
(see page 8-85). 

Iirl Filters a single sample through a low-level IIR filter
(see page 8-85). 

Iirl, bIirl
Filters a signal through a low-level IIR 
filter.

float nspsIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , float samp);
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void nspsbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const float * inSamps ,
float * outSamps , int numIters );
/* real input, real taps; single precision */

SCplx nspcIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , SCplx samp);

void nspcbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, complex taps; single precision */

SCplx nspscIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , float samp);

void nspscbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const float * inSamps ,
SCplx * outSamps , int numIters );
/* real input, complex taps; single precision */

SCplx nspcsIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , SCplx samp);

void nspcsbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const SCplx * inSamps ,
SCplx * outSamps , int numIters );
/* complex input, real taps; single precision */

double nspdIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , double samp);

void nspdbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const double * inSamps ,
double * outSamps , int numIters );
/* real input, real taps; double precision */

DCplx* nspzIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , DCplx samp);

void nspzbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, complex taps; double precision */

DCplx nspdzIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , double samp);
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void nspdzbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const double * inSamps ,
DCplx * outSamps , int numIters );
/* real input, complex taps; double precision */

DCplx nspzdIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , DCplx samp);

void nspzdbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const DCplx * inSamps ,
DCplx * outSamps , int numIters );
/* complex input, real taps; double precision */

short nspwIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , short samp, int  ScaleMode, 
int  *ScaleFactor );

void nspwbIirl(const NSPIirTapState * tapStPtr ,
NSPIirDlyState * dlyStPtr , const short * inSamps ,
short * outSamps , int numIters, int  ScaleMode, 
int  *ScaleFactor );
/* real input, real taps; short integer */

dlyStPtr Pointer to the NSPIirDlyState  structure.

inSamps Pointer to the array containing the input samples for t
nsp?bIirl()  function.

numIters The number of samples to be filtered by the 
nsp?bIirl()  function.

outSamps Pointer to the array containing the output samples for 
the nsp?bIirl()  function.

samp The input sample for the nsp?bIirl()  function.

tapStPtr Pointer to the NSPIirTapState  structure.

Discussion

The nsp?Iirl()  and nsp?bIirl()  functions filter samples through a 
low-level IIR filter.  The different types of functions correspond to different 
combinations of real/complex taps and input samples.  The data type o

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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delay line must match the data type of the filter output.  The data type codes 
following the nsp  prefix in the function names and the real/complex 
combinations are described in Table 8-6.

Previous Tasks:  Before using either nsp?Iirl()  or nsp?bIirl() , 
you must initialize the structure pointed to by tapStPtr  by calling either 
nsp?IirlInit()  or nsp?IirlInitBq() .  You must also initialize the 
structure pointed to by dlyStPtr  by calling nsp?IirlInitDlyl() .

nsp?Iirl() .  The nsp?Iirl()  function filters a single sample samp[n]  
through a low-level IIR filter and returns the result.

nsp?bIirl() .  The nsp?bIirl()  function filters a block of numIters  
samples in the array inSamps[n]  through a low-level IIR filter and returns 
the result in the array outSamps[n] .

Example 8-8 illustrates the use of the low-level IIR functions in filtering a 
signal sample.

Table 8-6 Delay Line and Output Data Types for nsp?Iirl() and nsp?bIirl() 
Functions

Type 
Code

Input 
Type

Filter Coefficient 
Type

Delay Line 
Type

Output
Type

s float float float float

c SCplx SCplx SCplx SCplx

sc float SCplx SCplx SCplx

cs SCplx float SCplx SCplx

d double double double double

z DCplx DCplx DCplx DCplx

dz double DCplx DCplx DCplx

zd DCplx double DCplx DCplx
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Example 8-9 illustrates the use of the low-level IIR functions in filtering a 
block of samples.

Application Notes:  Call the nsp?Iirl()  function to invoke either the 
arbitrary-order IIR filter (nsp?IirlInit() ) or the biquad cascade 
structure (nsp?IirlInitBq() ).

Example 8-8 Using the Low-Level IIR Functions to Fil ter a Sample

/* filter a single sample through an IIR filter */
NSPIirTapState tapSt;

NSPIirDlyState  dlySt;

double taps[6] = { 1.0, -2.0, 1.0, 1.0, -1.732, 1.0};

double dlyl[2];

int i;

double xval, yval, inSamps[2000], outSamps[2000];

nspdIirlInitBq(NSP_IirDefault, taps, 1, &tapSt);

nspdIirlInitDlyl(&tapSt, dlyl, &dlySt);

for (i=0; i < 2000; i++) {

xval = /* insert code here to get the 
  * next value of x 
  */;

yval = nspdIirl(&tapSt, &dlySt, xval);

/* yval has the output sample */

}

Example 8-9 Using the Low-Level IIR Functions to Fil ter a Block of Samples

/* standard block filtering */

nspdIirlInit(NSP_IirDefault, taps, 2, &tapSt);

nspdIirlInitDlyl(&tapSt, dlyl, &dlySt);

/* Insert code here to get values of inSamps[] */

nspdbIirl(&tapSt, &dlySt, inSamps, outSamps, 2000);
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Related Topics

IirlInit Initializes a low-level IIR filter.  This function describes 
the filter as an arbitrary-order IIR filter (see page 8-82).

IirlInitBq Initializes a low-level IIR filter.  This function describes 
the filter as a cascade of biquads (second-order IIR 
sections, see page 8-82).

IirlInitDlyl Initializes the delay line contents for a low-level IIR 
filter (see page 8-82).

IIR Filter Functions
The functions described in this section initialize an infinite impulse 
response (IIR) filter and perform the filtering function. They are intended 
for cyclic processing.

These functions provide a higher-level interface than the corresponding 
low-level IIR functions (see “Iirl” in page 8-85 for a description of 
nsp?Iirl() ). In particular, they bundle the taps and delay line into a 
single state. Also, the IIR filter functions dynamically allocate memory for 
the taps and delay line; thus the arrays storing the taps and delay line v
are not accessed after initialization and need not exist while the filter ex

To initialize and use an IIR filter, follow this general scheme:

1. Call nsp?IirInit()  to initialize the filter as an arbitrary order IIR 
filter, or call nsp?IirInitBq()  to initialize the filter as a cascade of 
biquads.

2. Call nsp?Iir()  to filter a single sample through an IIR filter or call 
nsp?Iir()  repeatedly to filter consecutive samples one at a time. Y
can also call nsp?bIir()  repeatedly to filter consecutive blocks of 
samples through an IIR filter.

3. After all filtering is complete, call nspIirFree()  to release dynamic 
memory associated with the filter. 

Real and complex filter coefficients can be mixed with real and complex
input (that is, all four combinations are allowable).  However, filter 
coefficients and input of different precision must not be mixed.  It is the 

IIR function list
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application’s responsibility to call the correct function for the given type 
combination.  This is not checked at compile time nor is it required to be 
checked at run-time.

Figure 8-6 illustrates the order of use of the IIR filter functions. 

      

IirInit, IirInitBq, IirFree
Initializes an infinite impulse response 
filter.

void nspsIirInit(NSPIirType iirType , const float * tapVals , 
int order , NSPIirState * statePtr );

void nspsIirInitBq(NSPIirType iirType , const float * tapVals , 
int numQuads, NSPIirState * statePtr );
/* real input, real taps; single precision */

void nspcIirInit(NSPIirType iirType , const SCplx * tapVals , 
int order , NSPIirState * statePtr );

void nspcIirInitBq(NSPIirType iirType , const SCplx * tapVals , 
int numQuads, NSPIirState * statePtr );
/* complex input, complex taps; single precision */

void nspscIirInit(NSPIirType iirType , const SCplx * tapVals , 
int order , NSPIirState * statePtr );

Figure 8-6 Order of Use of the IIR Functions

IirInit Iir

IirInitBq

IirFree
bIir

oror
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void nspscIirInitBq(NSPIirType iirType , const SCplx * tapVals , 
int numQuads, NSPIirState * statePtr );
/* real input, complex taps; single precision */

void nspcsIirInit(NSPIirType iirType , const float * tapVals , 
int order , NSPIirState * statePtr );

void nspcsIirInitBq(NSPIirType iirType , const float * tapVals , 
int numQuads, NSPIirState * statePtr );
/* complex input, real taps; single precision */

void nspdIirInit(NSPIirType iirType , const double * tapVals , 
int order , NSPIirState * statePtr );

void nspdIirInitBq(NSPIirType iirType , const double * tapVals , 
int numQuads, NSPIirState * statePtr );
/* real input, real taps; double precision */

void nspzIirInit(NSPIirType iirType , const DCplx * tapVals , 
int order , NSPIirState * statePtr );

void nspzIirInitBq(NSPIirType iirType , const DCplx * tapVals , 
int numQuads, NSPIirState * statePtr );
/* complex input, complex taps; double precision */

void nspdzIirInit(NSPIirType iirType , const DCplx * tapVals , 
int order , NSPIirState * statePtr );

void nspdzIirInitBq(NSPIirType iirType , const DCplx * tapVals , 
int numQuads, NSPIirState * statePtr );
/* real input, complex taps; double precision */

void nspzdIirInit(NSPIirType iirType , const double * tapVals , 
int order , NSPIirState * statePtr );

void nspzdIirInitBq(NSPIirType iirType , const double * tapVals , 
int numQuads, NSPIirState * statePtr );
/* complex input, real taps; double precision */

void nspIirFree(NSPIirState * statePtr );

void nspwIirInit(NSPIirType iirType , const short * tapVals , 
int order , NSPIirState * statePtr );

void nspwIirInitBq(NSPIirType iirType , const short * tapVals , 
int numQuads, NSPIirState * statePtr );
/* real input, real taps; short integer */
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iirType Specifies the filter structure to use with the filter 
description given.  The value for iirType  must 
currently be NSP_IirDefault .  This argument is used 
by the nsp?IirInit()  and nsp?IirInitBq()  
functions. 

numQuads The number of cascades of biquads (second-order IIR 
sections).  The numQuads argument is used by the 
nsp?IirInitBq()  function.  

order The order of the IIR filter.  This argument is used by th
nsp?IirInit()  function.

statePtr Pointer to the NSPIirState  structure.

tapVals Pointer to the array which stores the filter coefficients.

Description

The nsp?IirInit()  and nsp?IirInitBq()  functions initialize an 
infinite impulse response filter.  They are intended for cyclic processing.  
The nspIirFree()  function frees dynamic memory associated with an 
infinite impulse response filter.  

Many combinations of real and complex input and filter coefficients are 
possible.  This is indicated by the s , c , sc , cs , d, z , dz , and zd  type codes 
following the nsp  prefix in the function names above.  For both of the 
functions, nsp?IirInit()  and nsp?IirInitBq() , the allowed 
combinations of real and complex input and filter coefficients are described 
in Table 8-7.

Table 8-7 Input and Filter Coefficient C ombinations for nsp?IirInit() and 
nsp?Ii rInitBq() Functions

Type 
Codes

Input 
Type

Filter Coefficient 
Type

Output 
Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

cs SCplx float SCplx

                     continued ☛
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f 
 

nsp?IirInit() .  The nsp?IirInit()  function initializes an arbitrary 
order IIR filter.  The argument iirType  selects the filter structure to use 
with the filter description given.  The filter structure is the organization o
delay elements, gain elements, and adders that make up the filter (common
filter structures are, for example, “direct form 1,” “direct form 2,” and so 
on).  Multiple structures can implement the same filter, but the contents of 
the delay line will have different meaning depending on the structure you 
choose to use.  Both the choice of initialization function and the value of 
iirType  combine to select the desired filter implementation.  The value of 
iirType  must currently be set to NSP_IirDefault , meaning that the 
library is free to use whichever filter structure is most natural.

The 2 * (order  + 1) length array tapVals[n]  specifies the filter 
coefficients as discussed for the low-level IIR function nsp?IirlInit() .  
See “IirlInit” in page 8-91 (for nsp?IirlInit() ) for more information on 
how the filter coefficients are specified.  

The delay line is initialized as in nsp?IirlInitDlyl() .   See 
“IirlInitDlyl” in page 8-82 (for nsp?IirlInitDlyl() ) for more 
information on how the delay line is initialized.  

nsp?IirInitBq().   The function nsp?IirInitBq()  initializes an IIR 
filter defined by a cascade of biquads.  The argument iirType  describes 
the filter structure to use.  As described above, this must be 
NSP_IirDefault .  The 6 * numQuads length array tapVals[n]  specifies 
the filter coefficients as described for the low-level IIR function 

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx

Table 8-7 Input and Filter Coefficient C ombinations for nsp?IirInit() and 
nsp?Ii rInitBq() Functions (continued)

Type 
Codes

Input 
Type

Filter Coefficient 
Type

Output 
Type
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nsp?IirlInitBq() .  See “IirlInitBq” in page 8-91 (for 
nsp?IirlInitBq() ) for more information on how the filter coefficients 
are specified. 

The delay line is initialized in the same way as for the low-level IIR 
function nsp?IirlInitDlyl() .  See “IirlInitDlyl” in page 8-82 (for 
nsp?IirlInitDlyl() ) for more information on how the delay line is 
initialized.  

nspIirFree().   The nspIirFree()  function frees all dynamic memory 
associated with a filter created by nsp?IirInit()  or nsp?IirInitBq() .  
You should call nspIirFree()  after the application has finished filtering 
with statePtr .  After calling nspIirFree() , you should not reference 
statePtr  again.  

Application Notes: The contents of NSPIirState  is 
implementation-dependent, but it does include a NSPIirTapState  
structure and a NSPIirDlyState  structure.  In addition, it includes a 
dynamically allocated array for the taps and the delay line.  For more 
information, see for the “Application Notes” in page 8-85 for the “IirlInit” 
and “IirlInitBq” sections (that is, for the low-level functions 
nsp?IirlInit()  and nsp?IirlInitBq() ).

Related Topics

IirlInit   Initializes a low-level IIR filter.  This function describes 
the filter as an arbitrary-order IIR filter (see page 8-82).

IirlInitBq  Initializes a low-level IIR filter.  This function describes 
the filter as a cascade of biquads (second-order IIR 
sections, see page 8-82).
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Iir, bIir
Filters a signal through an IIR filter.

float nspsIir(NSPIirState * statePtr , float samp);

void nspsbIir(NSPIirState * statePtr , const float * inSamps , 
float * outSamps , int numIters );

/* real input, real taps; single precision */

SCplx nspcIir(NSPIirState * statePtr , SCplx samp);

void nspcbIir(NSPIirState * statePtr , const SCplx * inSamps , 
SCplx * outSamps , int numIters );

/* complex input, complex taps; single precision */

SCplx nspscIir(NSPIirState * statePtr , float samp);

void nspscbIir(NSPIirState * statePtr , const float * inSamps , 
SCplx * outSamps , int numIters );

/* real input, complex taps; single precision */

SCplx nspcsIir(NSPIirState * statePtr , SCplx samp);

void nspcsbIir(NSPIirState * statePtr , const SCplx * inSamps , 
SCplx * outSamps , int numIters );

/* complex input, real taps; single precision */

double nspdIir(NSPIirState * statePtr , double samp);

void nspdbIir(NSPIirState * statePtr , const double * inSamps , 
double * outSamps , int numIters );

/* real input, real taps; double precision */

DCplx nspzIir(NSPIirState * statePtr , DCplx samp);

void nspzbIir(NSPIirState * statePtr , const DCplx * inSamps , 
DCplx * outSamps , int numIters );

/* complex input, complex taps; double precision */

DCplx nspdzIir(NSPIirState * statePtr , double samp);

void nspdzbIir(NSPIirState * statePtr , const double * inSamps , 
DCplx * outSamps , int numIters );
/* real input, complex taps; double precision */
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DCplx nspzdIir(NSPIirState * statePtr , DCplx samp);

void nspzdbIir(NSPIirState * statePtr , const DCplx * inSamps , 
DCplx * outSamps , int numIters );

/* complex input, real taps; double precision */

short nspwIir(NSPIirState * statePtr , short samp, int  ScaleMode, 
int  *ScaleFactor );

void nspwbIir(NSPIirState * statePtr , const short * inSamps , 
short * outSamps , int numIters, int  ScaleMode, 
int  *ScaleFactor );
/* real input, real taps; short integer */

inSamps Pointer to the array containing the input samples for t
nsp?bIir()  function.

numIters The number of samples to be filtered by the 
nsp?bIir()  function.

outSamps Pointer to the array containing the output samples for 
the nsp?bIir()  function.

samp The input sample for the nsp?bIir()  function.

statePtr Pointer to the NSPIirState  structure.

Description

The nsp?Iir()  and nsp?bIir()  functions filter samples through an IIR 
filter.  The different data types of functions correspond to different 
combinations of real/complex taps and delay line, as described by the t
under nsp?IirInit() .  The data type of the function used here must 
match the data type of the function used for initialization.  

Previous Tasks: You must initialize the NSPIirState  structure pointed 
to by statePtr  by calling either nsp?IirInit()  or 
nsp?IirInitBq() .  

nsp?Iir().   The nsp?Iir()  function filters a single sample samp 
through an IIR filter and returns the result.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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nsp?bIir() .  The nsp?bIir()  function filters a block of numIters  
samples in the array inSamps[n]  through an IIR filter and returns the 
result in the array outSamps[n] .

Example 8-10 illustrates using nsp?IirInit()  to initialize an 
arbitrary-order IIR filter and then using nsp?Iir()  to filter the samples. 

Example 8-11 illustrates using  nsp?IirInitBq()  to initialize an IIR 
filter as a cascade of biquads and then using nsp?Iir()  to filter the 
samples.

Example 8-10 Arbitrary Order IIR Filtering With the n sp?Ii rInit() and nsp?Iir() 
Functions

/* 
 * arbitrary order 
 * IIR filtering 
 */

NSPIirState  iirSt;
double       taps[10], xval, yval;
int i;

/* insert code here to initialize taps */

nspdIirInit(NSP_IirDefault, taps, 4, &iirSt);
for (i=0; i<2000; i++) {
   xval = /* insert code here to get the next value of x */;
   yval = nspdIir(&iirSt, xval);
   /* yval has the output sample */

}
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Related Topics

bIirl  Filters a block of samples through a low-level IIR filter 
and returns the result (see page 8-85).

IirInit   Initializes an IIR filter.  This function describes the filter 
as an arbitrary-order IIR filter (see page 8-91).

IirInitBq  Initializes an IIR filter.  This function describes the filter 
as a cascade of biquads (second-order IIR sections, see 
page 8-91).

Iirl  Filters a single sample through a low-level IIR filter and
returns the result (see page 8-85).

     

Example 8-11 Cascaded Biq uad Fil tering With the nsp?Ii rInitBq() and nsp?Iir() 
Functions

/* 
 * cascaded biquad 
 * IIR filtering 
 */

NSPIirState  iirSt;
double       taps[30], xval, yval;
int i;

/* insert code here to initialize taps */

nspdIirInitBq(NSP_IirDefault, taps, 5, &iirSt);
for (i=0; i<2000; i++) {
   xval = /* insert code here to get the next value of x */;
   yval = nspdIir(&iirSt, xval);
   /* yval has the output sample */
}
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This chapter describes the Intel Processing Library functions that perform 
convolution operations. Convolution is an operation used to define an 
output signal from any linear time-invariant (LTI) processor in response
any input signal [Lyn89].

 The convolution operation is performed for one- and two-dimensional 
signals.

One-Dimensional Convolu tion
The Intel Signal Processing Library provides an nsp?Conv()  function to 
perform finite linear convolution of two sequences for one-dimensional 
signals.

Library 
function lists
9-1
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Conv
Performs finite, linear convolution of 
two sequences.

void nspsConv(const float * x, int xLen , const float * h, int hLen ,
float * y ); /* real first signal, real second signal; 

 single precision */

void nspcConv(const SCplx * x, int xLen , const SCplx * h, int hLen ,
SCplx * y ); /* complex first signal, complex second signal;

 single precision */

void nspscConv(const float * x , int xLen , const SCplx * h, int hLen ,
SCplx * y ); /* real fist signal, complex second signal; 

 single precision */

void nspcsConv(const SCplx * x , int xLen , const float * h, int hLen ,
SCplx * y ); /* complex first signal, real second signal; 

 single precision */

void nspdConv(const double * x , int xLen , const double * h, int hLen ,
double * y); /* real first signal, real second signal; 

 double precision */

void nspzConv(const DCplx * x, int xLen , const DCplx * h, int hLen ,
DCplx * y ); /* complex first signal, complex second signal;

 double precision */

void nspdzConv(const double * x, int xLen , const DCplx * h, int hLen ,
DCplx * y ); /* real first signal, complex second signal;

 double precision */

void nspzdConv(const DCplx * x , int xLen , const double * h, int hLen ,
DCplx * y ); /* complex first signal, real seconf signal;

 double precision */

void nspwConv(const short * x, int xLen , const short * h, int hLen  
short * y, int  ScaleMode, int  *ScaleFactor );
/* real first signal, real second signal; short integer */

h, x Pointers to the arrays to be convolved.  

hLen Number of samples in the array h[n] .

xLen Number of samples in the array x[n] .
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y Pointer to the array which stores the result of the 

convolution.

Discussion 

The different types of the nsp?Conv()  function correspond to the different 
real/complex combinations of the input signals. This is indicated by the s, 
c , sc , cs , d, z, dz , and zd  type codes following the nsp  prefix in the 
function names above.  The allowed combinations of real and complex 
signals are described in Table 9-1. 

The nspscConv()  and nspcsConv()  functions and the nspdzConv()  
and nspzdConv()  functions are essentially identical and are included for 
convenience.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.

Table 9-1 Signal Types Combinations for n sp?Conv() Function

Type 
Codes

First Signal 
Type

Second Signal 
Type

y(n) (or 
output) Type

s float float float

c SCplx SCplx SCplx

sc float SCplx SCplx

cs SCplx float SCplx

d double double double

z DCplx DCplx DCplx

dz double DCplx DCplx

zd DCplx double DCplx

NOTE.  The data type of the function used here must match the data type 
of the function used for nsp?Fir() .
9-3
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The nsp?Conv()  function performs single-rate convolution.  The xLen-  
length array x is convolved with the hLen- length array h to produce an 
xLen  + hLen  - 1 length array y .  The argument names x, h, and y are 
chosen to suggest FIR filtering.  The result of the convolution is defined
follows:

This finite-length convolution is related to infinite-length by:

y’(n)  = x’(n)  * h’(n)  

In the above equations, x’(n)  and h’(n)  are the zero-padded 
(infinite-length) versions of x(n)  and h(n) ; y’(n)  is the infinite-length 
output version of y(n) . 

Then y'(n)  is zero everywhere except over:

y’[n]  = y(n) , 0 ≤ n < xLen  + hLen  - 1 

Example 9-1 shows the code for the convolution of two vectors using 
nsp?Conv() .

Example 9-1 Using nsp?C onv() to Convolve Two Vectors

/* convolve two vectors */

double  x[32], h[16];

double  y[47]; /* 32 + 16 - 1 = 47 */

/* insert code here to put data in x and h */

nspdconv(x, 32, h, 16, y);

/* y has the finite convolution of x and h */

y n[ ] h k[ ] x n k–[ ]⋅
k 0=

hLen 1–

∑ 0 n xLen hLen 1–+<≤,=

x ′ n( )
x n[ ]
0




=
0 n xLen<≤,

otherwise,

h ' n( )
h n[ ]
0




=
0 n hLen<≤,

otherwise,
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Two-Dimensional Convolution

For two-dimensional signals, the Intel Signal Processing Library provides 
two functions: nsp?Conv2D()  and nsp?Filter2D() .  The functions are 
basically identical for image processing except that nsp?Filter2D()  
stores the result of the convolution in the array that is the same as input 
array, while nsp?Conv2D()  stores the result of the convolution in a new 
output array.

Conv2D
Performs finite, linear convolution of 
two two-dimensional signals.

void nspsConv2D (float *x , int xCols , int xRows, float *h , 
int hCols , int hRows, float *y );
/* real values; single precision */

void nspdConv2D (double *x , int xCols , int xRows, double *h , 
int hCols , int hRows, double *y );
/* real values; double precision */

void nspwConv2D (short *x , int xCols , int xRows, short *h , 
int hCols , int hRows, short *y, int  ScaleMode, 
int  *ScaleFactor );
/* real values; short integer */

h, x Pointers to the two-dimensional arrays to be convolved.

hCols,  hRows Dimensions of the h[n, m]  array.

xCols,  xRows Dimensions of the x[n, m] array.

y The array which stores the result of the convolution.

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.
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Discussion

The nsp?Conv2D()  function performs a convolution of two-dimensional 
signals. The xCols  by xRows array x  is convolved with the hCols  by 
hRows array h to produce an xCols+hCols-1  by xRows+hRows-1  array 
y . 

The result of the convolution is defined as follows:

In the above expressions, x[n, m]  is a shorthand for x[n  + m* xCols] , 
h[n, m]  is a shorthand for h[n  + m*hCols] , and y[n, m]  is a shorthand 
for y[n  + m* (xCols  + hCols  - 1)] .

This function treats consecutive array element addresses as horizontally 
adjacent samples (that is, they are in the same row), and elements thatare a 
distance of xCols  (or hCols ) apart as vertically adjacent (that is, they are 
in the same column) as shown in Figure 9-1.

y n m,[ ] h j k,( ) x n j m k–,–( )⋅
j 0=

hCols 1–

∑
k 0=

hRows 1–

∑=

0 n x Cols hCols 1 0 m xRows hRows 1–+<≤,–+<≤

x n m,( )
x n m,[ ]
0




=
0 n x Cols 0 m xRows<≤,<≤
otherwise
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Figure 9-1 C onse cutive Array Element Ad dresses

 

Filter2D
Filters a two-dimensional signal.

void nspsFilter2D (const float *x , int xCols , int xRows, 
const float *h , int hCols , int hRows, float *y );
/* real values for line and taps; single precision */

void nspdFilter2D (const double *x , int xCols , int xRows, 
const double *h , int hCols , int hRows, double *y );
/* real values for line and taps; double precision */

void nspwFilter2D (const short *x , int xCols , int xRows, 
const short *h , int hCols , int hRows, short *y, 
int  ScaleMode, int  *ScaleFactor );
/* real values for line and taps; short integer */

Memory Address

x

x+xCols

x+(2*xCols)

xCols

xRows

Increasing
memory
addresses
9-7
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 x Two-dimensional array (input image) to be filtered. The 
size of the input image is xCols  by xRows and xCols  
by xRows.

h Two-dimensional array of filter coefficients. The size of 
the image is xCols  by xRows and hCols  by hRows.

y The array which stores the result of the filtering (outpu
image). The size of the input image is xCols  by xRows.

Discussion

The nsp?Filter2D()  function filters two-dimensional signal x  using 
coefficients in the array h. It is intended for image processing and is 
identical to the function nsp?conv2D() , except that it returns an output 
array that is the same as the input array. This prevents image dimensio
from being effected by filtering.

The arguments xCols  and xRows  specify the width and height, 
respectively, of the input image x and output image y. The arguments 
hCols  and hRows specify the width and height, respectively, of the 
coefficient matrix h.

The input and coefficients are convolved as follows:

In the above expressions, x[n, m]  is a shorthand for x[n  + m* xCols] , 
h[n, m]  is a shorthand for h[n  + m*hCols] , and y[n, m]  is a shorthand 
for y[n  + m* xCols]  .

ScaleMode ,  
ScaleFactor 

Refer to  “Scaling Arguments” in Chapter 1.

y n m,[ ] h j k,[ ] x n j–
hCols

2
-------------------- m k–

hRows
2

--------------------+,+
 
 
 

⋅
k 0=

hRows 1–

∑
j 0=

hCols 1–

∑=

0 n x Cols 0 m x Rows<≤,<≤

x n m,( )
x n m,[ ]
0




=
0 n x Cols 0 m xRows<≤,<≤
otherwise
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This function treats consecutive array element addresses as horizontally 
adjacent samples  (that is, they are in the same row), and elements that are a 
distance of xCols  (or hCols ) apart as vertically adjacent (that is, they are 
in the same column) as discussed for nsp?Conv2D .
9-9
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This chapter describes a function that can be used to query the version 
number and the name of the current Signal Processing Library. The function 
returns a pointer to the data structure NSPLibVersion  containing the 
required information.

GetLibVersion
Returns a pointer to the library version 
data structure.

const NSPLibVersion *nspGetLibVersion (void);

Discussion 

This function returns a pointer to a static data structure NSPLibVersion  
that contains information about the current version of the Signal Proces
Library. This structure is defined as follows:

typedef struct {
const int major ;
const int minor ;
const int build ;
const char * Name;
const char * Version ;
const char * InternalVersion ;

Library 
function lists
10-1
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const char * BuildDate ;
const char * CallConv ;

 } NSPLibVersion;

where:

major The major number of the current library version
minor The minor number of the current library version
build The build number of the current library version.
Name The name of the current library version.
Version The library version string.
InternalVersion The library version detail.
BuildDate The library version actual build date.
CallConv The library calling convention: DLL, Microsoft, 

or Borland.
For example, if the library version is 3.0, build 14, then the fields in this 
structure are set as 

major  = 3, minor  = 0, build  = 14. 

Any of the fields in NSPLibVerion  is returned as -1 if there is an error in 
retrieving the information. 

Example 10-1 shows how to use the function nspGetLibVersion() .

Example 10-1 Using the GetLibVersion Function

NSPLibVersion *p

p = nspGetLibVersion ()

printf (“Library Name: %s\n”, p->Name);

      printf (“library Version: %s\n”, p->Version);
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This appendix provides notes and hints on using fast Fourier transforms.  
For a more complete discussion, see Chapter 8 of [Mit93], and the 
references cited there.

The standard fast Fourier transform presented in most textbooks is a 
complex FFT; that is, its input is a complex vector and its output is a 
complex vector.  However, typical signal processing applications need to 
take the FFT of real time-domain signals, not complex signals.  While it is 
possible to promote the real signal to a complex signal by setting the 
imaginary part to zero and then apply a standard complex FFT, this 
approach is not efficient.  A large family of real FFTs have been developed 
which operate directly on real inputs.  The functions in the Intel Signal 
Processing Library which operate on real inputs are nsp?RealFftl()  (see 
page 7-23); nsp?CcsFftl()  (see page 7-35); nsp?RealFft()  (see page 
7-38); nsp?CcsFft()  (see page 7-44); nsp?Real2Fft()  (see page 7-47); 
and nsp?Ccs2Fft()  (see page 7-51).

The FFT of a real signal produces complex conjugate-symmetric (CCS) 
values, and the FFT of a CCS signal produces real values.  Given this, there 
are four possible combinations of real input versus CCS input and 
time-domain versus frequency-domain:

1. real x(n)  CCS X(k)

 

2. real X(k)  CCS x(n)

FFT

IFFT
A-1
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3. CCS x(n)  real X(k)

4. CCS X(k)  real x(n)

where x(n)  is a time-domain signal and X(k)  is a frequency-domain 
signal.

Operations 1 and 4 are the most commonly used in typical signal 
processing.  Operations 2 and 3 are much less common, but do appear
some filter design algorithms. 

The functions nsp?RealFft()  (and the other functions with Real  in their 
names) implement operation 1 (with the flags  value NSP_Forw) and 
operation 2 (with the flags  value NSP_Inv ), while the functions 
nsp?CcsFft()  (and the other functions with Ccs in their names) 
implement operation 3 (with the flags  value NSP_Forw) and operation 4 
(with the flags  value NSP_Inv ).

One consequence of this arrangement is that nsp?RealFft()  is not its 
own functional inverse.  That is, composing operation 1 with operation 2 is
not meaningful.  Instead, operation 1 must be composed with operation
get an identity operation.  Similarly, nsp?CcsFft()  is not its own 
functional inverse.  While it would be natural to define a function that 
combines operations 1 and 4, this is not done by the Intel Signal Proces
Library because the type declaration problems that arise with such an 
arrangement cannot be adequately resolved.

For Real  and Ccs functions, refer to Chapter 7.

FFT

IFFT



Digital Filtering
 B

 
 

 

This appendix provides background about information on digital filtering
and introduces the concepts of the following filters used by the Intel Signap
Processing Library:

• Finite impulse response (FIR) and infinite impulse response (IIR) 
filters

• Multi-rate filters
• Adaptive FIR filters using the least mean squares (LMS) algorithm

A digital filter is a system with frequency-selective capability. It can be 
used to modify, reshape, or manipulate a digital signal according to a 
specified requirement. Thus a specified range of frequencies can be 
attenuated, rejected or isolated from a signal. This capability ensures the use
of digital filters in the following areas:

• Noise removal
• Compensation for signal distortion due to channel characteristics
• Separating signals
• Demodulation
• Digital to analog conversion
• Rate Conversion
B-1
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FIR and IIR Filters
The filters implemented in the Intel Signal Processing Library belong to
class known as linear time-invariant (LTI) systems. A general LTI system
described by this differential equation:

,

where x(t)  is an input signal, y(t)  is an output signal, and a j  , bj  are 
constants.

A corresponding digital LTI system is described by this equation:

 (1),

where T is the sampling step, x(nT) is the sample of the input signal, 
y(nT)  is the sample of the output signal, and aj  , bj  are constant 
coefficients (taps).

Equation (1) describes an IIR filter. In this equation, output values y(nt) 

depend on input values x((n-i)T)  and y((n-i)T) , the latter being a 
feedback value of the previous time-step. In other words, the IIR filter uses 
a feedback loop. Such a filter is called an arbitrary order IIR filter. Figur
B-1 provides an example of an IIR filter structure.

y t( ) aj
d

j
y t( )

dt
j

-----------
j 1=

M 1–

∑– bi
d

i
x t( )

dt
i

-----------

i 0=

N 1–

∑+=

y nT( ) aj y n j–( )T( ) bi x n i–( )T( )
i 0=

N 1–

∑+
j 1=

M 1–

∑–=
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Figure B-1 Example of an IIR Filter Structure

_________________________________________________________

An FIR filter does not use a feedback loop. Assuming in equation (1) 
, the equation for the FIR filter is

 (2).

Figure B-2 illustrates an example of an FIR filter structure.

IIR filter

OSD2090

b0 b1 b2 b3

a3 a2 a1

Z-1 Z-1 Z-1

Z-1 Z -1 Z -1

+

x(nT)

y(nT)

a j 0≡

y nT( ) bi x n i–( )T( )
i 0=

N 1–

∑=
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Figure B-2 Example of an FIR Filter Structure

_________________________________________________________

To compute a new output count y(nT) , it is necessary to save a part of the 
previous time-step input x((n-i)T)  (for an IIR filter, also output 
y((n-j)T)) . The previous signal samples are saved in an array called a 
delay line. In equations (1) and (2), the length of the output signal delay 
is M-1, and the length of the input signal delay line is N-1 .

Each of the FIR and IIR filters have their advantages and disadvantages. 
FIR filters do not require feedback, they are more stable and used more 
often than IIR filters due to their stability. However, IIR filters provide 
higher performance because they do much less calculation than FIR filters.

When implementing various versions of equations (1) and (2) directly, the 
filter is known as a direct-form filter. When using mathematical 
transformations of equation (1), a different form of an IIR filter known as
biquadratic form (or a cascade form, or biquads) can be obtained. The 
implementation of cascade form filters consists of cascaded second-order 
sections. When properly implemented, the cascade form IIRs have better 
noise immunity than the direct-form filters.

FIR filter

OSD2091

b0 b1 b2 b3

Z-1 Z -1 Z -1

+

x(nT)

y(nT)
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Multi-Rate Fi lters
Most signal processing systems use signals of varying frequencies. In or
to align or use signals with varying sampling rates, it is necessary to 
transform the sampling rate of signals to a common value. This 
transformation is known as sampling rate alteration. An example of suc
sampling rate alteration is that of an audio signal from 16 KHz to 8 KHz, 
that is, from frequency  to frequency .

The Intel Signal Processing Library implements a special FIR filter in 
which the sampling rate alteration of the input signal as well as the output 
signal alteration is performed. Such filter is called a multi-rate filter. (For 
more details on multi-rate filters, see Appendix C).

A multi-rate filter can be thought of as consisting of three sequential 
elements: the up-sampler to increase sampling rate, the FIR filter, and the 
down-sampler to decrease sampling rate. In addition to the multi-rate FIR 
filter, the library provides the nsp?UpSample()  and nsp?DownSample()  
functions to up-sample and down-sample the signals, respectively. Figure 
B-3 shows an example of a multi-rate FIR filter structure.

Figure B-3 Example of a Multi-Rate FIR Filter Structure

_________________________________________________________

Adaptive Filters
In some signal processing applications, the taps can be changed at each 
time-step to provide an optimal control effect. Filters with changeable ta
are called adaptive filters. 

f1
1

T1
-----= f2

1
T2
-----=

x(nT )1 

Multi-rate FIR filter

OSD2092

y(nT  )FIR

UpSample ( ) DownSample ( )

2
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Figure B-4 provides a scheme of a simple adaptive filter implementation. 
The scheme shows a delay line with two branches and a summing unit

Figure B-4 Simple Adaptive Fi lter Implementation

_________________________________________________________

In Figure B-4, x k is the input signal, yk is the output signal, W0, W1 are filter 
taps, Z-1  is the delay that delays input signal by one clock, dk is the desired 
signal, and ek is the error signal.

In a typical system control application, the filter tap values are updated at 
each iteration so as to reduce the mean square deviation of the output filter 
signal y from the desired signal d within a desirable error range e.

Σ

FIR filter

dk

yk ek

xk

Σ
+

−

OSD2093

W0
W1

Z-1



Digital Filtering B
 

m 

 

 

 

nd 

s 

r 
 

 

LMS Filters
The least mean squares (LMS) filter is an adaptive filter which is based on
the least mean squares algorithm to recalculate taps. The LMS filters (see 
the “Lmsl, bLmsl” section in Chapter 9) are computed using a gradient 
method. According to this method, each next tap vector is equal to the su
of the previous tap and a component proportional to the gradient value. The 
estimated gradient components are functions of the partial derivatives of the
current vector. Although the algorithm includes the computation of mean 
square gradients of the error function, the actual implementation eliminates
the squaring and differentiation operations which improves performance.

High- and Low-Level F ilters
The Intel Signal Processing Library implements two filter levels: high and 
low. Functionally the high- and low-level filters are identical. However, the 
high- and low-level FIR filters differ in their implementation as shown in
Table B-1. The low-level filter functions allow you to design your own 
adaptive filters with the control algorithms of your choice.

Table B-1 Low- and High-Level Filters Implementation

Area of 
Difference Low-Level Filters High-Level Filters

Data 
structure

Implement two 
structures: taps and 
delay line arrays.

Implement a single structure that 
provides an access to both taps a
delay line arrays.

Data 
owner

Application defines 
taps and delay line 
count arrays.

Application has no direct access to 
the taps and delay line count array
which are stored in the dynamic 
memory. To access these arrays, the 
application uses 
nsp?FirSet/GetTaps()  and 
nsp?FirSet/GetDlyl() .

Memory 
usage

Use taps and delay 
line count arrays of 
minimal length: N and 
N-1, respectively. No 
more memory is 
allocated. 

Not restricted in memory use eithe
for delay line or for taps or for any
other purpose. This condition 
allows implemention of other 
computational means, for example,
fast Fourier transforms.
B-7
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Using Adaptive Filters
The following sections provide some basic examples of using the adaptive 
filters.

System I dentification

The adaptive filters can estimate system parameters with unknown tran
characteristics to identify a system. Figure B-5 shows a scheme of 
computing an adaptive filter in an identification mode. In this scheme, while
reducing the error signal to zero, the filter is emulating the transfer 
characteristics of an unknown device.

Figure B-5 Using an Adaptive Filter For System Identification

_________________________________________________________

Equalizing

An adaptive filter can be used for an inverse system parameter search. In 
this case, the filter serves as a deconvolver of input signal and a polyno
that describes filter parameters. 

Figure B-6 shows a scheme of using an adaptive filter for equalizing. In 
scheme, the filter restores the delayed input signal version, in particular, the 
one that has passed through a communication channel.
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Figure B-6 Using an Adaptive Filter for Equalizing

_________________________________________________________

Disturbance compensation

Figure B-7 presents a scheme of an adaptive disturbance compensator. 

Figure B-7 Using Adapt ive Filter as Disturb ance Compensator

_________________________________________________________
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This appendix provides a brief overview of multi-rate filtering and the 
polyphase structure.  It also includes a detailed discussion of the number of 
samples consumed and produced, and the required delay line lengths for 
finite impulse response (FIR) filter structure and the structure for the finite
impulse response filter that uses the least mean squares adaptation (LMS). 

Multi-rate filtering and the polyphase structure are not conceptually simple 
and cannot be adequately described here.  Instead, see [Mit93], Chapter 14, 
Multirate Signal Processing.

Defining Multi-Rate Filtering
Simple signal processing systems and algorithms process signals that are all 
at the same sampling rate.  That is, the length of time between consecutive 
samples is the same for all signals.  Such systems are called single-rate.  
More advanced systems often contain signals that have different sample 
rates.  That is, the length of time between consecutive samples varies.  
systems are called multi-rate. 

The sample rate for multi-rate filters can be increased or decreased by 
up-sampling or down-sampling.  These processes are defined as follows: 

• Up-sampling (see “UpSample” for a description of nsp?UpSample() ) 
increases the sample rate by an integer factor by inserting zero samples 
between samples of the original signal.  An up-sampling operation is 
often followed by filtering to “smooth” out the samples; this is called 
interpolation. 
C-1
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• Down-sampling (see “DownSample” for a description of 
nsp?DownSample() ) decreases the sample rate by an integer factor 
by discarding samples.  A down-sampling operation is often preced
by filtering to prevent aliasing; this is called decimation.

Multi-rate filtering, then, can be defined as interpolation and/or decimation; 
that is, filtering combined with up-sampling and/or down-sampling. 

Multi-rate filtering (conceptually) follows this general scheme:

1. Up-sample a signal x(n)  by the factor upFactor  to produce a signal 
x'(n) .

2. Filter the signal x'(n)  by the transform h(n)  to produce the signal 
y'(n) . 

3. Down-sample the signal y'(n)  by the factor downFactor  to produce 
the signal y(n) . 

When both upFactor  and downFactor  are 1, the filter degenerates into a 
single-rate filter.  Note that up-sampling and down-sampling each have an 
extra degree of freedom due to the upPhase  and downPhase  arguments.

Polyphase FIR
In the multi-rate filtering operations described above, two sources of 
inefficiency may arise.  The origin of these inefficiencies is described 
below.

Consider a direct implementation of the multi-rate filtering operations 
described above.  In the implementation, let NP = upFactor  * 
downFactor . 

1. First downFactor  samples of the signal x(n)  are up-sampled to 
produce NP samples of a signal x'(n ). 

2. These NP samples are filtered to produce NP samples of a signal y'(n) . 
3. These samples are then down-sampled to produce upFactor  samples 

of the signal y(n) . 
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Note that downFactor  (not upFactor ) samples are consumed to produce 
upFactor  samples of y(n) , and that NP single-rate filtering operations are
required.  There are two sources of inefficiency in this direct 
implementation:

• Of the NP input x'(n)  samples, only every upFactor ’th sample is 
non-zero, the rest are zero. 

• Of the NP output y'(n)  samples, only every downFactor th sample 
will be kept and the rest discarded. 

To optimize these two inefficiencies, the polyphase structure must perform 
the following tasks:

• The polyphase structure applies the filter h(n)  only to those input 
samples which are non-zero.

• The polyphase structure applies the filter h(n)  only to those output 
samples which are non-zero.

In order to perform these two optimizations, the polyphase structure ma
upFactor  passes, each pass computing one of the upFactor  output 
samples of y(n) .  Each pass is a dot product between a subset of the filt
taps h(n)  and the input x(n) .

The length of each dot product on each pass is called the phase length (PL).  
Then if the number of taps is denoted as tapsLen , the minimum phase 
length can be defined as  tapsLen /upFactor  , and the maximum is
 tapsLen /upFactor  .
These values differ whenever tapsLen  is not a multiple of upFactor .  For 
the purposes of this discussion, define PL =  tapsLen /upFactor  .
This is a valid bound for all up-sampling and down-sampling phases.  T
filter may be more efficiently implemented when tapsLen  is a multiple of 
upFactor .

Also of interest is the delay line length.  Since the zero samples introduced 
by up-sampling are never actually stored, the delay line length is closel
related to the phase length.  Intuitively, if x(0)  is used in the dot products, 
then PL - 1 previous samples would be required.  However, for the correct 
combination of phases, the first output value y(0)  may not depend on any 
of the inputs x(n)  at all; instead, it depends only on previous values stor
in the delay line (for example, upFactor  = 3, upPhase  = 2, 
downFactor  = 1).  Thus the delay line must hold at least the maximum 
C-3
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phase length of samples, PL.  However, the implementation of a filtering 
operation might be directed to place the new downFactor  samples from 
x(k)  into the delay line before computing the dot products; this requires a 
delay line of length PL + downFactor .

Compare this multi-rate delay line length (PL + downFactor ) to the 
single-rate delay line length of tapsLen .  The single-rate case is not a 
trivial reduction of the multi-rate case; instead, it is smaller by one sample
This is because the multi-rate formula does not consider the phase 
parameters upPhase  and downPhase .  For example, when upFactor  = 1, 
all outputs depend on the input sample(s), while this is not true for upPhase  
not equal to upFactor  - 1.

Polyphase LMS
A polyphase structure can also be used to more efficiently implement 
multi-rate LMS filters.  The filter operation itself can be implemented 
exactly as described above, and the tap-update algorithm can take 
advantage of the known zero input samples when up-sampling.  However
there are some practical difficulties.  Even though the LMS filter is 
mathematically defined for up-sampling and down-sampling, the LMS filter 
functions in the Intel Signal Processing Library do not support up-sampling 
for the following reason.

Up-sampling using a polyphase structure causes output samples to be 
produced in a block of upFactor  samples, which introduces additional 
delay in the error feedback signal.

If your application requires up-sampling in combination with LMS filtering
you can avoid this problem by making an explicit call to 
nsp?UpSample() .
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adaptive filter An adaptive filter varies its filter coefficients (taps
over time.  Typically, the filter’s coefficients are 
varied to make its output match a prototype 
“desired” signal as closely as possible.  
Non-adaptive filters do not vary their filter 
coefficients over time.

b One of the flag values, which indicates the block 
variety of the function.  The block variety of a 
function is equivalent to multiple invocations of the 
non-block (scalar) variety of the function.  For 
example, the nsp?Fir()  function filters a single 
sample through an FIR filter.  The nsp?bFir()  
function filters a block of consecutive samples 
through a single-rate or multi-rate FIR filter.

Bq One of the “mods,” which indicates that the IIR 
initialization function initializes a cascade of 
biquads (second-order IIR sections).

causal filter A filter whose response to input does not depend
values of future inputs.  

CCS See complex conjugate-symmetric.
Glossary-3
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companding functions The functions that perform an operation of data 
compression by using a logarithmic 
encoder-decoder. Companding allows you to 
maintain the percentage error constant by 
logarithmically spacing the quantization levels.

complex
conjugate-symmetric

A kind of symmetry that arises in the Fourier 
transform of real signals.  A complex 
conjugate-symmetric signal has the property that 
x(-n)  = x(n) *, where “*” denotes conjugation.

conjugate The conjugate of a complex number a + bj is a - b j.

conjugate-symmetric See complex conjugate-symmetric.

DCplx A C data structure which defines a double-precisio
complex data type. 

decimation Filtering a signal followed by down-sampling.  The 
filtering prevents aliasing distortion in the 
subsequent down-sampling.  See down-sampling.

down-sampling Down-sampling conceptually decreases a signal’s 
sampling rate by removing samples from between
neighboring samples of a signal.  See decimation.

element-wise An element-wise operation performs the same 
operation on each element of a vector, or uses the 
elements of the same position in multiple vectors as 
inputs to the operation.  For example, the 
element-wise addition of the vectors {x0, x1, x 2} 
and {y 0, y1, y2} is performed as follows:
{ x0, x1, x 2} + { y0, y1, y 2} = 
{ x0 + y0, x 1 + y 1, x2 + y2}.

FIR Abbreviation for finite impulse response filter.  
Finite impulse response filters do not vary their 
filter coefficients (taps) over time.  For more 
information, see Chapter 8.
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fixed-point data format A format that assigns one bit for a sign and all other 
bits for fractional part. This format is used for 
optimized conversion operations with signed, purely
fractional vectors. For example, S.31 format 
assumes a sign bit and 31 fractional bits; S15.16 
assumes a sign bit, 15 integer bits, and 16 fractional
bits.

gradient method A method that assumes that each next tap vector i
equal to the sum of the previous tap and a 
component proportional to the gradient value. The
estimated gradient components are functions of the 
partial derivatives of the current vector.

IIR Abbreviation for infinite impulse response filters.  
For more information, see Chapter 8.

in-place A function that performs its operation in-place, 
takes its input from an array and returns its output 
the same array.  See not-in-place.

interpolation Up-sampling a signal followed by filtering.  The 
filtering gives the inserted samples a value close to 
the samples of their neighboring samples in the 
original signal.  See up-sampling.

leak A parameter for the LMS filter functions which 
indicates how much the filter coefficients “leak” 
(decay) towards zero on each iteration of the 
function.

LMS Abbreviation for least mean square, an algorithm 
frequently used as a measure of the difference 
between two signals.  Also used as shorthand for an 
adaptive FIR filter employing the LMS algorithm 
for adaptation.  For more information, see
Chapter 8.
Glossary-5
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LTI Abbreviation for linear time-invariant systems. In 
LTI systems, if an input consists of the sum of a 
number of signals, then the output is the sum of th
system’s responses to each signal considered 
separately [Lyn89].

Mr One of the “mods,” indicating the multi-rate variety 
of the function.  For more information on mods, see 
“Function Name Conventions” in Chapter 1.

multi-rate An operation or signal processing system involving 
signals with multiple sample rates.  Decimation and 
interpolation are examples of multi-rate operations.

Na One of the “mods,” indicating a non-adaptive filter
function.  For example, nsp?LmslNa() .  See 
adaptive filter.  For more information on mods, see
“Function Name Conventions” in Chapter 1.

Nip Not-in-place.  One of the “mods,” indicating a 
function which performs its operation not-in-place.  
That is, the function takes its input from a source 
array and puts its output in a second, destination 
array.  For example, nsp?FftNip() .  For more 
information on mods, see “Function Name 
Conventions” in Chapter 1.  

not-in-place A function that performs its operation not-in-place
takes its input from a source array and puts its 
output in a second, destination array.

polyphase A computationally efficient method for multi-rate 
filtering.  For example, interpolation or decimation

r One of the flag values which indicates that the real 
and imaginary parts of an FFT function are stored 
separate arrays.  For example, nsp?rFft() . 

RCCcs A representation of a complex conjugate-symmet
sequence which is easier to use than the RCPack
RCPerm formats.  See Table 7-6 in Chapter 7. 



Glossary

d 

 

7.

 

 

RCPack A compact representation of a complex 
conjugate-symmetric sequence.  The disadvantage 
of this format is that it is not the natural format use
by the real FFT algorithms (“natural” in the sense 
that bit-reversed order is natural for radix-2 complex 
FFTs).  See “RCPack” in Chapter 7.

RCPerm A format for storing the values for the FFT 
algorithm.  RCPerm format stores the values in the
order in which the FFT algorithm uses them.  That 
is, the real and imaginary parts of a given sample 
need not be adjacent.  See “RCPerm” in Chapter 

SCplx A C data structure which defines a single-precision
complex data type.

sinusoid See tone.

step A parameter for the LMS filter functions which 
indicates the convergence step size of the filter 
function.

tone A sinusoid of a given frequency, phase, and 
magnitude.  Tones are used as test signals and as 
building blocks for more complex signals. 

up-sampling Up-sampling conceptually increases the signal 
sampling rate by inserting zero-valued samples 
between neighboring samples of a signal.

window A mathematical function by which a signal is 
multiplied to improve the characteristics of some 
subsequent analysis.  Windows are commonly used
in FFT-based spectral analysis.
Glossary-7
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About this manual, 1-2

About this software, 1-1

Adaptive filter, B-5

Add, 3-2

Arithmetic functions, 3-1 thru 3-4
Add, 3-2
Conj, 3-2
Div, 3-3
Mpy, 3-3
Sub, 3-4

AutoCorr, 3-45

B

b1, 3-13

b2RealtoCplx, 4-3

bAbs1, 3-23

bAbs2, 3-24

bAdd1, 3-7

bAdd2, 3-8

bAdd3, 3-9

bALawToLin, 4-35

bALawToMuLaw, 4-39

bCartToPolar, 4-26

bConj1, 3-35

bConj2, 3-35

bConjExtend1, 3-36

bConjExtend2, 3-37

bConjFlip2, 3-38

bCopy, 3-5

bCplxTo2Real, 4-4

bExp1, 3-28

bExp2, 3-29

bFir, 8-26

bFirl, 8-8

bFixToFloat, 4-15

bFloatToFix, 4-13

bFloatToInt, 4-10

bFloatToS1516Fix, 4-20

bFloatToS15Fix, 4-22

bFloatToS31Fix, 4-18

bFloatToS7Fix, 4-24

bGoertz, 7-9

bIir, 8-96

bIirl, 8-85

bImag, 4-2

bIntToFloat, 4-11

bInvThresh1, 3-21

bInvThresh2, 3-22

bLinToALaw, 4-36

bLinToMuLaw, 4-34
Index-1



Intel Signal Processing Library Reference Manual

Index-2

8

bLms, 8-67

bLmsDes, 8-75

bLmsl, 8-48

bLmslNa, 8-53

bLn1, 3-30

bLn2, 3-31

bMag, 4-4

bMpy1, 3-10

bMpy2, 3-11

bMpy3, 3-12

bMuLawToALaw, 4-38

bMuLawToLin, 4-32

bPhase, 4-6

bPolarToCart, 4-29

bRandGaus, 5-22

bRandUni, 5-18

brCartToPolar, 4-28

bReal, 4-2

brMag, 4-5

brPhase, 4-7

brPolarToCart, 4-30

bS1516FixToFloat, 4-21

bS15FixToFloat, 4-23

bS31FixToFloat, 4-19

bS7FixToFloat, 4-25

bSet, 3-1, 3-5

bSqr1, 3-24

bSqr2, 3-25

bSqrt1, 3-26

bSqrt2, 3-27

bSub1, 3-13

bSub2, 3-14

bSub3, 3-15

bThresh1, 3-17

bThresh2, 3-19

bTone, 5-4

bTrngl, 5-11

bZero, 3-6

C

Ccs2Fft, 7-51

Ccs2FftNip, 7-51

CcsFft, 7-44

CcsFftl, 7-35

CcsFftlNip, 7-35

CcsFftNip, 7-44

Companding functions, 4-32 thru 4-37
bALawToLin, 4-35
bALawToMuLaw, 4-39
bLinToALaw, 4-36
bLinToMuLaw, 4-34
bMuLawToALaw, 4-38
bMuLawToLin, 4-32

Compatibility with the Recognition Primitives 
Library, 1-15

Compiler macros, 1-12

Complex vector structure functions, 4-1 thru 4-
b2RealToCplx, 4-3
bCplxTo2Real, 4-4
bImag, 4-2
bMag, 4-4
bPhase, 4-6
bReal, 4-2
brMag, 4-5
brPhasee, 4-7

Conj, 3-2

Constant macros, 1-10

Control macros, 1-10

Conv, 9-2

Conv2D, 9-5

convolution, 9-1

Coordinate conversion functions, 4-26 thru 4-31
bCartToPolar, 4-26
bPolarToCart, 4-29
brCartToPolar, 4-28
brPolarToCart, 4-30
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CrossCorr, 3-47

D

Data type
Conventions, 1-5
Definitions, 1-13

Data type conversion functions, 4-8 thru 4-16
bFixToFloat, 4-15
bFloatToFix, 4-13
bFloatToInt, 4-10
bIntToFloat, 4-11

Dft, 7-5

Dft function, 7-5 thru 7-7
Dft, 7-5

Digital filtering, B-1 thru B-9
adaptive filters, B-5
background of, B-1
down-sampler, B-5
FIR and IIR filters, B-2
frequency-selective capability, B-1
high- and low-level filters, B-7
LMS filters, B-7
multi-rate filters, B-5
taps, B-5
up-sampler, B-5
use, B-1
Using adaptive filters, B-8

Div, 3-3

DotProd, 3-16

DownSample, 3-42

E

Error, 2-2

Error handler
Adding your own, 2-12

Error handling functions, 2-1 thru 2-14
Error, 2-2
ErrorStr, 2-5
GetErrMode, 2-4
GetErrStatus, 2-3
RedirectError, 2-6

SetErrMode, 2-4
SetErrStatus, 2-3

Error handling macros
NSP_ASSERT, 2-7
NSP_ERRCHK, 2-7
NSP_ERROR, 2-6
NSP_RSTERR, 2-7

Error handling status codes, 2-8

ErrorStr, 2-5

F

Fast Fourier transforms
Described, A-1

fast mode FFT, 7-16

Fft, 7-17

Fft functions, 7-15 thru 7-53
Ccs2Fft, 7-51
Ccs2FftNip, 7-51
CcsFft, 7-44
CcsFftl, 7-35
CcsFftlNip, 7-35
CcsFftNip, 7-44
Fft, 7-17
FftNip, 7-17
MpyRCPack2, 7-30
MpyRCPack3, 7-30
MpyRCPerm2, 7-32
MpyRCPerm3, 7-32
Real2Fft, 7-47
Real2FftNip, 7-47
RealFft, 7-38
RealFftl, 7-23
RealFftlNip, 7-23
RealFftNip, 7-38
rFft, 7-17
rFftNip, 7-17

FftNip, 7-17

Filter2D, 9-7

Fir, 8-26

FIR filter, B-3

FIR functions, 8-19 thru ??
bFir, 8-26
Index-3



Intel Signal Processing Library Reference Manual

Index-4
Fir, 8-26
FirFree, 8-21
FirGetDlyl, 8-32
FirGetTaps, 8-31
FirInit, 8-21
FirInitMr, 8-21
FirSetDlyl, 8-32
FirSetTaps, 8-31

FirFree, 8-21

FirGetDlyl, 8-32

FirGetTaps, 8-31

FirInit, 8-21

FirInitMr, 8-21

Firl, 8-8

FirlGetDlyl, 8-16

FirlGetTaps, 8-14

FirlInit, 8-4

FirlInitDlyl, 8-4

FirlInitMr, 8-4

FirlSetDlyl, 8-16

FirlSetTaps, 8-14

FirSetDlyl, 8-32

FirSetTaps, 8-31

FreeBitRevTbls, 7-54

FreeTwdTbls, 7-54

Frequency-selective capability, B-1

Function name conventions, 1-7

G

Gaussian distribution functions, 5-21 thru 5-25
bRandGaus, 5-22
RandGaus, 5-23
RandGausInit, 5-24

GetErrMode, 2-4

GetErrStatus, 2-3

GetLibVersion, 10-1

Given frequency DFT functions, 7-7 thru 7-13
bGoertz, 7-9

Goertz, 7-10
GoertzInit, 7-11
GoertzReset, 7-12

Goertz, 7-10

Goertzel functions. See Given frequency DFT 
functions

GoertzInit, 7-11

GoertzReset, 7-12

H

Hardware/software requirements, 1-1, 1-2

High- and low-level filters, B-7

I

Iir, 8-96

IIR filter, B-2

IIR functions, 8-90 thru 8-99
bIir, 8-96
Iir, 8-96
IirFree, 8-91
IirInit, 8-91
IirInitBq, 8-91

IirFree, 8-91

IirInit, 8-91

IirInitBq, 8-91

Iirl, 8-85

IirlInit, 8-82

IirlInitBq, 8-82

IirlInitDlyl, 8-82

implementation-dependent, 1-3

Integer overflow control, 1-15

Integer scaling, 1-13 thru ??
Arguments, 1-14
AUTO_SCALE mode, 1-14
Compatibility with the Recognition 

Primitives Library, 1-15
FIXED_SCALE mode, 1-14
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NO_SCALE mode, 1-14
NSP_OVERFLOW mode, 1-15
NSP_SATURATE mode, 1-15
Output vector scaling control, 1-14

integer scaling, 1-13
compatibility with the Recognition Primitive 

Librar, 1-15

L

Least mean squares filter, B-7

Library Information Function, 10-1 thru 10-2
GetLibVersion, 10-1

linear time-invariant processor, 9-1

Linear time-invariant systems, B-2

Lms, 8-67

LMS filter. See least mean squares filter

LMS functions, 8-59 thru 8-80
bLms, 8-67
bLmsDes, 8-75
Lms, 8-67
LmsDes, 8-75
LmsFree, 8-62
LmsGetDlyl, 8-71
LmsGetErrVal, 8-79
LmsGetLeak, 8-73
LmsGetStep, 8-73
LmsGetTaps, 8-70
LmsInit, 8-62
LmsInitMr, 8-62
LmsSetDlyl, 8-71
LmsSetErrVal, 8-79
LmsSetLeak, 8-73
LmsSetStep, 8-73
LmsSetTaps, 8-70

LmsDes, 8-75

LmsFree, 8-62

LmsGetDlyl, 8-71

LmsGetErrVal, 8-79

LmsGetLeak, 8-73

LmsGetStep, 8-73

LmsGetTaps, 8-70

LmsInit, 8-62

LmsInitMr, 8-62

Lmsl, 8-48

LmslGetDlyl, 8-44

LmslGetLeak, 8-47

LmslGetStep, 8-47

LmslGetTaps, 8-42

LmslInit, 8-37

LmslInitDlyl, 8-37

LmslInitMr, 8-37

LmslNa, 8-53

LmslSetDlyl, 8-44

LmslSetLeak, 8-47

LmslSetStep, 8-47

LmslSetTaps, 8-42

LmsSetDlyl, 8-71

LmsSetErrVal, 8-79

LmsSetLeak, 8-73

LmsSetStep, 8-73

LmsSetTaps, 8-70

Low-level FIR functions, 8-2 thru 8-19
bFirl, 8-8
Firl, 8-8
FirlGetDlyl, 8-16
FirlGetTaps, 8-14
FirlInit, 8-4
FirlInitDlyl, 8-4
FirlInitMr, 8-4
FirlSetDlyl, 8-16
FirlSetTaps, 8-14

Low-level IIR functions, 8-81 thru 8-90
bIirl, 8-85
Iirl, 8-85
IirlInit, 8-82
IirlInitBq, 8-82
IirlInitDlyl, 8-82

Low-level LMS functions, 8-34 thru 8-59
bLmsl, 8-48
bLmslNa, 8-53
Index-5
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Lmsl, 8-48
LmslGetDlyl, 8-44
LmslGetLeak, 8-47
LmslGetStep, 8-47
LmslGetTaps, 8-42
LmslInit, 8-37
LmslInitDlyl, 8-37
LmslInitMr, 8-37
LmslNa, 8-53
LmslSetDlyl, 8-44
LmslSetLeak, 8-47
LmslSetStep, 8-47
LmslSetTaps, 8-42

LTI system. See linear time-invariant systems

M

Manual organization, 1-3

Mathematical symbol conventions, 1-9

Max, 3-32

Mean, 3-33

Memory Reclaim Functions, 7-53 thru 7-55

Memory reclaim functions
FreeBitRevTbls, 7-54
FreeTwdTbls, 7-54

Min, 3-32

Mpy, 3-3

MpyRCPack2, 7-30

MpyRCPack3, 7-30

MpyRCPerm2, 7-32

MpyRCPerm3, 7-32

Multi-rate filter, B-5

Multi-rate filtering
Described, C-1

N

Notational conventions, 1-5 thru 1-9

NSP Library macros, 1-10 thru 1-12
compiler macros, 1-12

Constant macros, 1-10
Control macros, 1-10
control macros, 1-10

nsp.h header file
Contents of, 1-10

nsp?Add(). See Add

nsp?AutoCorr(). See AutoCorr

nsp?b2RealToCplax(). See b2RealToCplx

nsp?bAbs1(). See bAbs1

nsp?bAdd1(). See bAdd1

nsp?bAdd2(). See bAdd2

nsp?bAdd3(). See bAdd3

nsp?bALawToLin(). See bALawToLin

nsp?bCartToPolar(). See bCartToPolar

nsp?bConj1(). See bConj1

nsp?bConj2(). See bConj2

nsp?bConjExtend1(). See bConjExtend1

nsp?bConjExtend2(). See bConjExtend2

nsp?bConjFlip2(). See bConjFlip2

nsp?bCopy(). See bCopy

nsp?bCplxTo2Real(). See bCplxTo2Real

nsp?bExp1(). See bExp1

nsp?bExp2(). See bExp2

nsp?bFir(). See bFir

nsp?bFirl(). See bFirl

nsp?bFixToFloat(). See bFixToFloat

nsp?bFloatToFix(). See bFloatToFix

nsp?bFloatToInt(). See bFloatToInt

nsp?bFloatToS1516

nsp?bFloatToS15Fix(). See bFloatToS15Fix

nsp?bFloatToS31Fix(). See bFloatToS31Fix

nsp?bFloatToS7Fix(). See bFloatToS7Fix

nsp?bGoertz(). See bGoertz

nsp?bIir(). See bIir

nsp?bIirl(). See bIirl

nsp?bImag(). See bImag

nsp?bIntToFloat(). See bIntToFloat

nsp?bInvThresh1(). See bInvThresh1
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nsp?bInvThresh2(). See bInvThresh2

nsp?bLinToALaw(). See bLinToALaw

nsp?bLinToMuLaw(). See bLinToMuLaw

nsp?bLms(). See bLms

nsp?bLmsDes(). See bLmsDes

nsp?bLmsl(). See bLmsl

nsp?bLmslNa(). See bLmslNa

nsp?bLn1(). See bLn1

nsp?bLn2(). See bLn2

nsp?bMag(). See bMag

nsp?bMpy1.See bMpy1

nsp?bMpy2(). See bMpy2

nsp?bMpy3(). See bMpy3

nsp?bMuLawToLin(). See bMuLawToLin

nsp?bPhase(). See bPhase

nsp?bPolarToCart(). See bPolarToCart

nsp?bRandGus(). See bRandGaus

nsp?bRandUni(). See bRandUni

nsp?brCartToPolar(). See brCartToPolar

nsp?bReal(). See bReal

nsp?brMag(). See brMag

nsp?brPhase(). See brPhase

nsp?brPolarToCart(). See brPolarToCart

nsp?bS15FixToFloat(). See bS15FixToFloat

nsp?bS31FixToFloat(). See bS31FixToFloat

nsp?bS7FixToFloat(). See bS7FixToFloat, 4-25

nsp?bSet(). See bSet

nsp?bSqr1(). See bSqr1

nsp?bSqr2(). See bSqr2

nsp?bSqrt1(). See bSqrt1

nsp?bSqrt2(). See bSqrt2

nsp?bSub1. See bSub1

nsp?bSub2. See bSub2

nsp?bSub3. See bSub3

nsp?bThresh1(). See bThresh1

nsp?bThresh2(). See bThresh2

nsp?bTone(). See bTone

nsp?bTrngl(). See bTrngl

nsp?bZero(). See bZero

nsp?Ccs2Fft(). See Ccs2Fft

nsp?Ccs2FftNip(). See Ccs2FftNip

nsp?CcsFft(). See CcsFft

nsp?CcsFftl(). See CcsFftl

nsp?CcsFftlNip(). See CcsFftlNip

nsp?CcsFftNip(). See CcsFftNip

nsp?Conj(). See Conj

nsp?Conv(). See Conv

nsp?Conv2D(). See Conv2D

nsp?CrossCorr(). See CrossCorr

nsp?Dft(). See Dft

nsp?Div(). See Div

nsp?DotProd (). See DotProd

nsp?DownSample(). See DownSample

nsp?Fft(). See Fft

nsp?FftNip(). See FftNip

nsp?Filter2D(). See Filter2D

nsp?Fir(). See Fir

nsp?FirFree(). See FirFree

nsp?FirGetDlyl(). See FirGetDlyl

nsp?FirGetTaps(). See FirGetTaps

nsp?FirInit(). See FirInit

nsp?FirInitMr(). See FirInitMr

nsp?Firl(). See Firl

nsp?FirlGetDlyl(). See FirlGetDlyl

nsp?FirlGetTaps(). See FirlGetTaps

nsp?FirlInit(). See FirlInit

nsp?FirlInitDlyl(). See FirlInitDlyl

nsp?FirlInitMr(). See FirlInitMr

nsp?FirlSetDlyl(). See FirlSetDlyl

nsp?FirlSetTaps(). See FirlSetTaps

nsp?FirSetDlyl(). See FirSetDlyl

nsp?FirSetTaps(). See FirSetTaps

nsp?FreeTwdTbls(). See FreeTwdTbls

nsp?Goertz(). See Goertz
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nsp?GoertzInit(). See GoertzInit

nsp?GoertzReset(). See GoertzReset

nsp?Iir(). See Iir

nsp?IirInit(). See IirInit

nsp?IirInitBq(). See IirInitBq

nsp?Iirl(). See Iirl

nsp?IirlInit(). See IirlInit

nsp?IirlInitBq(). See IirlInitBq

nsp?IirlInitDlyl(). See IirlInitDlyl

nsp?Lms(). See Lms

nsp?LmsDes(). See LmsDes

nsp?LmsGetDlyl(). See LmsGetDlyl

nsp?LmsGetErrVal(). See LmsGetErrVal

nsp?LmsGetLeak(). See LmsGetLeak

nsp?LmsGetStep(). See LmsGetStep

nsp?LmsGetTaps(). See LmsGetTaps

nsp?LmsInit(). See LmsInit

nsp?LmsInitMr(). See LmsInitMr

nsp?Lmsl(). See Lmsl

nsp?LmslGetDlyl(). See LmslGetDlyl

nsp?LmslGetLeak(). See LmslGetLeak

nsp?LmslGetStep(). See LmslGetStep

nsp?LmslGetTaps(). See LmslGetTaps

nsp?LmslInit(). See LmslInit

nsp?LmslInitDlyl(). See LmslInitDlyl

nsp?LmslInitMr(). See LmslInitMr

nsp?LmslNa(). See LmslNa

nsp?LmslSetDlyl(). See LmslSetDlyl

nsp?LmslSetLeak(). See LmslSetLeak

nsp?LmslSetStep(). See LmslSetStep

nsp?LmslSetTaps(). See LmslSetTaps

nsp?LmsSetDlyl(). See LmsSetDlyl

nsp?LmsSetErrVal(). See LmsSetErrVal

nsp?LmsSetLeak(). See LmsSetLeak

nsp?LmsSetStep(). See LmsSetStep

nsp?LmsSetTaps(). See LmsSetTaps

nsp?Max(). See Max

nsp?Mean(). See Mean

nsp?Min(). See Min

nsp?Mpy(). See Mpy

nsp?MpyRCPack2(). See MpyRCPack2

nsp?MpyRCPack3(). See MpyRCPack3

nsp?MpyRCPerm2(). See MpyRcPerm2

nsp?MpyRCPerm3(). MpyRPPerm3

nsp?RandGaus(). See RandGaus

nsp?RandGausInit(). See RandGausInit

nsp?RandUni(). See RandUni

nsp?RandUniInit(). See RandUniInit

nsp?Real2Fft(). See Real2FftNip

nsp?Real2FftNip(). See Real2FftNip

nsp?RealFft(). See RealFft

nsp?RealFftl(). See RealFftl

nsp?RealFftlNip(). See RealFftlNip

nsp?RealFftNip(). See RealFftNip

nsp?rFft(). See rFft

nsp?rFftNip(). See rFftNip

nsp?StdDev(). See StdDev

nsp?Sub(). See Sub

nsp?Tone(). See Tone

nsp?ToneInit(). See ToneInit

nsp?Trngl(). See Trngl

nsp?TrnglInit(). See TrnglInit

nsp?UpSample(). See UpSample

nsp?WinBartlett(). See WinBartlett

nsp?WinBlackman(). See WinBlackman

nsp?WinHamming(). See WinHamming

nsp?WinHann(). See WinHann

nsp?WinKaiser(). See WinKaiser

NSP_ASSERT, 2-7

NSP_ERRCHK, 2-7

NSP_ERROR, 2-6

NSP_RSTERR, 2-7

nspbALawToMuLaw(). See bALawToMuLaw

nspbMuLawToALaw(). See bMuLawToALaw
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NSPErrCallBack (function typedef), 2-6, 2-13

nspError(). See Error

nspErrorStr(). See ErrorStr

nspFreeBitRevTbls(). See FreeBitRevTbls

nspGetErrMode(). See GetErrMode

nspGetErrStatus(). See GetErrStatus

nspGetLibVersion(). See GetLibVersion

nspIirFree(). See IirFree

nspLmsFree(). See LmsFree

nspRedirectError(). See RedirectError

nspSetErrMode(). See SetErrMode

nspSetErrStatus(). See SetErrStatus

O

One-dimensional convolution functions, 9-1 thru 
9-4

Conv, 9-2

Optimized data type conversion functions, 4-16 
thru 4-26

bFloatToS1516Fix, 4-20
bFloatToS15Fix, 4-22
bFloatToS31Fix, 4-18
bFloatToS7Fix, 4-24
bS1516FixToFloat, 4-21
bS15FixToFloat, 4-23
bS31FixToFloat, 4-19
bS7FixToFloat, 4-25

Output vector scaling control, 1-14

output vector scaling control, 1-14

P

Platforms supported, 1-2

Polyphase FIR filtering
Described, C-2

Polyphase LMS filtering
Described, C-4

R

RandGaus, 5-23

RandGausInit, 5-24

RandUni, 5-19

RandUniInit, 5-20

RCPack format, 7-25, 7-30

RCPerm format, 7-26, 7-30

Real2Fft, 7-47

Real2FftNip, 7-47

RealFft, 7-38

RealFftl, 7-23

RealFftlNip, 7-23

RealFftNip, 7-38

RedirectError, 2-6

Related publications, 1-5

rFft, 7-17

rFftNip, 7-17

S

Sample manipulation functions, 3-39 thru 3-44
DownSample, 3-42
UpSample, 3-39

Scaling arguments, 1-14 thru 1-15
Integer overflow control, 1-15
ScaleFactor, 1-15
ScaleMode, 1-14
Scaling control, 1-14

SetErrMode, 2-4

SetErrStatus, 2-3

Signal name conventions, 1-9

StdDev, 3-33

Sub, 3-4

T

Tone, 5-5
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Tone-generating functions, 5-1 thru 5-7
bTone, 5-4
Tone, 5-5
ToneInit, 5-6

ToneInit, 5-6

Triangle-generating functions, 5-7 thru 5-15
bTrngl, 5-11
Trngl, 5-12
TrnglInit, 5-14

Trngl, 5-12

TrnglInit, 5-14

Two-dimensional convolution functions, 9-5 
thru 9-9

Conv2D, 9-5
Filter2D, 9-7

U

Uniform distribution funcitons, 5-16 thru ??

Uniform distribution functions, ?? thru 5-21
bRandUni, 5-18
RandUni, 5-19
RandUniInit, 5-20

UpSample, 3-39

Using adaptive filters, B-8

V

Vector arithmetic functions, 3-7 thru 3-31
bAbs1, 3-23
bAbs2, 3-24
bAdd1, 3-7
bAdd2, 3-8
bAdd3, 3-9
bExp1, 3-28
bExp2, 3-29
bInvThresh1, 3-21
bInvThresh2, 3-22
bLn1, 3-30
bLn2, 3-31
bMpy1, 3-10

bMpy2, 3-11
bMpy3, 3-12
bSqr1, 3-24
bSqr2, 3-25
bSqrt1, 3-26
bSqrt2, 3-27
bSub1, 3-13
bSub2, 3-14
bSub3, 3-15
bThresh1, 3-17
bThresh2, 3-19
DotProd, 3-16

Vector conjugation functions, 3-34 thru 3-39
bConj1, 3-35
bConj2, 3-35
bConjExtend2, 3-37
bConjFlip2, 3-38

Vector correlation functions, 3-44 thru 3-49
AutoCorr, 3-45
CrossCorr, 3-47

Vector initialization functions, 3-4 thru 3-7
bConjExtend1, 3-36
bCopy, 3-5
bSet, 3-1, 3-5
bZero, 3-6

Vector measure functions, 3-31 thru 3-34
Max, 3-32
Mean, 3-33
Min, 3-32
StdDev, 3-33

W

WinBartlett, 6-4

WinBlackman, 6-5

Windowing functions, 6-1 thru 6-9
WinBartlett, 6-4
WinBlackman, 6-5
WinHamming, 6-7
WinHann, 6-8
WinKaiser, 6-9

WinHamming, 6-7
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